

Product Specification

100G Quadwire® QSFP28 Active Optical Cable

FCBR425QB1Cxx

PRODUCT FEATURES

- Four-channel full-duplex active optical cable
- Multirate capability: 10 Gb/s to 25.78 Gb/s per channel
- QSFP28 high-density form factor
- Reliable VCSEL array technology using multimode fiber
- Round low smoke zero halogen (LSZH) cable
- Hot Pluggable
- Low power dissipation: <3.5W per cable end (<2.5W with CDRs off)
- Commercial operating case temperature range: 0°C to 70°C
- RoHS-6 Compliant

Compliant to RoHS Directive 2011/65/EU

APPLICATIONS

- Infiniband 4xEDR, 4xFDR, 4xQDR
- 10/25/40/100G Ethernet
- SAS3
- Proprietary HPC Interconnections

PRODUCT SELECTION (Standard Lengths*)

FCBR425QB1C01	1-meter cable
FCBR425QB1C03	3-meter cable
FCBR425QB1C05	5-meter cable
FCBR425QB1C10	10-meter cable
FCBR425QB1C15	15-meter cable
FCBR425QB1C20	20-meter cable
FCBR425QB1C30	30-meter cable
FCBR425QB1C50	50-meter cable
FCBR425QB1CX0	100-meter cable

^{*}For availability of additional cable lengths or cable types, please contact Finisar.

I. Pin Descriptions

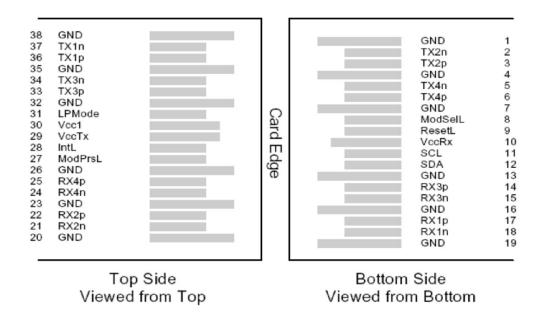


Figure 1 – QSFP28-compliant 38-pin connector (per SFF-8679)

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	

26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	
30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

<u>Notes</u>

1. Circuit ground is internally isolated from chassis ground.

II. **General Product Characteristics**

Parameter	Value	Unit	Notes
Module Form Factor	QSFP28		As defined by SFF-8661
Number of Lanes	4 Tx and 4 Rx		
Maximum Aggregate Data Rate	103.12	Gb/s	
Maximum Data Rate per Lane	25.78	Gb/s	
Standard Cable Lengths	1, 3, 5, 10, 15, 20, 30, 50, 100	meters	Other lengths may be available upon request
Protocols Supported	Typical applications include InfiniBand QDR/FDR/EDR, 10/25/40G/100G Ethernet, SAS3		
Electrical Interface and Pin-out	38-pin edge connector		Pin-out as defined by SFF-8679
Standard Optical Cable Type	Multimode round fiber cable, plenum-rated		OFNP. Low Smoke Zero Halogen (LSZH), round fiber cable also available
Maximum Power Consumption per End	3.5 (retimed Tx) 2.5 (unretimed)	Watts	Varies with output voltage swing and pre-emphasis settings
Management Interface	Serial, I2C-based, 450 kHz maximum frequency		As defined by SFF-8636

Data Rate Specifications	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate per Lane	BR		25.78		Gb/sec	1
Bit Error Ratio	BER			10 ⁻¹²		2

- Supports InfiniBand QDR/FDR/EDR and 10/25/40/100 Gigabit Ethernet data rates, with maximum bit error rate 10⁻¹² at 25.78 Gb/sec.
 Tested with a PRBS 2³¹-1 test pattern.

III. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc1,	-0.5		3.6	V	
	VccTx,					
	VccRx					
Storage Temperature	T_{S}	-40		85	°C	1
Case Operating Temperature	T_{OP}	0		70	°C	
Relative Humidity	RH	0		85	%	2

Notes:

- 1. Assumes no mechanical load force on the unit. Ensuring no mechanical load force requires a cable bend radius of >105 mm within 100 mm of either cable end module and >60 mm on the rest of the cable.
- 2. Non-condensing.

IV. Electrical Characteristics ($T_{OP} = 0$ to 70° C, $V_{CC} = 3.3 \pm 5\%$ Volts)

NOTE: The Quadwire EDR requires an electrical connector compliant with SFF-8662 or SFF-8672 be used on the host board to guarantee its electrical interface specification. Please check with your connector supplier.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc1,					
	VccTx,	3.15		3.45	V	
	VccRx					
Supply Current	Icc			1010	mA	
Power Dissipation per cable end	P			3.5	W	1, 2
Link Turn-On Time						
Transmit turn-on time				2000	ms	3
Input electrical specifications (per Lane)						
Differential Voltage pk-pk				900	mV	
Common Mode Noise RMS				17.5	mV	
Differential Termination Resistance Mismatch				10	%	
Differential Return Loss	SDD22		NE CEL AC	C LIGD	dB	
Common Mode to Differential conversion and	SDC22,	Per (OIF CEI-28		ďΒ	
Differential to Common Mode Conversion	SCD22		and CAUI	dB		
Common Mode Return Loss	SCC22	requirements			dB	
Transition Time, 20 to 80%	Tr, Tf	10			ps	
Common Mode Voltage	Vcm	-0.3		2.8	V	
Eye Width at 1E-15 probability	EW15	0.46			UI	
Eye Height at 1E-15 probability	EH15	94			mV	
Output electrical specifications (per Lane)						
Differential Voltage pk-pk				900	mV	
Common Mode Voltage	Vcm	-350		2850	mV	
Common Mode Noise RMS				17.5	mV	
Differential Termination Resistance Mismatch				10	%	
Differential Return Loss	SDD22	Per C	IF CEI-28	G-VSR	dB	
Common Mode to Differential conversion and	SDC22,		AUI-4 requ			
Differential to Common Mode Conversion	SCD22		1			
Common Mode Return Loss	SCC22			-2	dB	
Transition Time, 20 to 80%	Tr, Tf	9.5			ps	
Vertical Eye Closure	VEC			5.5	dB	
Eye Width at 1E-15 probability	EW15	0.57			UI	
Eye Height at 1E-15 probability	EH15	228			mV	

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. Settable in various discrete steps via the I2C interface.
- 3. From power-on and end of any fault conditions.

V. Memory Map and Control Registers

Compatible with SFF-8636. Please see Finisar Application Note AN-2150⁷.

VI. Environmental Specifications

Finisar Quadwire EDR Active Optical Cables have an operating temperature range from 0°C to +70°C case temperature.

Environmental Specifications	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		70	°C	
Storage Temperature	T_{sto}	-10		70	°C	

VII. Regulatory Compliance

Finisar Quadwire EDR Active Optical Cables are RoHS-6 Compliant. Copies of certificates to be available at Finisar Corporation upon request.

Quadwire EDR Active Optical Cables are Class 1 laser eye safety compliant per IEC 60825-1.

Standard fiber cable type is round-section construction, plenum-rated. Other cable types can be supported upon request such as LSZH, round-section construction.

VIII. Mechanical Specifications

The Quadwire EDR mechanical specifications are compliant with the QSFP28 transceiver module specifications (as defined in SFF-8661), substituting the MPO12 receptacle with a fiber optics cable connecting both ends.

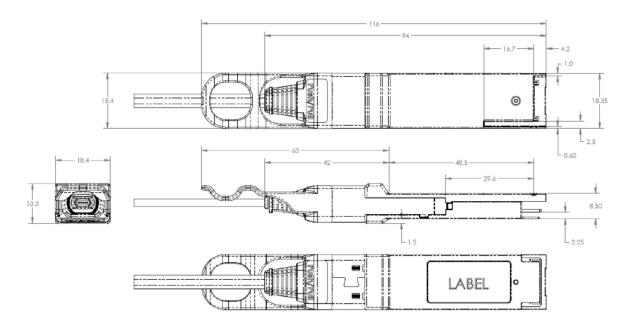


Figure 2 – Quadwire EDR mechanical drawing

Insertion, Extraction and Retention Forces	Min	Max	Units	Notes
Cable Proof (Tensile) Test (0°)		44.0	Newtons	
Cable Proof (Tensile) Test (90°)		33.0	Newtons	
Impact		8	Cycles	1.5m drop
Flex		8.9	Newtons	
Twist		13.0	Newtons	
Module retention	90	N/A	Newtons	No damage below 90N
Host Connector Retention	180	N/A	Newtons	No damage below 180N

IX. References

- 1. InfiniBandTM Architecture Release, Vol. 2 Physical Specifications, Rev. 1.3, November 2012.
- 2. SFF-8665 QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28), Rev 1.8, May, 2013.
- 3. SFF-8636 Specification for Common Management Interface, Rev 1.7, January 2014.
- 4. "CAUI-4" Retimed 4x25G electrical interface, to be defined by IEEE 802.3
- 5. CEI-28G-VSR Implementation Agreement, per OIF 2012.290.00
- 6. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." Certain products may use one or more exemptions as allowed by the Directive.
- 7. "Application Note AN-2150: EDR Quadwire EEPROM Mapping."

X. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com