

Property of Lite-on Only

6N137 - High Speed 10MBd Optocouplers

Aug 2008

DESCRIPTION

These diode-transistor photocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector. The output features is an open collector and coupler parameters are guaranteed over the temperature range from $-40\,^{\circ}\text{C} \sim\!85\,^{\circ}\text{C}$. The internal shield provides a guaranteed Common Mode Transient Immunity (typical) $10KV/\mu s$

FEATURES

- * High speed 10MBd
- * Common mode rejection 10KV/µs
- * UL, CSA, IEC/EN/DIN EN60747-5-2 -

Pending

- * Dual-in-line package- 6N137
- * Wide lead spacing package- 6N137M
- * Surface mounting package- 6N137S
- * Tape and reel packaging-6N137S-TA/6N137S-TA1

APPLICATIONS

- * High Voltage Isolation
- * Line receivers
- * Feedback Element in Switching Mode Power Supplies
- * High Speed Logic Ground Isolation TTL/TTL, TTL/CMOS, TTL/LSTTL
- * Pulse transformer replacement
- * Power transistor isolation in motor drives
- * Microprocessor system interfaces
- * Ground loop elimination

Schematic

Pin Define

- 1. NC
- 2. Anode
- 3. Cathode
- 4. NC
- 5. GND
- 6. Vo
- 7. VE
- 8. Vcc

Truth Table (Positive Logic)

	0 /	
Input	EN	Output
ON	Н	L
OFF	Н	Н
ON	L	Н
OFF	L	Н
ON	NC	L
OFF	NC	Н

A 0.1uF bypass capacitor must be connected between pin8 and pin5.

Part No.: 6N137 Series (Preliminary Date Sheet)

Page: 1 of 10

Property of Lite-on Only

OUTLINE DIMENSIONS

6N137:

6N137M

Page:

2 of 10

Week Code *2

Part No.: 6N137 Series (Preliminary Date Sheet)

Property of Lite-on Only

OUTLINE DIMENSIONS

6N137S

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z: Taiwan, Y: Thailand).

Part No.: 6N137 Series (Preliminary Date Sheet)

LITEON

LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F P2	$7.5 \pm 0.1 (.295)$ $2 \pm 0.1 (.079)$
Distance of compartment to compartment	P ₁	12 ± 0.1 (.472)

Part No.: 6N137 Series (Preliminary Date Sheet)

Property of Lite-on Only

ABSOLUTE MAXIMUM RATING

(Ta = 25°C unless otherwise specified)

	PARAMETER	SYMBOL	RATING	UNIT
	Forward Current	I_{F}	25	mA
INPUT	INPUT Reverse Voltage		5	V
	Power Dissipation	P	40	mW
	Supply Voltage (1minute max)	V _{CC}	7	V
OI ITDI IT	Output Voltage		7	V
OUTPUT	Output Current		50	mA
	Power Dissipation		85	mW
Isolati	Isolation Voltage		5000	Vrms
Operating Temperature		$T_{ m opr}$	-40 ~ +85	°C
Storage Temperature		T_{stg}	-55 ~ +125	°C
Soldering Temperature		$T_{\rm sol}$	260 for 10 sec	°C

Note

- 1. AC For 1 Minute, R.H. = $40 \sim 60\%$
 - Isolation voltage shall be measured using the following method.
 - (1) Short Pin 1 to Pin4 on the primary side and Pin 5 to Pin 8 on the secondary side.
 - (2) The isolation voltage tester with zero-cross circuit shall be used.
 - (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 sec.

Part No.:	6N137 Series (Preliminary Date Sheet)	Page:	5 of 10
-----------	---------------------------------------	-------	---------

Property of Lite-on Only

ELECTRICAL - OPTICAL CHARACTERISTICS

($T_A = 0 \sim 70^{\circ}C$, unless otherwise specified)

PARAMETER	SYMBOL	MIN.	TYP.**	MAX.	UNIT	CONDITIONS	
Input							
Input Forward Voltage	V_{F}		1.45	1.7	V	Ta=25°C, $I_F = 10$ mA	
Input Forward Voltage Temperature Coefficient	$\Delta V_{F}/\Delta Ta$	_	-1.6	_	mV/°C	I _F =10mA	
Input Reverse Voltage	BV_R	5.0	_	_	V	Ta=25°C , IR=10 μ A	
Output	Output						
High Level Supply Current	I_{CCH}		7	10	mA	I_F =0mA, V_E =0.5V V_{CC} =5.5V	
Low Level Supply Current	I_{CCL}		9	13	mA	I_F =10mA, V_E =0.5V V_{CC} =5.5V	
Low Level Enable Current	${ m I}_{ m EL}$		-0.8	-1.6	mA	$V_{CC} = 5.5V, \ V_{E} = 0.5V$	
High Level Enable Current	I_{EH}		-0.6	-1.6	mA	$V_{CC} = 5.5V, V_{E} = 2.0V$	
High Level Enable Voltage	V_{EH}	2.0			V	I _F =10mA,V _{CC} =5.5V	
Low Level Enable Voltage	V_{EL}			0.8	V	$I_F=10\text{mA}, V_{CC}=5.5V$	

^{**} All typical at $T_A = 25^{\circ}C$

Property of Lite-on Only

SWITCHING SPECIFICATIONS (AC)

($T_A = -40 \sim 85$ °C, $V_{CC} = 5V$, $I_F = 7.5$ mA unless otherwise specified)

PARAMETER	SYM.	MIN.	TYP**	MAX.	UNIT	CONDITIONS
Propagation Delay time to Logic Low Output (1)→(0)	t_{PHL}	25	30	75	- ns	$R_L = 350 \Omega$
	ЧНL			100		$C_L = 15pF$
Propagation Delay time to Logic High	t _{PLH}	25	40	75	ns	$R_L = 350 \Omega$
Output $(0) \rightarrow (1)$	PLH			100	113	$C_L = 15pF$
Pulse Width Distortion	t _{PHL} - t _{PL} H		10		ns	$R_{L} = 350 \Omega$ $C_{L} = 15 pF$
Output Rise Time (10%~90%)	t _r		50		ns	$R_{L} = 350 \Omega$ $C_{L} = 15 pF$
Output Fall time (90%~10%)	${ m t_f}$		12		ns	$R_{L} = 350 \Omega$ $C_{L} = 15 pF$
Enable Propagation Delay Time at high level output(1)	t _{ELH}		20		ns	$I_F=7.5mA$ $V_{EH}=3.5V$ $R_L=350\Omega$ $C_L=15pF$
Enable Propagation Delay Time at low level output(0)	t _{EHL}		20		ns	$I_F=7.5mA$ $V_{EH}=3.5V$ $R_L=350\Omega$ $C_L=15pF$
Instantaneous common mode rejection at high logic output (1)	CM _H	1	10		KV / μs	$\begin{split} I_{F}=&0\text{mA}\\ V_{OH}(\text{Min})=&2.0V\\ \mid V_{CM}\mid =&50V_{P\text{-P}}\text{,}\\ RL=&350\Omega \end{split}$
Instantaneous common mode rejection at low logic output (0)	CM _L	1	10	_	KV / μs	$\begin{split} I_{F} &= 7.5 \text{mA} \\ V_{OH}(\text{Max}) &= 0.8 V \\ \mid V_{CM} \mid = 50 V_{P-P}, \\ RL &= 350 \Omega \end{split}$

^{**} All typical at $T_A = 25^{\circ}C$

Part No.: 6N137 Series (Preliminary Date Sheet)

Page: 7 of 10

Property of Lite-on Only

Property of Lite-on Only

ISOLATION CHARACTERISTICS

($T_A = -40 \sim 85$ °C, $V_{CC} = 5V$, $I_F = 7.5$ mA unless otherwise specified)

PARAMETER	SYMBOL	MIN.	TYP.**	MAX.	UNIT	CONDITIONS
Isolation Resistance (Input-output) Note4.	$R_{\text{I-O}}$	_	10 ¹²	_		Ta=25°C , RH<45%, V _{I-O} =500V DC
Capacitance (Input-output) Note4.	C _{I-O}	_	0.6		pF	f=1MHz

TRANSFER CHARACTERISTICS(DC)

($T_A = -40 \sim 85$ °C, $V_{CC} = 5V$, $I_F = 7.5$ mA unless otherwise specified)

PARAMETER	SYMBOL	MIN.	TYP. **	MAX.	UNIT	CONDITIONS
High Level Output Current	${ m I}_{ m OH}$			100	uA	V_{CC} =5.5V, V_{o} =0.5V I_{F} =250 μ A, V_{E} =2.0V
Low Level Output Voltage	$V_{ m OL}$		0.35	0.6	V	V_{CC} =5.5V, I_F =5mA, V_E =2.0V I_{OL} =13mA
Input Threshold Current	I _{FTH}		3	5	mA	V_{CC} =5.5V, V_{o} =0.5V I_{OL} =13mA, V_{E} =2.0V

^{**} All typical at $Vcc=5V,T_A=25^{\circ}C$

Note:

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Considered a two-terminal device: Pin 1,2,3,4 shorted together and Pin 5,6,7,8 shorted together.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 sec.
- 3. Pin5 and Pin8 must connect a bypass 0.1uF capacitor.

Part No.: 6N137 Series (Preliminary Date Sheet) Page: 9 of 10

LITEON

LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only

Notes:

- Lite-On is continually improving the quality, reliability, function or design and Lite-On reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio / visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Do not immerse unit's body in solder paste.

Part No.: 6N137 Series (Preliminary Date Sheet) Page: 10 of 10