

EMI Suppression Beads (2643250202)

Part Number: 2643250202

43 SHIELD BEAD

Explanation of Part Numbers: \Box Digits 1&2 = product class, \Box 3&4 = material grade and

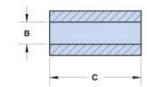
 \Box last digit 1= not burnished, 2 = burnished and 4 = Parylene coated.

□Beads with a "1" as the last digit of the part number are not burnished. Parts that are burnished to break the sharp edges have a "2" as the last digit.

 \Box Upon request beads can be supplied with a Parylene coating. The last digit of the Parylene coated part is a "4". The minimum coating thickness beads is 0.005 mm (0.0002").

Fair- Rite offers a broad selection of ferrite EMI suppression beads with guaranteed minimum impedance specifications.

□Our "Shield Bead Kit" (part number 0199000019) contains a selection of these beads.


□ For any EMI suppression bead requirement not listed here, feel free to contact our customer service for availability and pricing.

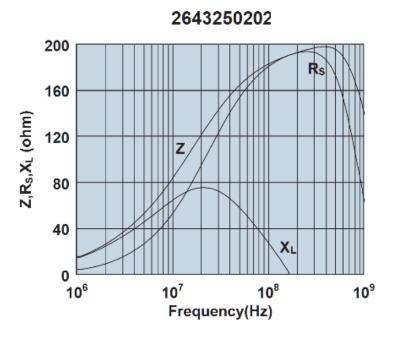
 \Box The \Box C \Box dimension, the bead length, can be modified to suit specific applications.

Weight: 2.5 (g)

Dim	mm	mm tol	nominal inch	inch misc.
A	6.35	±0.15	0.25	_
В	2.95	+0.45	0.125	_
C	25.4	±0.75	1	_

Chart Legend

- + Test frequency
- The column "H (Oe)" gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of "H" times the actual NI (ampere- turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note \Box How to choose Ferrite Components for EMI Suppression \Box .


Typical Impedano	ce (Ω)
10 MHz	83
25 MHz ⁺	135
100 MHz ⁺	200
250 MHz	196

Electrical Properties						
H(Oe)	0.91					

 \Box The column "H (Oe)" gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of "H" times the actual NI (ampere- turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note \Box How to choose Ferrite Components for EMI Suppression \Box .

□ Suppression	ı beads are	controlled	for impedan	ces only.	Minimum	impedance	e values a	re specified	for the +	marked	frequencies
The minimun	n impedan	ce is typical	ly the listed	impedanc	e less 20%).					

□ Single turn impedance tests for 73 and 43 material beads are performed on the 4193A Vector Impedance Analyzer. The 61 material beads are tested on the 4291A RF Impedance Analyzer. Beads are tested with the shortest practical wire length.

Impedance, reactance, and resistance vs. frequency.

Fair- Rite Products Corp. • One Commercial Row, Wallkill, New York 12589-0288

888-324-7748

845-895-2055

Fax: 845-895-2629

ferrites@fair- rite.com

www.fair- rite.com