

High Voltage, Isolated Gate Driver with Internal Miller Clamp, 2.3 A Output

Enhanced Product

ADuM4121-1-EP

FEATURES

2.3 A peak output current (typical) 2.5 V to 6.5 V input 7.5 V to 35 V output Undervoltage lockout (UVLO) at 2.5 V V_{DD1} and 7.5 V V_{DD2} **Precise timing characteristics** 53 ns maximum isolator and driver propagation delay **CMOS input logic levels** High common-mode transient immunity: >150 kV/µs High junction temperature operation: 125°C **Default low output Internal Miller clamp** Safety and regulatory approvals (pending) UL recognition per UL 1577 5 kV rms for 1-minute withstand **CSA Component Acceptance Notice 5A** VDE certificate of conformity (pending)

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12

 $V_{IORM} = 849 V peak$ Wide-body, 8-lead SOIC

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (-55°C to +125°C) **Controlled manufacturing baseline** 1 assembly/test site 1 fabrication site **Product change notification Qualification data available on request**

APPLICATIONS

Missiles and munitions Avionics Unmanned systems Isolated IGBT/MOSFET gate drives

GENERAL DESCRIPTION

The ADuM4121-1-EP1 is a 2.3 A isolated, single-channel driver that employ Analog Devices, Inc., iCoupler® technology to provide precision isolation. The ADuM4121-1-EP provides 5 kV rms isolation in the wide-body, 8-lead SOIC package. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as the combination of pulse transformers and gate drivers.

The ADuM4121-1-EP operates with an input supply ranging from 2.5 V to 6.5 V, providing compatibility with lower voltage systems. In comparison to gate drivers that employ high voltage level translation methodologies, the ADuM4121-1-EP offers the benefit of true, galvanic isolation between the input and the output.

The ADuM4121-1-EP includes an internal Miller clamp that activates at 2 V on the falling edge of the gate drive output, supplying the driven gate with a lower impedance path to reduce the chance of Miller capacitance induced turn on.

The ADuM4121-1-EP provides reliable control over the switching characteristics of insulated gate bipolar transistor (IGBT)/metal oxide semiconductor field effect transistor (MOSFET) configurations over a wide range of switching voltages.

Additional application and technical information can be found in the ADuM4121-1 data sheet.

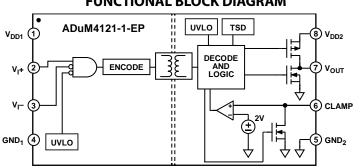


Figure 1.

¹ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending. Rev. 0 **Document Feedback**

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2019 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	2
Specifications	3
Electrical Characteristics	3
Regulatory Information	4
Package Characteristics	4
Insulation and Safety Related Specifications	5

DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics	5
Recommended Operating Conditions	
Absolute Maximum Ratings	6
Thermal Resistance	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Typical Performance Characteristics	8
Outline Dimensions	9
Ordering Guide	9

REVISION HISTORY

1/2019—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Low-side voltages referenced to GND₁. High side voltages referenced to GND₂; 2.5 V \leq V_{DD1} \leq 6.5 V; 7.5 V \leq V_{DD2} \leq 35 V, T_J = -55°C to +125°C. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_J = 25°C, V_{DD1} = 5.0 V, V_{DD2} = 15 V.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
High Side Power Supply						
V _{DD2} Input Voltage	V _{DD2}	7.5		35	V	
VDD2 Input Current, Quiescent	DD2(Q)		2.3	2.7	mA	
Logic Supply						
VDD1 Input Voltage	V _{DD1}	2.5		6.5	V	
Input Current	I _{DD1}		3.6	5	mA	V_{I} + = high, V_{I} - = low
Logic Inputs (Vı+, Vı–)						
Input Current	lı+, lı–	-1	0.01	+1	μΑ	
Input Voltage						
Logic High	VIH	$0.7 \times V_{DD1}$			V	$2.5 \text{ V} \leq \text{V}_{\text{DD1}} \leq 5 \text{ V}$
		3.5			V	$V_{DD1} > 5 V$
Logic Low	VIL			$0.3 \times V_{\text{DD1}}$	V	$2.5 \text{ V} \leq \text{V}_{\text{DD1}} \leq 5 \text{ V}$
				1.5	V	$V_{DD1} > 5 V$
UVLO						
V _{DD1}						
Positive Going Threshold	Vvdd1uv+		2.45	2.5	V	
Negative Going Threshold	V _{VDD1UV-}	2.3	2.35		V	
Hysteresis	Vvdd1uvh		0.1		V	
V _{DD2}						
Positive Going Threshold	Vvdd2uv+		7.3	7.5	V	
Negative Going Threshold	V _{VDD2UV-}	6.9	7.1		V	
Hysteresis	Vvdd2uvh		0.2		V	
Internal NMOS Gate Resistance	R _{DSON_N}		0.6	1.6	Ω	Tested at 250 mA, $V_{DD2} = 15 V$
			0.6	1.6	Ω	Tested at 1 A, $V_{DD2} = 15 V$
Internal PMOS Gate Resistance	R _{DSON_P}		0.8	1.8	Ω	Tested at 250 mA, $V_{DD2} = 15 V$
			0.8	1.8	Ω	Tested at 1 A, $V_{DD2} = 15 V$
Internal Miller Clamp Resistance	Rdson_miller		0.8	2	Ω	Tested at 200 mA, $V_{DD2} = 15 V$
Miller Clamp Voltage Threshold	V _{CLP_TH}	1.75	2	2.25	V	Referenced to GND_2 , $V_{DD2} = 15 V$
Peak Current	Ірк		2.3		А	$V_{DD2} = 12 V$, 4Ω gate resistance
SWITCHING SPECIFICATIONS						
Pulse Width	PW	50			ns	$C_L = 2 nF, V_{DD2} = 15 V, R_{GON}^1 = R_{GOFF}^1 = 5 \Omega$
Propagation Delay						
Rising Edge ²	t _{DLH}	22	32	42	ns	$C_L = 2 nF, V_{DD2} = 15 V, R_{GON} = R_{GOFF} = 5 \Omega$
Falling Edge ²	t _{DHL}	30	38	53	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$
Skew ³	t _{PSK}			22	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$
Falling Edge ^₄	t pskhl			12	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$
Rising Edge⁵	t _{PSKLH}			15	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$
Pulse Width Distortion	tpwD		7	13	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$
Output Rise/Fall Time (10% to 90%)	t _R /t _F	11	18	26	ns	$C_L = 2 \text{ nF}, V_{DD2} = 15 \text{ V}, R_{GON} = R_{GOFF} = 5 \Omega$

ADuM4121-1-EP

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Common-Mode Transient Immunity (CMTI)	CM					
Static CMTI ⁶		150			kV/μs	$V_{CM} = 1500 V$
Dynamic CMTI ⁷		150			kV/μs	$V_{CM} = 1500 V$

¹ R_{GON} and R_{GOFF} are the external gate resistors in the test.

² t_{DLH} propagation delay is measured from the time of the input rising logic high threshold, V_{IH}, to the output rising 10% threshold of the V_{OUT} signal. t_{DHL} propagation delay is measured from the input falling logic low threshold, V_L, to the output falling 90% threshold of the V_{OX} signal. See the ADuM4121-1 data sheet for waveforms of the propagation delay parameters.

³ t_{PSK} is the magnitude of the worst case difference in t_{DLH} and/or t_{DHL} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. See the ADuM4121-1 data sheet for waveforms of the propagation delay parameters.

⁴ t_{PSKHL} is the magnitude of the worst case difference in t_{DHL} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. See the ADuM4121-1 data sheet for waveforms of the propagation delay parameters.

⁵ t_{PSKLH} is the magnitude of the worst case difference in t_{DLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. See the ADuM4121-1 data sheet for waveforms of the propagation delay parameters.

⁶ Static common-mode transient immunity (CMTI) is defined as the largest dv/dt between GND₁ and GND₂, with inputs held either high or low, such that the output voltage remains either above 0.8 × V_{DD2} for output high or 0.8 V for output low. Operation with transients above recommended levels can cause momentary data upsets.
⁷ Dynamic common-mode transient immunity (CMTI) is defined as the largest dv/dt between GND₁ and GND₂ with the switching edge coincident with the transient test

pulse. Operation with transients above the recommended levels can cause momentary data upsets.

REGULATORY INFORMATION

The ADuM4121-1-EP is pending approval by the organizations listed in Table 2.

Table 2.

UL (Pending)	CSA (Pending)	VDE (Pending)	CQC (Pending)
UL1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12	Certified under CQC11- 471543-2012
Single Protection, 5000 V rms Isolation Voltage	CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition, +A1+A2:	Reinforced insulation, 849 V peak, V _{IOSM} = 10 kV peak	GB4943.1-2011
	Basic insulation at 800 V rms (1131 V peak)	Basic insulation 849 V peak, $V_{IOSM} = 16 \text{ kV peak}$	Basic insulation at 800 V rms (1131 V peak)
	Reinforced insulation at 400 V rms (565 V peak)		Reinforced insulation at 400 V rms (565 V peak)
	IEC 60601-1 Edition 3.1:		
	Basic insulation (1 means of patient protection (MOPP)), 500 V rms (707 V peak)		
	Reinforced insulation (2 MOPP), 250 V rms (1414 V peak)		
	CSA 61010-1-12 and IEC 61010-1 third edition		
	Basic insulation at: 600 V rms mains, 800 V secondary (1089 V peak)		
	Reinforced insulation at: 300 V rms mains, 400 V secondary (565 V peak)		
File E214100	File 205078	File 2471900-4880-0001	File (pending)

PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit
Resistance (Input Side to High-Side Output) ¹	R _{I-O}		10 ¹²		Ω
Capacitance (Input Side to High-Side Output) ¹	CI-O		2.0		pF
Input Capacitance	Cı		4.0		pF

¹ The device is considered a two-terminal device: Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 4.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		5000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(I01)	8 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	8 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	8.3 min	mm	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		25.5 min	μm	Minimum distance through insulation
Tracking Resistance (Comparative Tracking Index)	СТІ	>400	V	DIN IEC 112/VDE 0303 Part 3
Isolation Group		П		Material Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

Table 5. VDE Characteristics

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage \leq 600 V rms			l to IV	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIORM	849	V peak
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial discharge < 5 pC	V _{pd (m)}	1592	V peak
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.5 = V_{pd(m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	1274	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{\text{IORM}} \times 1.2 = V_{\text{pd}(\text{m})}, t_{\text{ini}} = 60 \text{ sec}, t_{\text{m}} = 10 \text{ sec}, \text{ partial discharge} < 5 \text{ pC}$	$V_{pd (m)}$	1019	V peak
Highest Allowable Overvoltage		VIOTM	7000	V peak
Surge Isolation Voltage Basic	VPEAK = 16 kV, 1.2 μ s rise time, 50 μ s, 50% fall time	VIOSM	16,000	V peak
Surge Isolation Voltage Reinforced	VPEAK = 16 kV, 1.2 μ s rise time, 50 μ s, 50% fall time	VIOSM	10,000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Maximum Junction Temperature		Ts	150	°C
Safety Total Dissipated Power		Ps	1.2	W
Insulation Resistance at Ts	V _{IO} = 500 V	Rs	>109	Ω

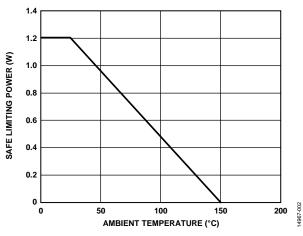


Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Ambient Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 6.	
Parameter	Value
Operating Temperature Range (T _J)	-55°C to +125°C
Supply Voltages	
V _{DD1} to GND ₁	2.5 V to 6.5 V
V _{DD2} to GND ₂	7.5 V to 35 V

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 7.

Rating
-55°C to +150°C
-55°C to +125°C
–0.3 V to +7 V
–0.3 V to +40 V
–0.3 V to +7 V
-0.3 V to V _{DD2} + 0.3 V
-0.3 V to V _{DD2} + 0.3 V
−200 kV/µs to +200 kV/µs

 1 Rating assumes V_{DD1} is above 2.5 V. V_i+ and V_i- are rated up to 6.5 V when V_{DD1} is unpowered.

² Referenced to GND₂, maximum of 40 V.

³ [CM] refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum rating can cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 9. Maximum Continuous Working Voltage¹

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

Table 8. Thermal Resistance

Package Type	Αιθ	Unit
RI-8-1 ¹	104.2	°C/W

¹ Test Condition 1: thermal impedance simulated values are based on a 4-layer PCB.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 5. Maximum Continuous working vonage				
Parameter	Rating	Unit	Constraint	
AC Voltage				
Bipolar Waveform				
Basic Insulation	849	V peak	50-year minimum insulation lifetime	
Reinforced Insulation	789	V peak	Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1	
Unipolar Waveform				
Basic Insulation	1698	V peak	50-year minimum insulation lifetime	
Reinforced Insulation	849	V peak	50-year minimum insulation lifetime	
DC Voltage				
Basic Insulation	1118	V peak	Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1	
Reinforced Insulation	558	V peak	Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1	

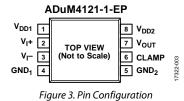

¹ Maximum continuous working voltage refers to continuous voltage magnitude imposed across the isolation barrier. See the ADuM4121-1 data sheet for more details.

Table 10. Truth Table

V _I -	V _I +	V _{DD1} State	V _{DD2} State	Vout Output
Don't care	Low	Powered	Powered	Low
Low	High	Powered	Powered	High
High	Don't care	Powered	Powered	Low
Don't care	Don't care	Unpowered	Powered	Low
Don't care	Don't care	Powered	Unpowered	Low ¹

¹ The output is low, but not actively driven because the device is not powered.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	V _I +	Noninverting Gate Drive Logic Input.
3	Vı—	Inverting Gate Drive Logic Input.
4	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
6	CLAMP	Miller Clamp and Gate Voltage Sense. Connect this pin directly to the gate being driven.
7	Vout	Gate Drive Output. Connect this pin to the gate being driven through an external series resistor.
8	V _{DD2}	Supply Voltage for Isolator Side 2.

ADuM4121-1-EP

TYPICAL PERFORMANCE CHARACTERISTICS

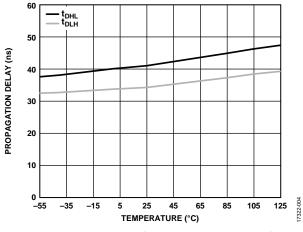


Figure 4. Propagation Delay vs. Temperature, 2 nF Load

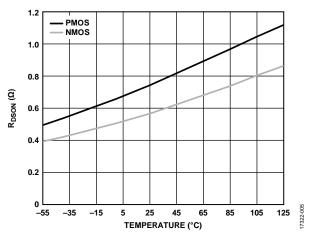


Figure 5. Output Resistance (R_{DSON}) vs. Temperature, $V_{DD2} = 15 V$

OUTLINE DIMENSIONS

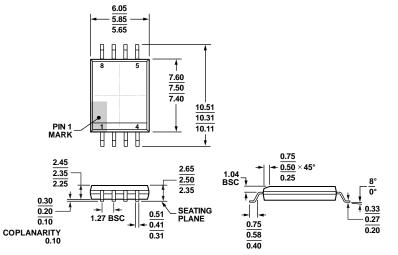


Figure 6. 8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC] Wide Body (RI-8-1)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	No. of Channels	Output Peak Current (A)	Thermal Shutdown	Minimum Output Voltage (V)	Temperature Range	Package Description	Package Option
ADUM4121-1TRIZ-EP	1	2	No	7.5	–55℃ to +125℃	8-Lead SOIC_IC	RI-8-1
ADUM4121-1TRIZ-EPR	1	2	No	7.5	–55℃ to +125℃	8-Lead SOIC_IC	RI-8-1

¹ Z = RoHS Compliant Part.

©2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17322-0-1/19(0)

www.analog.com

09-17-2014-B

Rev. 0 | Page 9 of 9