Thin Film Pyroelectric Linear 128 Element Line Sensor Array With Integrated Read-Out Electronics ### Introduction The Pyreos line sensor array utilises our unique thin-film pyroelectric PZT material to offer class leading resolution and performance across a wide wavelength range at a very affordable price. The ASIC readout electronics output is a multiplexed, amplified and filtered analogue signal for each sensor element. The sensor is housed in a low profile hermetic metal package along with a temperature sensor, and is fitted with a linear variable filter or a broadband filter. | Product Features | | | | | |-----------------------|---------------------------------------|--|--|--| | Wavelength range | 0.1 to 100 μm ¹ | | | | | Operating temperature | Un-cooled operation | | | | | Number of pixels | 128 sensor elements | | | | | Pixel sizes | 60 μm x 500 μm; 100 μm pitch | | | | | Pixel operability | 96% with no more than 2 bad in any 10 | | | | | Dynamic range | >75 dB | | | | | Scan speed | 10-1000 Hz | | | | | Applications | | |----------------------------|---| | General IR spectroscopy | Portable, robust spectral engines | | Lubricating oil monitoring | Quality, wear, adulteration, | | Foodstuffs | Constitution, adulteration | | Process monitoring | Wind turbine, petrochemical, pharmaceutical | | Temperature measurement | Non-contact line scanning measurement | | Imaging | Line scanning | ### **Filters Available** | Part Number | PY0722 | PY0738 | PY1499 | |--|-----------|------------------------|------------------------| | Filter Material | Silicon | LVF | LVF | | Filter type | Broadband | Linear Variable filter | Linear Variable Filter | | Transmission wavelength (µm) | - | 5.5 to 11 (CWL 2%) | 2.5 to 5 (CWL 2%) | | Transmission wavenumbers (cm ⁻¹) | - | 1818 to 909 | 4000 to 2000 | Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com ¹Choice of filter windows available # Package Information Note: Pixel 1 is nearest pin 1 of the device. ## **Circuit Diagram** The amplification circuit consists of low-noise preamplifiers for each individual sensor elements, analogue switches and an output amplifier. The pre-amplifiers transform the signal charges measured at each sensor element into a conditioned voltage. The amplified signal is then passed to sample and hold, multiplexer output buffer for the read-out process. The digital inputs are CMOS compatible. A 10k NTC thermistor is integrated within the package to monitor the line sensor temperature. Thermistor is NTC, 1%. For more details check ERTJZEG103FA Datasheet on Industrial Panasonic website. ## **Order Information** Please quote PYxxxx for your desired option of this product. Contact: sales@pyreos.com Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com ### **Clock Parameters** Similar to all pyroelectric sensors, the Pyreos thin-film pyroelectric line sensor array responds to and detects a change in infrared radiation intensity. It therefore requires a pulsed source of infrared radiation for measurement purposes. | Parameter ¹ | Relative Value | Min. Values | Recommended Value | |---|----------------------|-------------|-------------------| | Chopping Frequency ² f _{Ch} | | 10 Hz | 128 Hz | | Read-out Clock CLK f _{CLK} = 2* f _{Ch} *268 | 1/t _{CLK} | 5.36 KHz | 69 KHz | | Reset clock low-impulse duration tres | 1/2 t _{CLK} | 1.8 µs | 7.5 µs | | Clock VVR high-impulse duration tvvR | 2 t _{CLK} | 7.5 µs | 30 µs | | Clock VDR high-impulse duration t _{VDR} | 28 t _{CLK} | 200 µs | 400 μs | | Clock VSH high-impulse duration t _{VSH} | 1 tclk | 3.5 µs | 15 µs | Maximum Settling Time at output tout is 1 μ second # **Clock Diagram** Please note: the information contained in this document is subject to change without further notification. Pyreos reserves the right to alter the performance and any resulting specification. Pyreos may choose not to supply any engineering sample devices as a commercial product. No responsibility is accepted for any consequential loss incurred. Pyreos Ltd, SMC, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK. Tel: +441316507009, www.pyreos.com ¹ All values for VDD = 5 V, VD2 = 2.5V $^{^{2}}$ $t_{Ch low} = t_{Ch high}$