

Part No: AGPSF.36C.07.0100C

Description:

Embedded Active GPS L1/L2 Stacked Patch Antenna with 100mm 1.37 coax cable and IPEX MHFHT

Features:

Covers:

- GPS/QZSS (L1/L2)
- Galileo (E1/E5b)
- GLONASS (G1/G2)
- BeiDou (B1/B2b)

Low Noise Figure

Excellent Out-Of-Band Rejection

Low Axial Ratio

2 Stage LNA and SAW filter

Cable: 100mm 1.37 Coaxial Cable

Connector: IPEX MHFHT (U.FL Compatible)

Dimensions: 35*35*11.1mm RoHS and REACH Compliant

1.	Introduction	3
2.	Specifications	4
3.	Antenna Characteristics	6
4.	Radiation Patterns	18
5.	Field Test Results	20
6.	Mechanical Drawing	21
7.	Packaging	22
8.	Application Note	23
	Changelog	24

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The Taoglas AGPSF.36C, with Taoglas Sure Technology, is an active, embedded stacked patch, GPS antenna supporting both L1 and L2 bands. It is a high performance, economical solution for the highest accuracy centimeter-level tracking applications.

Typical applications include:

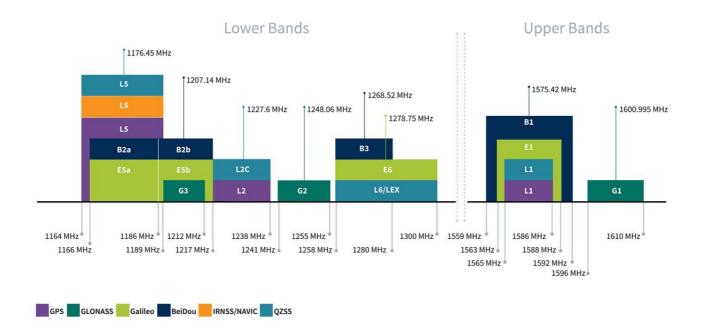
- UAVs and Robotics
- E-Mobility and E-Scooters
- Precision Agriculture
- Navigation

This compact antenna exhibits excellent radiation patterns on both L1 and L2 bands and with a low noise figure to preserve signal quality helps minimize time to first fix. It also features excellent out-of-band rejection to prevent out-of-band signals from overdriving or damaging its LNAs.

The AGPSF.36C features very tight Phase Centre Offset (PSO) at just ±2cm at the L1 Band and ±5cm at the L2. The precision of antenna phase center directly affects the accuracy of GNSS positioning systems and can ensure that the accuracy of the receiver really is cm level. See section 3.1.2 for more information and results.

This antenna has been tuned and tested on a 70 X 70 mm ground plane, working at GPS L1, 1575.42 MHz and L2, 1227.6MHz, with a 2 stage LNA ensuring good signal strength. It can operate with an input voltage ranging from 1.8 to 5 volts.

Cables and connectors are customizable. Patch antennas can also be tuned to customer-specific device environments, subject to NRE and MOQ. Contact your regional Taoglas customer support team to request these services or additional support to integrate and test this antenna's performance in your device.



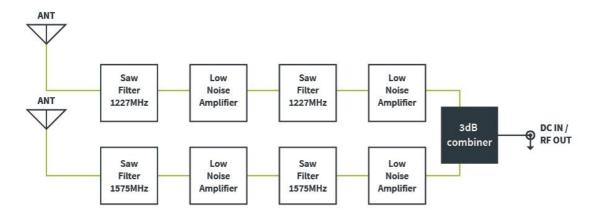
2. Specifications

		GNSS Fred	quency Band	s Covered		
GPS	L1	L2	L5			
		•				
GLONASS	G1	G2	G3			
		•				
Galileo	E1	E5a	E5b	E6		
BeiDou	B1	B2a	B2b	В3		
QZSS (Regional)	L1	L2C	L5	L6		
		•				
IRNSS (Regional)	L5					
SBAS	L1/E1/B1	L5/B2a/E5a	G1	G2	G3	
	•					

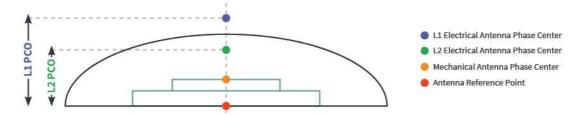
[■] GNSS Frequency Bands Covered. ☐ GNSS Frequency Bands Not Covered.

^{*}SBAS systems: WASS(L1/L5), EGNOSS(E1/E5a), SDCM(G1/G2/G3), SNAS(B1,B2a), GAGAN(L1/L5), QZSS(L1/L5), KAZZ(L1/L5).

GNSS Bands and Constellations



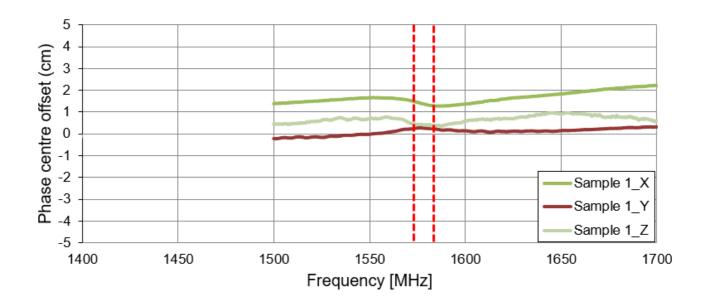
		GPS L1 & L2	Antenna				
		GPS L1		GPS L2			
Center I	Frequency	1575.42MHz	1575.42MHz				
Return	loss (dB)	<-10		<-10			
Efficiency (%)		68.74		64.16			
Peak Gain (dBi)		3.57		2.73			
Axial Ratio at Zenith		<1.5dB		<5dB			
Group Delay		12		20			
PCO (cm)		5		4.5			
	/ (cm)	0.07		4.5			
	edance		50 Ω				
Polai	rization		RHCP				
		*Tested on 70x70 cn					
		LNA and Filter Elect	rical Properties				
Center Frequency			GPS L1 :1575.42±1.023 MHz GPS L2:1226.7±1.023MHz				
Pout 1dB gain C	Compression point		+2dBm Typ. (1575.42MHz) -2dBm Typ. (1226.7MHz)				
Output I	mpedance		50 Ohm				
Return	loss (dB)		<-10 dB				
	LNA	Gain, Power Consump	tion and Noise F	igure			
		1.8V (Min)	3V (Typ.)	5.5V (Max)			
LNA Gain	L2	20dB	20dB	20dB			
	L1	21dB.	21dB	21dB			
Noise Figure	L1	2.6dB	2.6dB	2.6dB			
	L2	3.0dB	3.0dB	3.0dB			
Current C	onsumption	16mA	16mA	16mA			
Outer Band Attenuation			100MHz~1180MHz 1280MHz~1520MHz 1620MHz~6000MHz	40dB 30dB 45dB			
		Mechan	ical				
	Dimensions		35x35x11r	mm			
Cable			Coaxial Cable Ø1.37, length 100mm				
	Cable		Coaxial Cable Ø1.37,	length 100mm			
	Cable Connector		IPEX MHFI (
	Connector	Environm	IPEX MHFI (32g				
Opera	Connector	Environm	IPEX MHFI (32g	U.FL)			
	Connector Weight	Environm	IPEX MHFI (32g ental	U.FL)			
	Connector Weight tion Temperature	Environm	IPEX MHFI (32g ental -40°C to 8.	U.FL)			
Stora	Connector Weight tion Temperature	Environm	IPEX MHFI (32g ental -40°C to 8.	U.FL)			

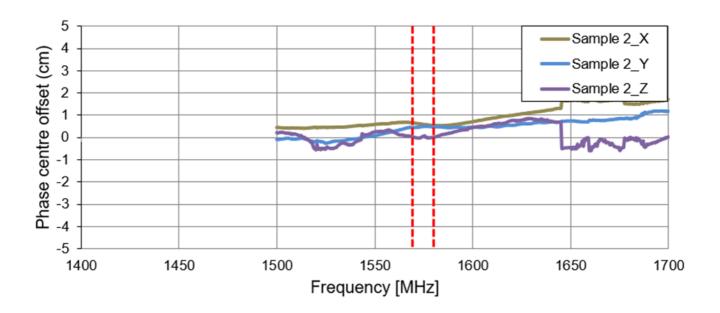

3. Antenna Characteristics

3.1 Block Diagram (Active Antenna)

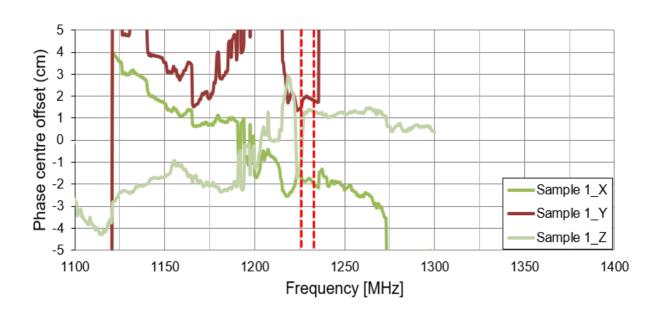
3.2 Phase Centre Offset

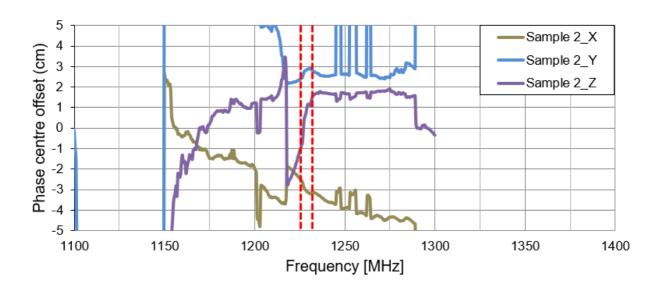
The antenna reference point (ARP) is defined as the intersection of antenna's vertical axis of symmetry with the bottom of the antenna. The antenna reference point is typically the point on the center-line of the antenna at the mounting surface. Above the antenna reference point is the mechanical antenna phase center, this is the physical point on the surface of the antenna element where the antenna phase is located. The actual antenna phase center are points in space, typically above the mechanical antenna phase center.



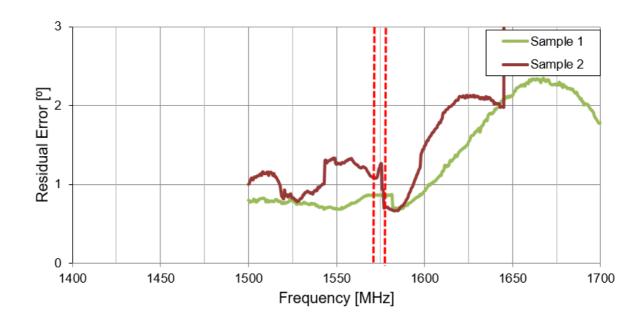

The precision of antenna phase center directly affects accuracy of GNSS positioning systems. Single-band and dual-band RTK GNSS receiver systems depend on Phase Centre Offset (PCO) correction input at the receiver to improve accuracy of the receiver to cm level. Thus PCO data is required for GPS post processing at the receiver in real time or at a later stage using post processing software once data has been transferred to a PC.

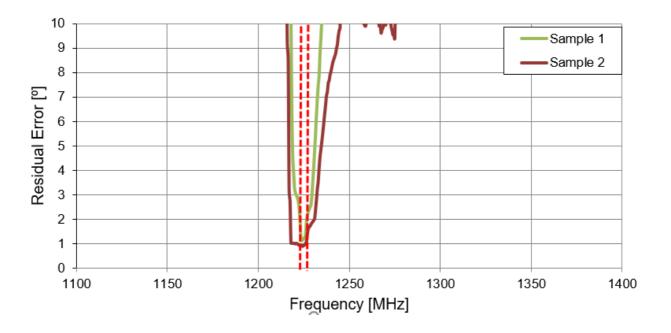
By using the carrier phase data of L1 and L2 signals, cm level precision is possible with PCO correction. Single-band and dual-band RTK systems depend on PCO correction input at the receiver to improve accuracy of the receiver to cm level.


AGPSF.36C.07.0100C L1 Phase Centre Offset Measurements

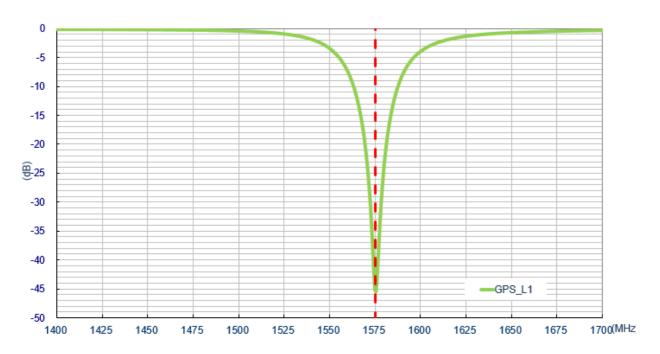


AGPSF.36C.07.0100C L2 Phase Centre Offset Measurement




In addition to phase center location, the residual error is the mean of the difference between actual observed phase center and the predicted values. The smaller the residual error (typically less than 2 degrees) the better accuracy of the antenna due to good phase stability.

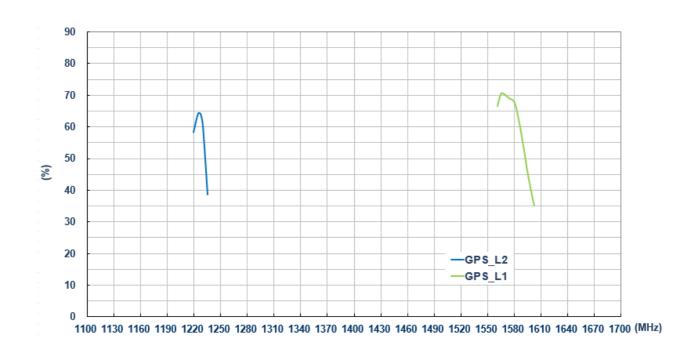
AGPSF.36C.07.0100C L1 Residual Error


AGPSF.36C.07.0100A L2 Residual Error

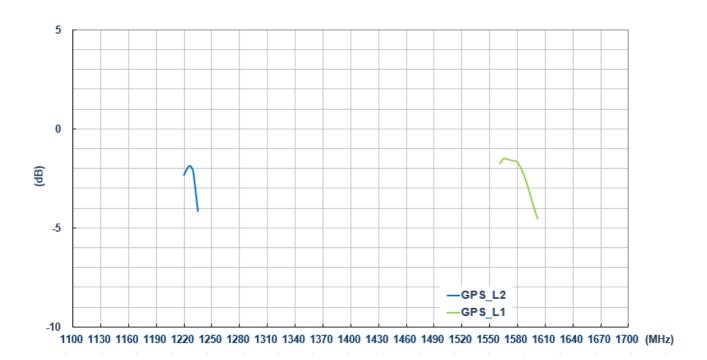


3.3 Return Loss (Passive antenna)

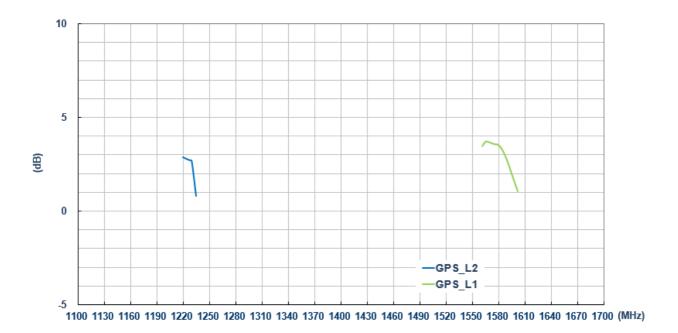
L1 1575MHz



L2 1227MHz

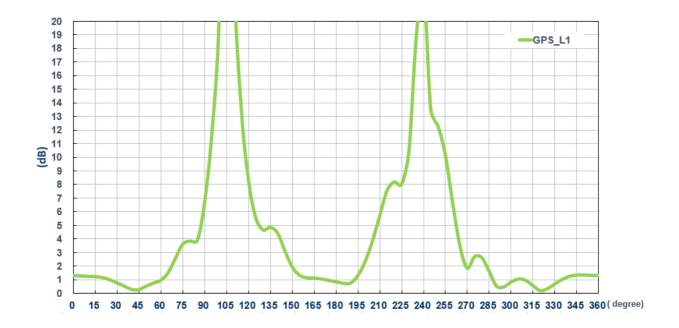


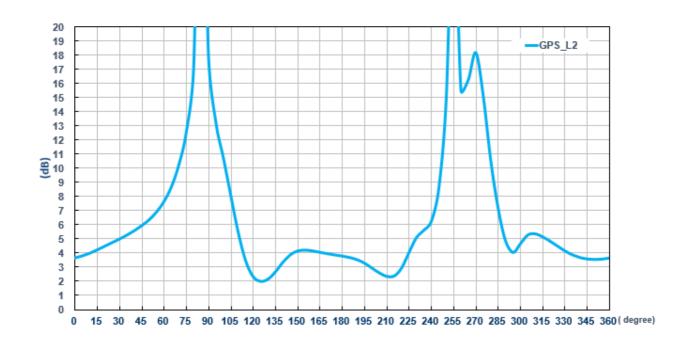
3.4 Efficiency (Passive antenna)



3.5 Average Gain (Passive antenna)

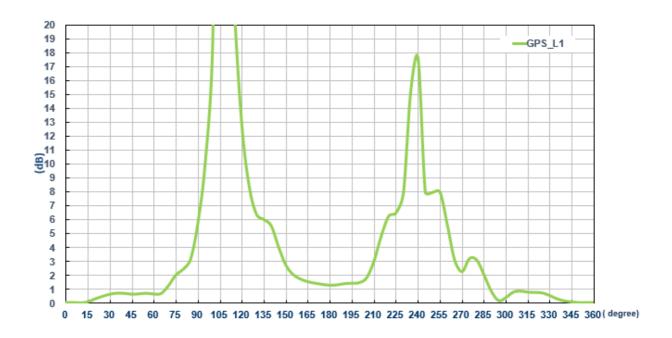
3.6 Peak Gain (Passive antenna)

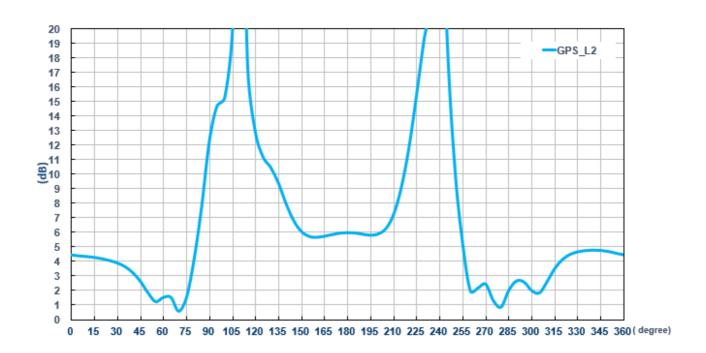



3.7 Axial Ratio Pattern (Zenith is at 0°)

YZ plane

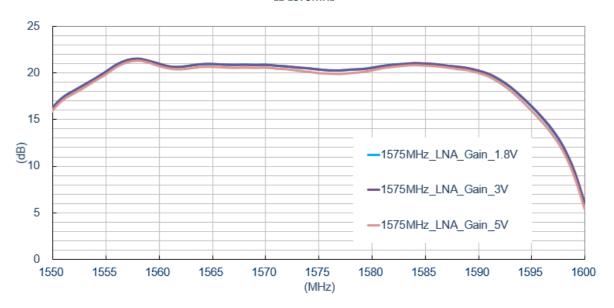
L1 1575MHz

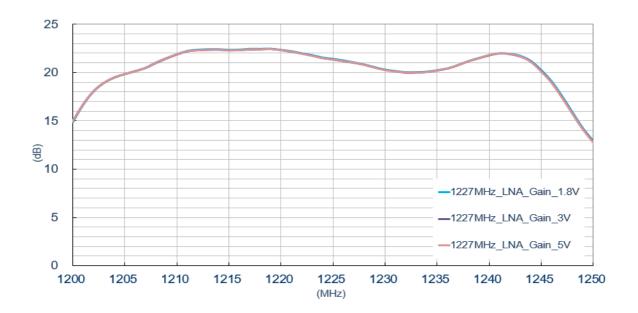

L2 1227MHz



XZ plane

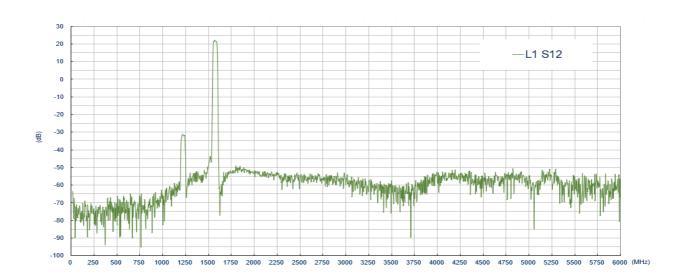
L1 1575MHz

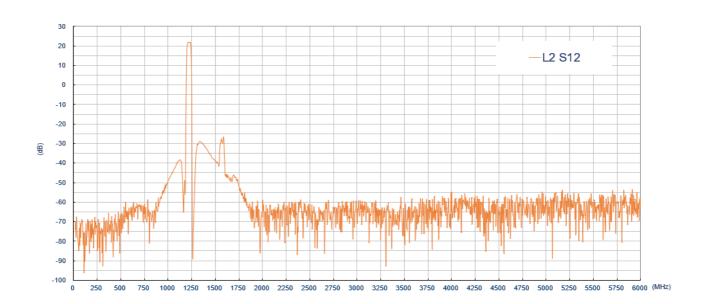

L2 1227MHz



3.8 LNA Gain and Noise Figure (Active antenna)

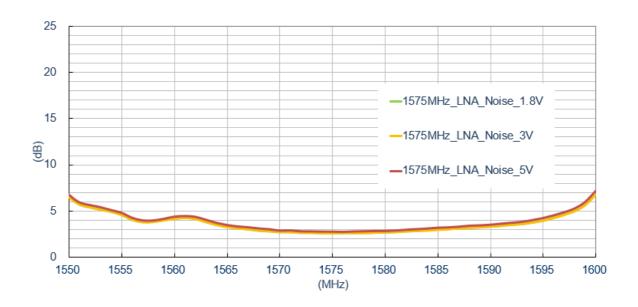
L1 1575MHz

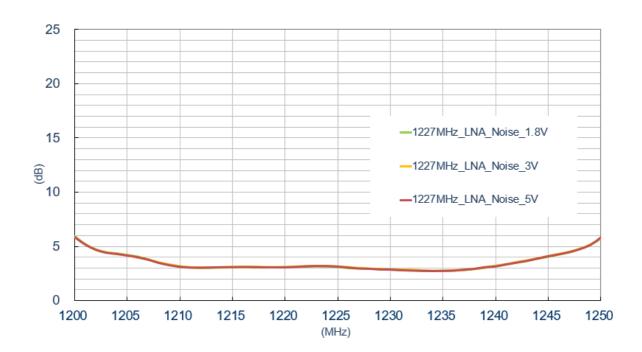

L2 1227MHz



3.9 S12 Wide Band Plot

L1 1575MHz

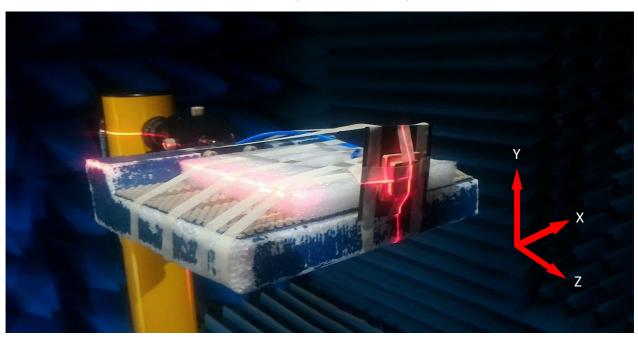

L2 1227MHz



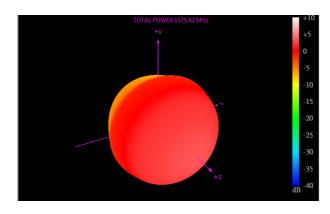
3.10 Noise Figure

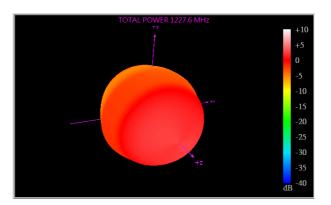
L1 1575MHz

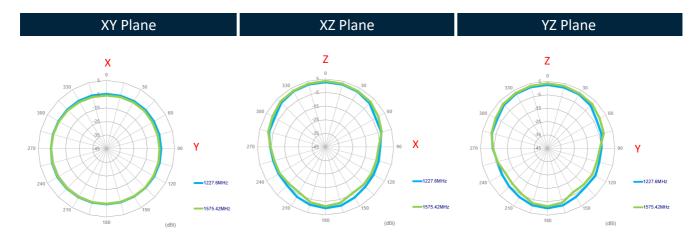
L2 1227MHz



4. Radiation Patterns


4.1 Test Setup


Antenna Radiation Pattern Measurement (Passive Antenna)



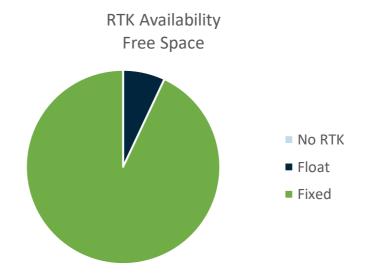
4.2 3D and 2D Radiation Patterns

L1 1575.42MHz L2 1227.6MHz

Field Test Results

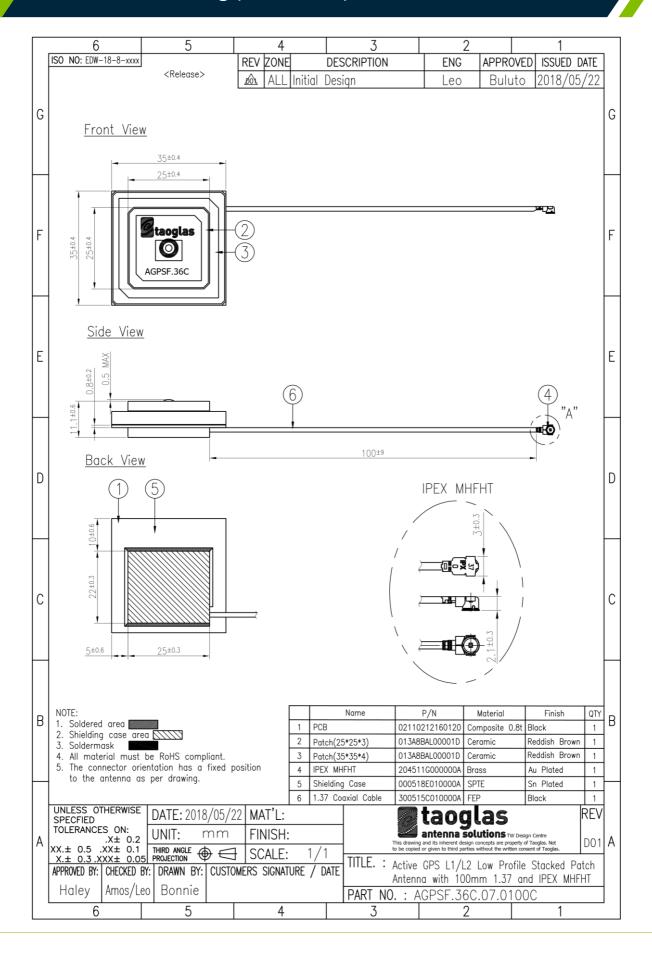
5.1 Rooftop test

In this section Taoglas will present the field test result for AGPSF36C antenna. The test was performed when the antenna was mounted on a static rooftop test set up in an open sky environment for at least **6 hours**.

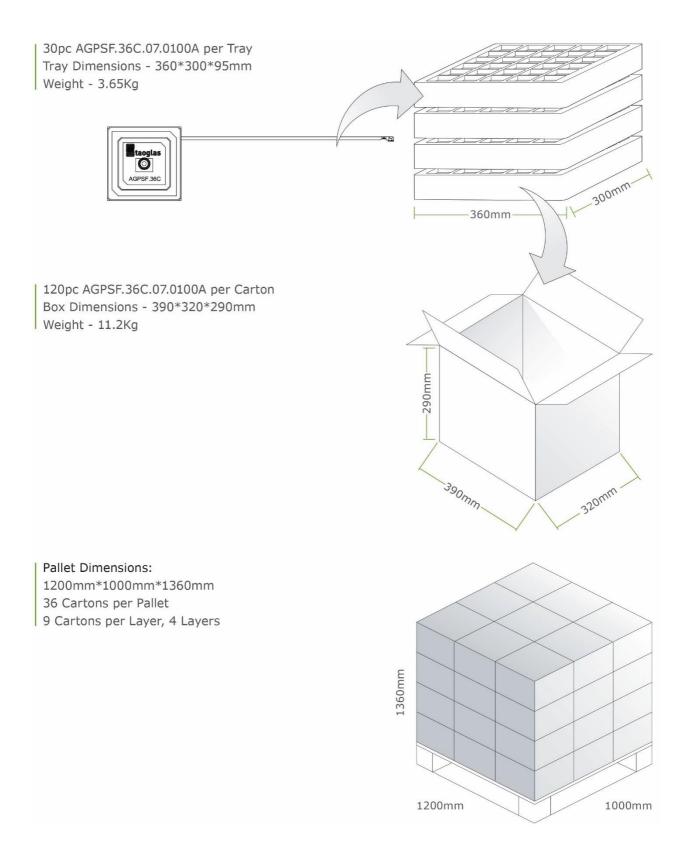

Taoglas will show the field test results using the following receiver:

1. U-blox ZED-F9P

Receiver features:


- Multi-band GNSS: 184-channel GPS L1C/A L2C, GLONASS: L1OF L2OF, Galileo: E1B/C E5b, BeiDou: B1I B2I, QZSS: L1C/A L2C
- Multi-band RTK with fast convergence times and reliable performance
- Nav. update rate RTK up to 20 Hz
- Position accuracy = RTK 0.01 m + 1 ppm CEP

Positioning Accuracy Table (2D Accuracy)					
Test Condition	Correction Service	CEP (50%)	DRMS (68%)	2DRMS (95-98.2%)	TTFF (sec)
Free	RTK DISABLED	72.19 cm	86.48 cm	172.97 cm	21.4
Space	RTK ENABLED	1.52 cm	1.87 cm	3.74 cm	21.4



6. Mechanical Drawing (Units: mm)

7. Packaging

8. Application Note

Using Diplexers with an Active Dual-band Antenna

If your application requires separate L1 and L2 inputs—separate L1 and L2 receiver inputs, for example—then Taoglas diplexers may be used to interface between an active dual-band antenna and these separate inputs. Taoglas offers two GNSS diplexers, the DXP.01.A and DXP.02.A. The DXP.02.A add support for L5 signals (among others). These diplexers offer a unique off-the-shelf option for splitting the GNSS signals with minimal loss while improving out-of-band rejection. See the Taoglas website for further details on these components.

Figure 1 - Taoglas DXP.01.A

Figure 2 - Taoglas DXP.02.A

Since these components do not pass DC signals, particular attention needs to be paid when using an active antenna. Figure 3 provides a simplified schematic of what is required.

The key features are:

- DC blocks need to be included between the diplexer matching networks and the other subsystems.
 This helps protect the diplexer and prevent any unintended interactions between the matching network and DC voltages. A typical DC block for GNSS systems is a 22 pF COG ceramic capacitor.
- A separate Bias-T is required on the antenna side of the diplexer. Many receivers include these Bias-Tnetworks internally, but these will be blocked by the diplexer (and DC blocks). A typical RF choke component for GNSS systems is a 39nH wire-wound inductor, though this should be reviewed during design time.

Figure 3 - Schematic

Finally, make sure to following the matching network and layout recommendations for the diplexer in their respective datasheets.

Changelog for the datasheet

SPE-18-8-105 - AGPSF.36C.07.0100C

Revision: F (Current Version)		
Date:	2020-06-02	
Changes:	Field test section added	
Changes Made by:	Victor Pinazo	

Previous Revisions

Revision: E		
Date:	2020-03-05	
Changes:	Update RTK Data	
Changes Made by:	Jack Conroy	

Revision: D		
Date:	2019-12-08	
Changes:	Added GNSS Frequency Bands Matrix and RTK Test Data	
Changes Made by:	Yu Kai Yeung	

Revision: C (Current Version)		
Date:	2018-11-23	
Changes:	Updated product from AGPSF.36C.07.0100A to AGPSF.36C.07.0100C version	
Changes Made by:	Jack Conroy	

Revision: B		
Date:	2018-09-28	
Changes:	Updated Block Diagram	
Changes Made by:	Russell Meyler	

	3-09-26
Notes: Initia	
	ıl Release
Author: Jack	Conroy

www.taoglas.com

