Spec No.	TQ3C-8EAF0-E1YAA16-01
Date	May 10, 2011

TYPE : TCG070WVLPAANN-AN00

< 7.0 inch WVGA transmissive color TFT with LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Backlight characteristics
- 10. Lot number identification
- 11. Warranty
- 12. Precautions for use
- 13. Reliability test data
- 14. Outline drawing

KYOCERA CORPORATION LCD DIVISION

This specification is subject to change without notice. Consult Kyocera before ordering.

Original	Designed by: I	Engineering de	Confirmed by: QA dept.		
Issue Date	Prepared	Checked	Approved	Checked	Approved
April 5, 2011	R.Nakao	y.lkeda	M.Fujitani	I. Kamar S	26 , Jul

SPEC

		Page
TQ3C-8EAF0-E1YAA16-01 TCG	070WVLPAANN-AN00	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

			Spec No. Part No.				Page		
			TQ3C-8EAF0-E1YAA16-01 TCG070WVLPAANN-AN00						
			\mathbf{Re}	vision 1	recor	·d			
	D /	Design		Engineering of			Confirmed by	· : QA dept.	
	Date	Prepa		Checked	Appro		Checked	Approved	ł
Ma	y 10, 2011	R.N	a KaO	y. Ikeda	M.F.ji	Tanj	I-Hamars	Ho , Aut	!
Rev.No.	Date	Page			Des	criptio	ons		
01	May 10, 2011	4		cal characteris nge chromatici		nates			

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA16-01	TCG070WVLPAANN-AN00	1

1. Application

This document defines the specification of TCG070WVLPAANN-AN00. (RoHS Compliant)

2. Construction and outline

LCD	[:] Transmissive color dot matrix type TFT
Backlight system	: LED
Polarizer	: Anti-Glare treatment
Additional circuit	: Timing controller, Power supply (3.3V input)
	(without constant current circuit for LED Backlight)

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	165(W)×(104.4)(H)×8.2(D)	mm
Active area	152.4(W)×91.44(H) (17.8cm/7.0 inch(Diagonal))	mm
Dot format	800×(R,G,B)(W)×480(H)	dot
Dot pitch	0.0635(W)×0.1905(H)	mm
Base color 2)	Normally White	-
Mass	195	g

1) Projection not included. Please refer to outline for details.

2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Supply voltage		V_{DD}	-0.3	4.5	V
Input signal voltage	1)	$V_{\rm IN}$	-0.3	4.5	V
LED forward current	2) 3)	IF	-	100	mA

- 1) Input signal : CK, R0 ~ R5, G0 ~ G5, B0 ~ B5, HSYNC, VSYNC, ENAB, CM, SC
- 2) For each "AN-CA"
- 3) Do not apply reversed voltage.
- 4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	1)	Top	-20	70	°C
Storage temperature	2)	Тято	-30	80	°C
Operating humidity	3)	Hop	10	4)	%RH
Storage humidity	3)	Hsto	10	4)	%RH
Vibration		-	5)	5)	-
Shock		-	6)	6)	-

- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Temp. = -30° C < 48h , Temp. = 80° C < 168h

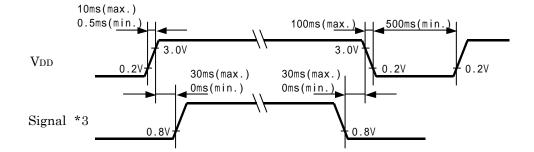
Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard. (Please refer to "Precautions for Use" for details.)

- 3) Non-condensing
- 4) Temp. 40°C, 85%RH Max.
 - Temp. > 40°C, Absolute humidity shall be less than 85%RH at 40°C.
- 5)

Frequency	$10\sim55~{\rm Hz}$	Acceleration value
Vibration width	0.15mm	$(0.3 \sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

2 hours in each direction X, Y, Z (6 hours total) EIAJ ED-2531

 6) Acceleration: 490 m/s², Pulse width: 11 ms 3 times in each direction: ±X, ±Y, ±Z EIAJ ED-2531



Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA16-01	TCG070WVLPAANN-AN00	3

5. Electrical characteristics

						Temp. = -2	0~70°C
Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage 1)		V_{DD}	-	3.0	3.3	3.6	V
Current consumption		I_{DD}	2)	-	180	235	mA
Permissive input ripple voltage		V_{RP}	-	-	-	100	mVp-p
Input signal voltage	າ)	VIL	"Low" level	0	-	0.8	V
	3)	VIH	"High" level	2.0	-	V _{DD}	V
		VIL	"Low" level	0	-	$0.3 \mathrm{V_{DD}}$	V
	4)	V _{IH}	"High" level	$0.7~\mathrm{V_{DD}}$	-	V_{DD}	V

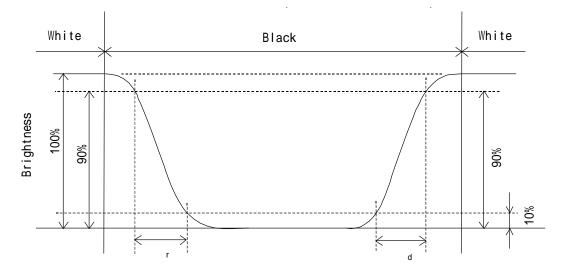
1) V_{DD}-turn-on conditions

- 2) Display pattern:
 - V_{DD} = 3.3V, Temp. = 25°C

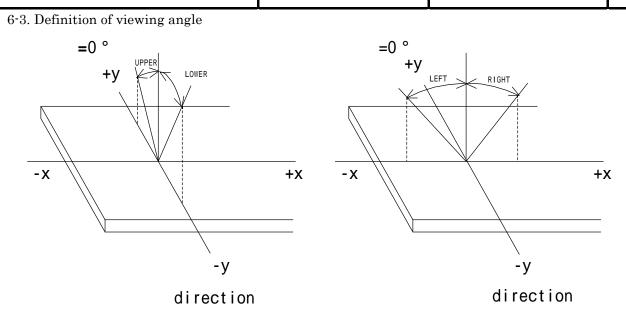
= 3.3V, Te	emp	= 2	25°0	3														
	1	2 3	4	56	•	•	•	•	•	•	•	•	•	•	•	•	• 2398 2399 2400 (de	ot)
1																		
2																		
3																		
:																		
:																		
:																		
479																		
480																		
(dot)																		

- 3) Input signal : CK, R0 ~ R5, G0 ~ G5, B0 ~ B5, H_{SYNC}, V_{SYNC}, ENAB, CM
- 4) Input signal : SC

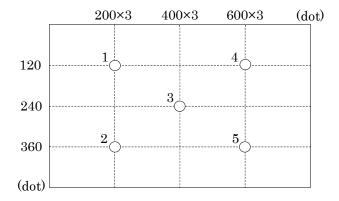
Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA16-01	TCG070WVLPAANN-AN00	4


6. Optical characteristics

Measuring spot = 6.0mm, Temp. = 25°C


		1			suring spot	0.011111, 10	I	
Item		Symbol	Condition	Min.	Typ.	Max.	Unit	
	Rise	$\tau_{ m r}$	= =0°	-	5	-	ms	
Response time	Down	τ _d	= =0°	-	25	-	ms	
		UPPER		-	60	-	1	
Viewing angle View direction	range	LOWER	CD 10	-	80	-	deg.	
÷ 12 o'clo		LEFT	CR 10	-	80	-	deg.	
(Gray in	version)	ϕ right		-	80	-		
Contrast ratio		CR	= =0°	700	1000	-	-	
Brightness		L	IF=60mA/Line	250	350	-	cd/m^2	
Luminance(Br	ightness)	LU	-	70	-	-	%	
	D . 1	x	= =0°	0.550	0.600	0.650		
	Red	У	0'	0.300	0.350	0.400		
	0	x	= =0°	0.270	0.320	0.370		
Chromaticity	Green	У	0'	0.500	0.550	0.600		
coordinates	DI	x	= =0°	0.100	0.150	0.200	-	
	Blue	У	U ⁻	0.070	0.120	0.170		
	3371	x	= =0°	0.240	0.290	0.340		
	White	У	= =0°	0.255	0.305	0.355		

6-1. Definition of contrast ratio


6-2. Definition of response time

6-4. Brightness measuring points

- 1) Rating is defined as the white brightness at center of display screen(3).
- 2) The brightness uniformity is calculated by using following formula.

Brightness uniformity = <u>Minimum brightness from 1 to 5</u> Maximum brightness from 1 to 5
× 100 [%]

3) 30 minutes after CFL is turned on. (Ambient Temp.=25 $\,$)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA16-01	TCG070WVLPAANN-AN00	6

7. Interface signals

7-1. LCD

	G 1 1		т 1
No.	Symbol	Description	Level
1	AN1	Anode1	
2	AN2	Anode2	
3	CA1	Cathode1	
4	CA2	Cathode2	
5	Vdd	3.3V power supply	
6	Vdd	3.3V power supply	
7	CM	Mode select signal (High or Open: Necessity of V \cdot H _{SYNC} , GND: Uunecessity of V \cdot H _{SYNC})	
8	ENAB	Data Enable (positive)	
9	VSYNC	Vertical synchronous signal (negative)(fix low or high: when CM fixed to GND)	
10	HSYNC	Horizontal synchronous signal (negative) (fix low or high: when CM fixed to GND)	
11	GND	GND	
12	B5	BLUE data signal (MSB)	
13	B4	BLUE data signal	
14	B3	BLUE data signal	
15	GND	GND	
16	B2	BLUE data signal	
17	B1	BLUE data signal	
18	B0	BLUE data signal (LSB)	
19	GND	GND	
20	G5	GREEN data signal (MSB)	
21	G4	GREEN data signal	
22	G3	GREEN data signal	
23	GND	GND	
24	G2	GREEN data signal	
25	G1	GREEN data signal	
26	G0	GREEN data signal (LSB)	
27	GND	GND	
28	R5	RED data signal (MSB)	
29	R4	RED data signal	
30	R3	RED data signal	
31	GND	GND	
32	R2	RED data signal	
33	R1	RED data signal	
34	R0	RED data signal (LSB)	
35	SC	Scan direction control(GND or Open: Normal, High: Reverse)	
36	GND	GND	
37	GND	GND	
38	CK	Sampling clock	
39	GND	GND	
40	GND	GND	

LCD connector Recommended matching FFC or FPC

- : IMSA-9681S-40A-GF (IRISO)
- : 0.5mm pitch

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA16-01	TCG070WVLPAANN-AN00	7

1) Scanning

 \mathbf{SC} : GND or Open

 SC : High

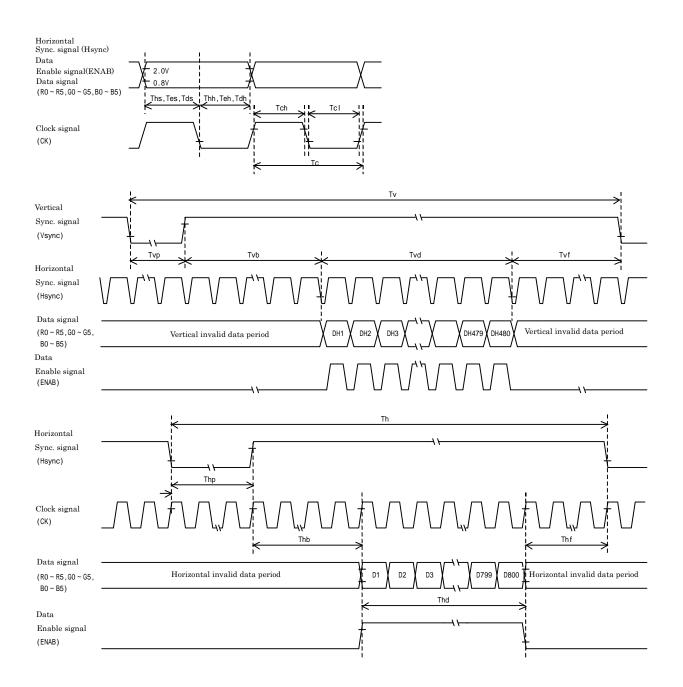
8. Input timing characteristics

8-1. CM : High or Open (Necessity of V- $H_{\mbox{\scriptsize SYNC}}$)

8-1-1. Timing characteristics

	Item	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	Fck	29.88	33.2	36.52	MHz	
Clash	Period	Тс	27.4	30.1	33.5	ns	
Clock	High time	Tch	12	-	-	ns	
	Low time	Tcl	12	-	-	ns	
Data	Set up time	Tds	5	-	-	ns	
Data	Hold time	Tdh	10	-	-	ns	
Data Erabla	Set up time	Tes	5	-	-	ns	
Data Enable	Hold time	Teh	10	-	-	ns	
	Set up time	Ths	5	-	-	ns	
	Hold time	Thh	10	-	-	ns	
	Period	Th	944	1056	1088	Те	
Horizontal sync. signal	Period		-	31.8	-	μs	
~-8	Pulse width	Thp	4	128	-	Те	
	Front porch	Thf	-	40	-	Тс	
	Back porch	Thb	7	88	-	Те	
Horizontal display	period	Thd		800		Те	
		—	516	525	534	Th	
Vertical sync. signal	Period	Tv	14.7	16.6	17.4	ms	
	Pulse width	Tvp	1	2	-	Th	
	Front porch	Tvf	-	11	-	Th	
	Back porch	Tvb	4	32	-	Th	
Vertical display per	riod	Tvd		480		Th	

1) In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.


2) If CK is fixed to "H" or "L" level for certain period while ENAB is supplied, the panel may be damaged.

3) When dimming LED by PWM, please adjust LCD operating signal timing and LED driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the interference of LCD operating signal timing and LED driving condition (especially driving frequency), even if the condition satisfies above timing specification.

- 4) Do not make Tv, Th, and Thp fluctuate.
- 5) CK count of each Horizontal Scanning Time should be always the same. Vertical invalid data period should be "n" X "Horizontal Scanning Time" . (n: integer) Frame period should be always the same.

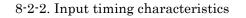
8-1-2. Input timing characteristics

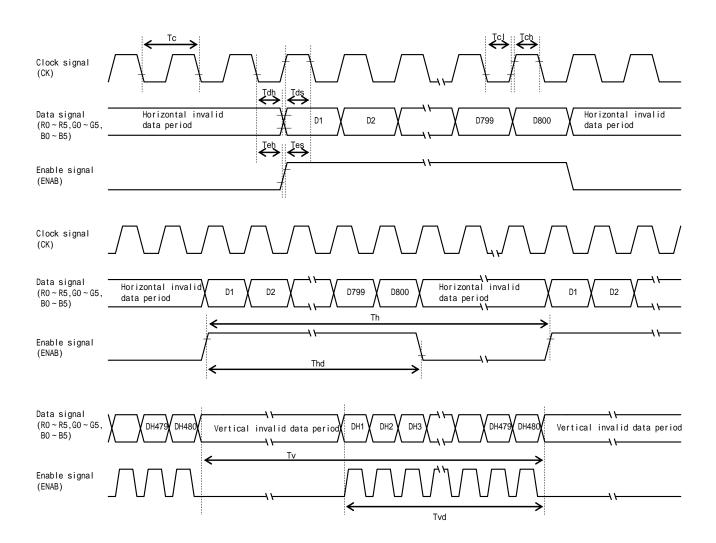
$8\mathchar`-2$. CM \div GND (Uunecessity of V \cdot $H_{\rm SYNC}$)

8-2-1. Timing characteristics

	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fck	29.88	33.2	36.52	MHz	
Charl	Period	Тс	27.4	30.1	33.5	ns	
Clock	High time	Tch	12	-	-	ns	
	Low time	Tel	12	-	-	ns	
Data	Set up time	Tds	5	-	-	ns	
Data	Hold time	Tdh	10	-	-	ns	
	Set up time	Tes	5	-	-	ns	
	Hold time	Teh	10	-	-	ns	
	Period	Th	1024	1056	1088	Тс	
Enable	Period	In	-	31.8	-	μs	
Enable	Horizontal display period	Thd		800		Тс	
	Period	Tv	487	525	550	Th	
	reriou	1 V	14.7	16.6	17.4	ms	
	Vertical display period	Tvd		480		Th	

1) In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.


2) If CK is fixed to "H" or "L" level for certain period while ENAB is supplied, the panel may be damaged.


3) When dimming LED by PWM, please adjust LCD operating signal timing and LED driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the interference of LCD operating signal timing and LED driving condition (especially driving frequency), even if the condition satisfies above timing specification.

4) Do not make Tv, Th, and Thp fluctuate.

5) CK count of each Horizontal Scanning Time should be always the same.

Vertical invalid data period should be "n" X "Horizontal Scanning Time" . (n: integer) Frame period should be always the same.

8-3. Input Data Signals and Display position on the screen

D1, DH1 D2, I D1, DH2 D2, I			D800, DH1
İ			
I		R G B	
ļ			
D1, DH480 D2, D	H480 D3, DH480		

Spec No.Part No.PageTQ3C-8EAF0-E1YAA16-01TCG070WVLPAANN-AN0012

9. Backlight characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Forward current	1)	IF	-	60	-	mA	Ta=-20 ~ 70°C
			-	12.6	14.7	V	IF=60mA, Ta=-20
Forward voltage	1)	VF	-	12.0	14.1	V	IF=60mA, Ta=25
			-	11.6	13.8	V	IF=60mA, Ta=70
Operating life time	2), 3)	Т	-	70,000	-	h	IF=60mA, Ta=25

1) For each "AN-CA"

When brightness decrease 50% of minimum brightness.
 The average life of a LED will decrease when the LCD is operating at higher temperatures.

- 3) Life time is estimated data.(Condition : IF=60mA, Ta=25 in chamber).
- An input current below 15mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.

10. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

TCG070WVLPAANN-AN00- $\Box \Box - \Box \Box - \Box$ MADE IN $\Box \Box \Box \Box \Box$ $\downarrow \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$ $\downarrow \quad \downarrow \quad \downarrow$ $\downarrow \quad \downarrow$ \downarrow 1 2345

- No1. No5. above indicate
 - 1. Year code
 - 2. Month code
 - 3. Date
 - 4. Version Number
 - 5. Country of origin (Japan or China)

Year	2011	2012	2013	2014	2015	2016
Code	1	2	3	4	5	6

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	Х	Y	Z

11. Warranty

11-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

11-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

12. Precautions for use

- 12-1. Installation of the LCD
- 1) A transparent protection plate shall be added to protect the LCD and its polarizer.
- 2) The LCD shall be installed so that there is no pressure on the LSI chips.
- 3) The LCD shall be installed flat, without twisting or bending.
- 4) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

12-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

12-3. LCD operation

1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.

12-4. Storage

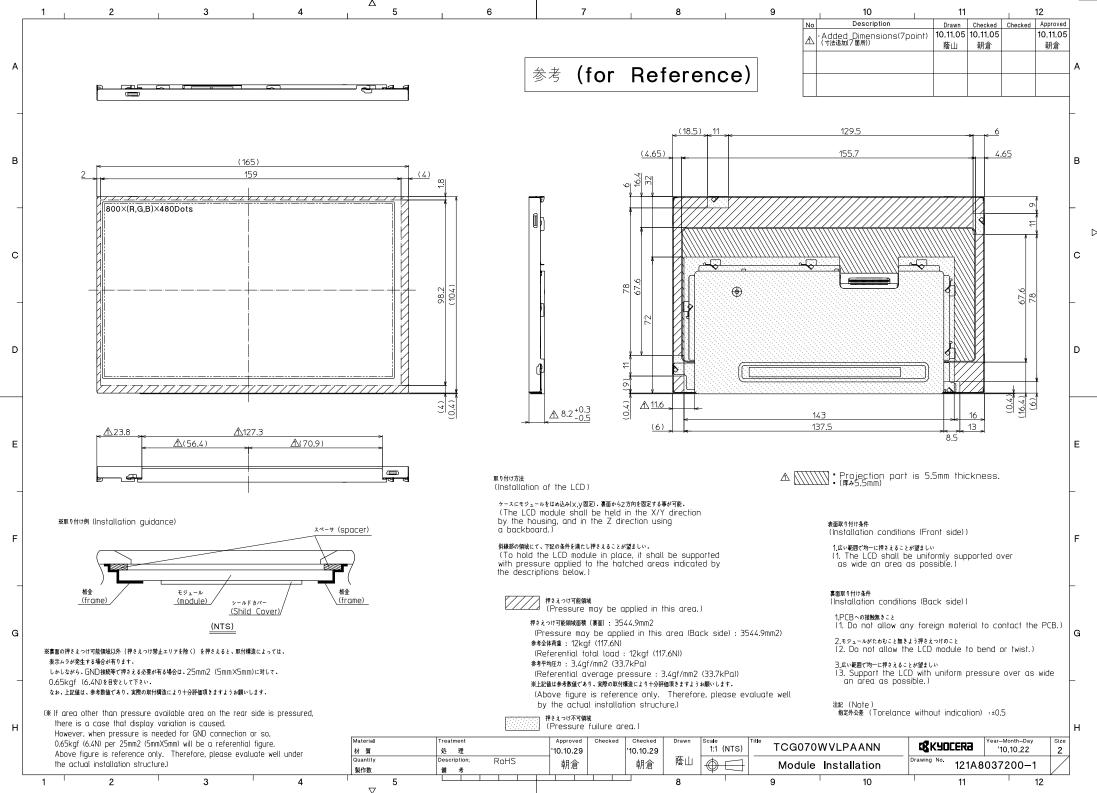
- The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

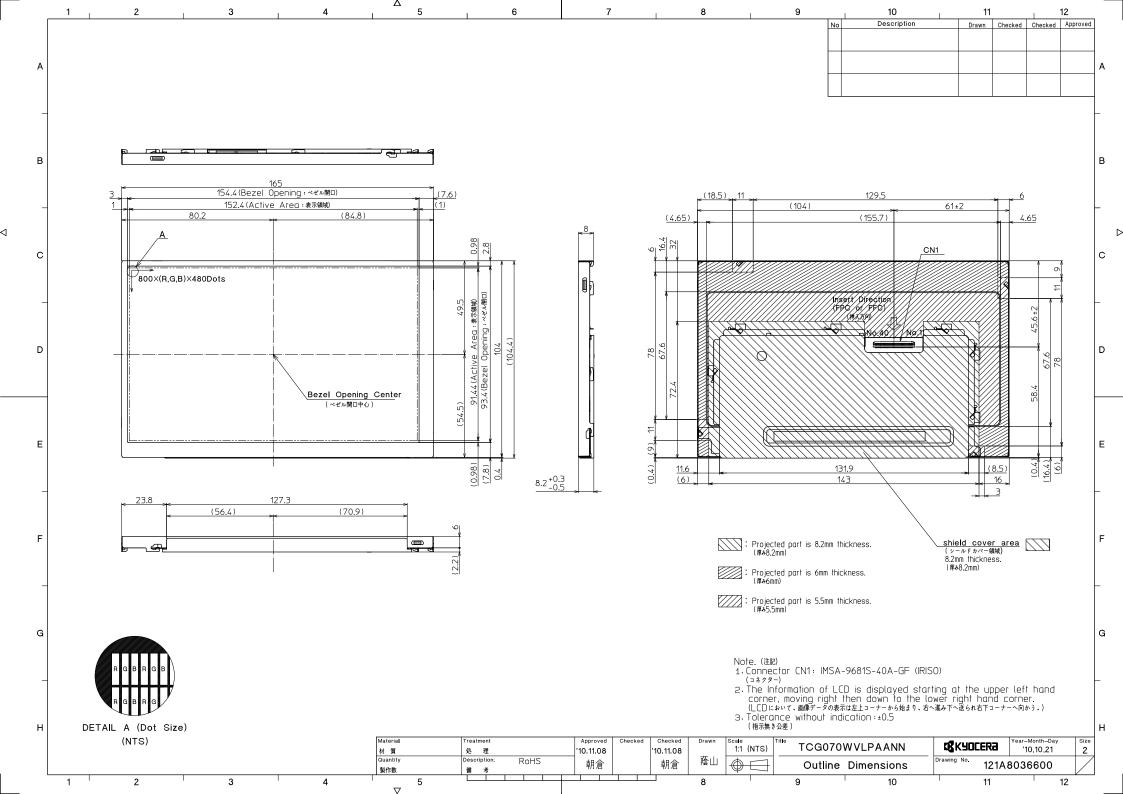
12-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

13. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	80°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	70°C	500h	Display function Display quality Current consumption	: No defect : No defect : No defect


1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.


2) The LCD is tested in circumstances in which there is no condensation.

3) The reliability test is not an out-going inspection.

 The result of the reliability test is for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

Spec No.	TQ3C-8EAF0-E2YAA16-00
Date	April 5, 2011

KYOCERA INSPECTION STANDARD

TYPE : TCG070WVLPAANN-AN00

KYOCERA CORPORATION LCD DIVISION

Original	Designed by :	Engineering de	Confirmed by : QA dept.		
Issue Date	Prepared	Checked	Approved	Checked	Approved
April 5, 2011	S.Hatanaka	y.Ikeda	M.Fujitani	I. Kaman	To , Jul

ĺ	Spec No.	Part No.	Page
	TQ3C-8EAF0-E2YAA16-00	TCG070WVLPAANN-AN00	-

Date Designed by : Engineering dept. Confirmed by : QA dept. Prepared Checked Approved Checked Approved Rev.No. Date Page Descriptions Image: Confirmed by : QA dept.		Revision record							
Prepared Checked Approved Checked Approved									
Rev.No. Date Page Descriptions Image: Image of the second se				ared	Checked	Approved	Checked	Approved	
Rev.No. Date Page Descriptions									
Rev.No. Date Page Descriptions		Γ							
	Rev.No.	Date	Page			Descripti	ons		

Visuals specification

			Note
General	reviewe consent 2. This ins	d by Kyocera, and an a spection standard abou	s not defined within this inspection standard shall be additional standard shall be determined by mutual at the image quality shall be applied to any defect within shall not be applicable to outside of the area.
	Lumina Inspect Temper	ion distance rature	: 500 Lux min. : 300 mm. : 25 ± 5
D	Directio		Directly above
Definition of inspection item	Dot defect	Bright dot defect Black dot defect	The dot is constantly "on" when power applied to the LCD, even when all "Black" data sent to the screen. Inspection tool: 5% Transparency neutral density filter. Count dot: If the dot is visible through the filter. Don't count dot: If the dot is not visible through the filter. RGBRGBRGB RGBRGBRGB dot defect The dot is constantly "off" when power applied to the
		Adjacent dot	LCD, even when all "White" data sent to the screen. Adjacent dot defect is defined as two or more bright dot defects or black dot defects. RGBRGBRGB RGBRGBRGB dot defect dot defect
	External inspection	Bubble, Scratch, Foreign particle (Polarizer, Cell, Backlight) Appearance inspection	Visible operating (all pixels "Black" or "White") and non operating. Does not satisfy the value at the spec.
	Others Definition of size	LED wires Definition of d = (a -	

Spec No. TQ3C-8EAF0-E2YAA16-00

Page

2) Standard

2) Standard Classification Inspection item		Judgement standard						
Defect	Dot	Bright dot		Acceptable number : 4			u	
(in LCD	defect	Dinght abt	401000			-	mm or more	
glass)	acroco	Black dot defect		Acceptable number		: 5		
8-0000)				Black dot spacing		5 mm or more		
		2 dot join Bright dot defect		Acceptable number		: 2		
		Black dot defect		Acceptable number		: 3		
		3 or more of	dots join	Acceptable number		: 0		
		Total dot d	efects	Acceptable number		÷5 Ma	x	
	Others	White dot,	Dark dot					
		(Circle)		Size (mn	n)	Ac	ceptable number	
				d	0.2		(Neglected)	
				0.2 < d	0.4		5	
				0.4 < d	0.5		3	
				0.5 < d			0	
	inspection	Polarizer (Scratch)						
(Defect on				Width (mm)	Length (mm)	Acceptable number	
Polarizer				W 0.1	- L	5.0	(Neglected) (Neglected)	
between F				0.1 < W = 0.3	5.0 < L	5.0		
and LCD	glass)			0.3 < W	- 0.0 · L		0	
		Polarizer (D., h h l a)		I	I		
		Polarizer (DUDDIE)	Size (mn	-)	1	and all a survey have	
					d 0.2		ceptable number (Neglected)	
				0.2 < d	0.3		5	
				0.3 < d	0.5		3	
				0.5 < d			0	
		Foreign pa	rticle					
		(Circular		Size (mn	n)	Ac	ceptable number	
		(oneular shape)		d 0.2		(Neglected)		
				0.2 < d	0.4		5	
				0.4 < d			3	
				0.5 < d			0	
		Foreign pa						
			hape)	Width (mm)	Length	(mm)	Acceptable number	
		Scratch		W 0.03			(Neglected)	
				0.02 < 11 0.1	L		(Neglected)	
				0.03 < W = 0.1	2.0 < L		3	
				0.1 < W	4.0 < L		0 (According to	
				0.1 \ W	-		circular shape)	
							circular silape/	

