
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 5695221421 Printed: 2013-07-03

Part Number: 5695221421

Frequency Range: Dimensions

Description: 95 POT CORE

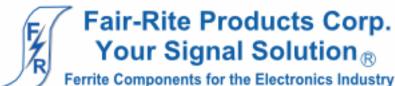
Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: Pot Cores

Generic Name: P22/13

Mechanical Specifications


Weight: 12.000 (g) per Set

Part Type Information

P9/5S, P11/7S, P14/8, P18/11, P22/13, P26/16, P30/19, P36/22

Pot cores have found application in all types of inductive devices. The core configuration provides a high degree of self-shielding. It also facilitates gapping to enhance utility for a variety of magnetic designs.

- -Pot cores can be supplied with the center post gapped to a mechanical dimension or an AL value.
- -AL value is measured at 1 kHz, B < 10 gauss.
- -Weight indicated is per pair or set.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 5695221421

Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	21.60	±0.4	0.850	-
В	6.70	±0.1	0.264	-
С	14.90	±1.6	0.587	-
D	4.70	±0.15	0.185	-
Е	18.20	±0.4	0.717	-
F	9.25	±0.15	0.364	-
G	3.70	±0.7	0.146	-
Н	4.55	±0.15	0.179	-
J	-		-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)				
Electrical Properties				
A _L (nH)	5000 ±25%			
Ae(cm ²)	0.64800			
Σ I/A(cm ⁻¹)	4.80			
I _e (cm)	3.12			
V _e (cm ³)	2.00000			
A _{min} (cm ²)	.510			

Land Patterns

V	W	Х	Υ	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

_ I/A - Core Constant

Ae: Effective Cross-Sectional Area

 A_{l} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 5695221421 Printed: 2013-07-03

Ferrite Material Constants

Specific Heat 0.25 cal/g/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²

Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Printed: 2013-07-03

Roll

School Printed: Printed: Printed: 2013-07-03

Fair-Rite Product's Catalog Part Data Sheet, 5695221421

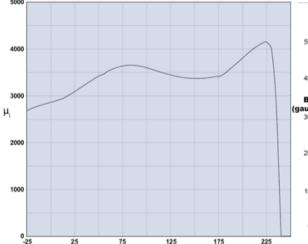
A low loss MnZn ferrite material for power applications up to 200 kHz with low temperature variation. New type 95 Material is a low loss power material, which features less power loss variation over temperature (25-120°C) at moderate flux densities for operation below 200 kHz.

Shapes available in 95 material are Toroids, U cores, Pot Cores, RM, PQ, EFD, EP.

95 Material Characteristics

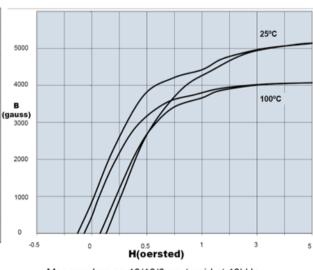
Property	Unit	Symbol	Value
Initial Permeability @ B < 10gauss		μ	3000
Flux Density @ Field Strength	gauss oersted	вн	5000 5
Residual Flux Density	gauss	B _r	800
Coercive Force	oersted	H _c	0.13
Loss Factor @ Frequency	10 ⁻⁶ MHz	tanδ/μ _i	3.0 0.1
Temperature Coefficient of Initial Permeability (20 - 70°C)	%/°C		0.4
Curie Temperature	°C	T _c	> 220
Resistivity	ohm-cm	ρ	200

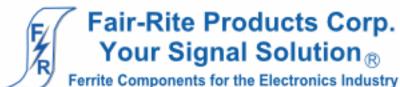
Complex Permeability vs. Frequency


 μ_s ', μ_s

Incremental Permeability vs. H

Frequency (Hz)
Measured on an 18/10/6mm toroid using
HP 4284A and HP4291A.


Initial Permeability vs. Temperature


Measured on an 18/10/6mm toroid at 10kHz.

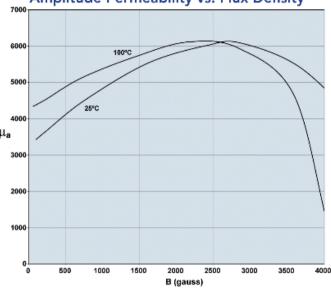
Temperature (°C)

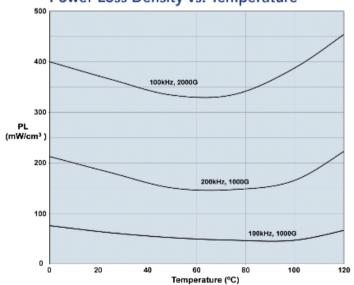
Hysteresis Loop

Measured on an 18/10/6mm toroid at 10kHz.

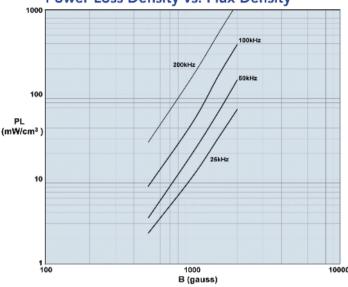
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 5695221421 Printed: 2013-07-03

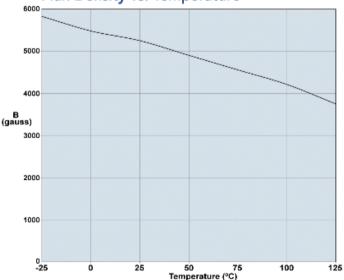



A low loss MnZn ferrite material for power applications up to 200kHz with low temperature variation.

Amplitude Permeability vs. Flux Density


Measured on an 18/10/6mm toroid at 10kHz.

Power Loss Density vs. Temperature


Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Power Loss Density vs. Flux Density

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Flux Density vs. Temperature

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.