
emModbus
CPU independent Modbus

stack for embedded applications

User Guide & Reference Manual

Document: UM14001
Software Version: 1.02f

Revision: 1
Date: September 24, 2018

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/emModbus.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed
to be entirely free of error. The information in this manual is subject to change for functional
or performance improvements without notice. Please make sure your manual is the latest
edition. While the information herein is assumed to be accurate, SEGGER Microcontroller
GmbH (SEGGER) assumes no responsibility for any errors or omissions. SEGGER makes
and you receive no warranties or conditions, express, implied, statutory or in any commu-
nication with you. SEGGER specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of SEGGER. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2014-2018 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective
holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com
Internet: www.segger.com

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If any error occurs, inform us and we will
try to assist you as soon as possible. Contact us for further information on topics or routines
not yet specified.

Print date: September 24, 2018

Software Revision Date By Description

1.02f 1 180924 OO Contact details updated.

1.02f 0 180522 OO Chapter “emModbus API” updated.
 • MB_SLAVE_ConfigIgnoreSlaveAddr() added.

1.02c 0 170810 OO

Chapter “emModbus API” updated.
 • Error code MB_ERR_WOULD_BLOCK added.
Chapter “Configuring emModbus”
 • MB_ALLOW_STREAM_HDR_UNDERFLOW added.
 • MB_DISCONNECT_ON_MSG_TOO_BIG added.

1.02 0 160401 OO

Chapter “emModbus API” updated.
 • MB_LoadU16BE() added.
 • MB_StoreU16BE() added.
 • MB_SLAVE_SetCustomFunctionCodeHandler() added.

1.00b 3 150806
MC/
OO

Minor corrections and layout updates.
Chapter “Introduction to emModbus”
 • Added information about emModbus data handling.

1.00 2 140601 MC Updated file information.

1.00 1 140314 MC Chapters “Getting Started” and “Tasks and Interrupt
usage” updated. Spelling.

1.00 0 140224 MC Initial version.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

4

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

6

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

7

Table of contents

1 Introduction to emModbus .. 11

1.1 The Modbus standard ... 12
1.1.1 Modbus message basics ...12

1.1.1.1 Message frames ... 12
1.1.2 Message fields .. 13
1.1.3 Modbus data basics ...15
1.1.4 emModbus data handling ... 16
1.1.5 Further reading ...16

1.2 emModbus ...17
1.2.1 Features of emModbus ...17
1.2.2 emModbus requirements .. 17
1.2.3 Development environment (compiler) .. 18

1.3 Tasks and interrupt usage ...19
1.3.1 ASCII / RTU slave with tasks dedicated to the stack 19
1.3.2 ASCII / RTU slave without tasks dedicated to the stack 20
1.3.3 TCP / UDP slave with tasks dedicated to the stack21
1.3.4 TCP / UDP slave without tasks dedicated to the stack 22
1.3.5 emModbus master ...23

2 Getting Started ..25

2.1 Installation .. 26
2.2 Upgrade a trial version ... 27
2.3 Upgrade an embOS start project ..28

2.3.1 Step 1: Open an embOS start project ..29
2.3.2 Step 2: Adding embOS/IP to the start project30
2.3.3 Step 3: Adding emModbus to the start project31
2.3.4 Step 4: Build the project ... 32

2.4 Create a project from scratch ..33

3 Example applications .. 35

3.1 Overview ...36
3.1.1 OS_IP_MB_MasterTCP.c ..37
3.1.2 OS_IP_MB_SlaveTCP.c ..37
3.1.3 OS_MB_MasterASCII.c ... 37
3.1.4 OS_MB_MasterRTU.c ..37
3.1.5 OS_MB_SlaveASCII.c ...37
3.1.6 OS_MB_SlaveRTU.c ... 37

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

8

4 emModbus API ...39

4.1 API functions ... 40
4.1.1 Channel specific core functions ..42

4.1.1.1 MB_CHANNEL_Disconnect() ... 43
4.1.2 Master specific core functions ... 44

4.1.2.1 MB_MASTER_AddASCIIChannel()45
4.1.2.2 MB_MASTER_AddIPChannel() ...46
4.1.2.3 MB_MASTER_AddRTUChannel() .. 47
4.1.2.4 MB_MASTER_DeInit() ..48
4.1.2.5 MB_MASTER_Init() ... 49

4.1.3 Master instruction set .. 50
4.1.3.1 MB_MASTER_ReadCoils() ...51
4.1.3.2 MB_MASTER_ReadDI() .. 52
4.1.3.3 MB_MASTER_ReadHR() ... 53
4.1.3.4 MB_MASTER_ReadIR() .. 54
4.1.3.5 MB_MASTER_WriteCoil() ..55
4.1.3.6 MB_MASTER_WriteCoils() .. 56
4.1.3.7 MB_MASTER_WriteReg() ..57
4.1.3.8 MB_MASTER_WriteRegs() .. 58

4.1.4 Slave specific core function ...59
4.1.4.1 MB_SLAVE_AddASCIIChannel() .. 60
4.1.4.2 MB_SLAVE_AddIPChannel() ... 61
4.1.4.3 MB_SLAVE_AddRTUChannel() ...62
4.1.4.4 MB_SLAVE_ConfigIgnoreSlaveAddr() 63
4.1.4.5 MB_SLAVE_DeInit() .. 64
4.1.4.6 MB_SLAVE_Exec() .. 65
4.1.4.7 MB_SLAVE_Init() .. 66
4.1.4.8 MB_SLAVE_PollChannel() ...67
4.1.4.9 MB_SLAVE_SetCustomFunctionCodeHandler() 68
4.1.4.10 MB_SLAVE_Task() ...70

4.1.5 Other core functions .. 71
4.1.5.1 MB_ConfigTimerFreq() ...72
4.1.5.2 MB_OnRx() ..73
4.1.5.3 MB_OnTx() .. 74
4.1.5.4 MB_TimerTick() ..75

4.1.6 Helper functions .. 76
4.1.6.1 MB_LoadU16BE() ..77
4.1.6.2 MB_StoreU16BE() ...78

4.2 emModbus data structures .. 79
4.2.1 Interface configuration structures .. 79

4.2.1.1 Structure MB_IFACE_CONFIG_IP 79
4.2.1.2 Structure MB_IFACE_CONFIG_UART80

4.2.2 Interface function structures ...81
4.2.2.1 Structure MB_IFACE_IP_API ...81
4.2.2.2 Structure MB_IFACE_UART_API .. 82

4.2.3 Slave structures .. 83
4.2.3.1 Structure MB_SLAVE_API .. 83
4.2.3.2 Structure MB_CUSTOM_FUNC_CODE_PARA 84

4.3 Error codes ..85

5 Configuring emModbus .. 87

5.1 Compile-time configuration .. 88
5.1.1 Compile-time configuration switches .. 88
5.1.2 Debug level .. 89

6 Debugging .. 91

6.1 Message output ..92
6.1.1 Debug API functions .. 93

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

9

6.1.1.1 MB_Log() .. 94
6.1.1.2 MB_Panic() ..95
6.1.1.3 MB_Warn() ..96

6.2 Using a network sniffer to analyse Ethernet communication problems97
6.3 Testing emModbus applications .. 98

7 OS Integration ...99

7.1 General information .. 100
7.2 OS layer API functions ..101

7.2.1 General functions .. 101
7.2.1.1 MB_OS_DeInitMaster() ..102
7.2.1.2 MB_OS_DeInitSlave() ..103
7.2.1.3 MB_OS_DisableInterrupt() ... 104
7.2.1.4 MB_OS_EnableInterrupt() ..105
7.2.1.5 MB_OS_GetTime() .. 106
7.2.1.6 MB_OS_InitMaster() ..107
7.2.1.7 MB_OS_InitSlave() ... 108

7.2.2 Synchronization functions ... 109
7.2.2.1 MB_OS_SignalItem() ...110
7.2.2.2 MB_OS_SignalNetEvent() ...111
7.2.2.3 MB_OS_WaitItemTimed() .. 112
7.2.2.4 MB_OS_WaitNetEvent() ... 113

8 Resource usage ..115

8.1 Memory footprint ..116
8.1.1 ARM7 system ..116

8.1.1.1 ROM usage ..116
8.1.1.2 RAM usage .. 116

9 Support ..117

9.1 Contacting support ... 118

10 Index ... 119

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

10

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

11

Chapter 1

Introduction to emModbus

This chapter provides an introduction to emModbus. It explains the basic concept behind em-
Modbus and its modules.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

12 CHAPTER 1 The Modbus standard

1.1 The Modbus standard
The Modbus protocol was originally published in 1979 by Modicon (which later became
Schneider Electric) and has since evolved into a standard communications protocol for
industrial electronic devices. In 2004, Schneider transfered rights to the protocol to the
Modbus Organization, who now controls the open standard’s further development.

1.1.1 Modbus message basics
The Modbus protocol is an application layer messaging protocol used for communications
between devices that are connected to different types of buses or networks.

It uses a master-slave-technique in which one device, the master, initiates transactions
(called “queries”). Other devices, the slaves, respond by performing the action requested
in the query or by supplying the requested data to the master.

The protocol determines how each device will know its address, how it will recognize a
message addressed to it, how it will determine the kind of action to be taken and how it will
extract data or any other information contained in the message. It also determines how
slaves construct and send reply messages.

1.1.1.1 Message frames
Several Modbus messaging formats (“frames”) exist and are used for different purposes
and environments, though many of them are not compliant to the Modbus standard. The
standard-compliant frame variants are listed in the following table:

Protocol Description

RTU
Original Modbus standard. Binary data is sent via serial connections
such as RS-232 or similar.

ASCII Similar to RTU. Instead of raw binary, data is encoded in ASCII.

Modbus/TCP
Binary data is encapsulated in a TCP frame and sent via network con-
nections such as Ethernet. This variant can also be used with UDP in-
stead of TCP and is then called Modbus/UDP.

When using ASCII frames or RTU frames via serial connection, parameters such as baud
rate and parity bits must be set correctly for all connected devices. When using Modbus/TCP,
setting these parameters is not required, but correct IP address and port number are re-
quired instead. The standard port number for Modbus/TCP is port 502.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

13

1.1.2 Message fields
Although the different message frames are each handled differently by the protocol, RTU
frames and ACSCII frames each include the same four fields. Field 2 and 3 constitute the
Protocol Data Unit (PDU), which is part of Modbus/TCP message frames as well, while all 4
fields together constitute the Application Data Unit (ADU):

Field 1 includes the address of a slave device, either indicating the slave that is designated
to receive the message from its master, or indicating the slave that sent the message
towards its master. This address, which is referred to as “unit ID” or “slave address”, is
a number from 1 to 247 and is uniquely assigned to a single slave device, allowing these
devices to listen for messages containing their specific ID. Additionally, ID 0 is used to send
broadcasts and ID 255 usually is reserved for communications with a Modbus gateway.

Field 2 includes a function code, which, when sent by a master, indicates the instruction
a slave is asked to carry out. When sent by a slave, on the other hand, the function code
indicates the instruction the slave is responding to.

Field 3 contains variable amounts of data, e.g. certain data addresses a master wants a
slave to read, or the data a slave is reporting towards its master.

In field 4 Modbus messages carry a checksum to allow their respective recipients to deter-
mine whether a message has arrived completely.

RTU message frames

When using RTU frames, each byte contained in a message is sent as binary data. The main
advantage of this mode is its greater density, allowing better data throughput for the same
baud rate when compared to ASCII frames. To indicate the start of an RTU frame, the ADU
is preceded by a silent interval of at least 3.5 Byte times, hence the length of that interval
depends on the configuration of the devices in use. To indicate the end of a frame, another
silent interval of 3.5 Byte times succeeds the ADU. Note that one single interval of silence
can, at the same time, indicate the end of one frame and the beginning of another frame.
RTU frames use Cyclic Redundancy Checks (CRC).

A complete RTU frame can be depicted as shown below:

ASCII message frames

When using ASCII frames, each byte contained in a message is encoded and sent as two
ASCII characters. This allows time intervals of up to one second to occur between characters
without causing an error. To indicate the start of a frame, the ADU is preceded by a single
character, which always is a colon (0x3A). To indicate the end of a frame, another two trailing
characters succeed the ADU, which always are “Carriage Return” and “Line Feed” (0x0D
and 0x0A, respectively). ASCII frames use Longitudinal Redundancy Checks (LRC).

A complete ASCII frame can be depicted as shown below:

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

14 CHAPTER 1 The Modbus standard

Modbus/TCP message frames

When using Modbus/TCP frames, an additional header called “Modbus Application Header”
precedes the PDU. Its four fields contain the transaction ID, the protocol ID, the length of
the following frame and the slave address.

The transaction ID is a number from 0 to 65,535 encoded into two bytes. A master device
will increment this number for every request it sends to a slave, while slaves simply echoe
the number back to their master. By doing so, the master is able to decide wether messages
got lost or delayed in transmission.

The protocol ID is a two-byte value, too, but is always 00 00. The length field consists of
two more bytes indicating the length of the remaining message.

Finally the address field contains a unit ID, similar to that included in ASCII frames or RTU
frames. But with Modbus/TCP, it does not necessarily serve a purpose, as the IP address
is used instead to indicate the message’s recipient. However, the unit ID is still part of the
message and might be used to decide whether a device forwards a message onto a serial
connection, thereby allowing devices without networking capabilities to be used in these
environments, too.

A complete Modbus/TCP frame can be depicted as shown below:

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

15

1.1.3 Modbus data basics
Modbus was specifically designed for usage in supervisory control and data acquisition
systems, connecting a supervisory computer with one or several remote terminal units
(RTU). Therefore, data types used in Modbus communications have been named according
to that implementation. When the Modbus protocol was extended in 1999 to include TCP
frames via Ethernet, the data types’ names were left unchanged.

Four primary data types are used by Modbus:

Data type Description

Coil single bit, alterable by an application program, read-write
Discrete Input single bit, provided by an I/O system, read-only
Holding Register 16-bit, alterable by an application program, read-write
Input Register 16-bit, provided by an I/O system, read-only

For referencing data, Modbus uses a concept of data tables, which are arrays or blocks
of memory used to store data. This data can then be referenced by using data table ad-
dresses, represented by simple integer values between 0 and 65,535. While it is fully stan-
dard-compliant to implement up to 65,536 addresses for each data type, the number of
addresses implemented in a particular device usually is much lower. Therefore, Modbus
implementations might even assign specific address ranges of a single table to each type
of data. While the Modbus standard itself does not specify distinct address ranges, typical
Modbus implementations utilize the following assignments:
• 0xxxx-ranged addresses store coils.
• 1xxxx-ranged addresses store discrete inputs.
• 3xxxx-ranged addresses store input registers.
• 4xxxx-ranged addresses store holding registers.

Modbus uses a big-endian representation for data table addresses as well as for the actual
data itself. Therefore, the most significant byte is sent first when a numerical quantity larger
than a single byte is transmitted. For example
• (16-bits) 0x1234 gets sent as 0x12 0x34, and
• (32-bits) 0x12345678 gets sent as 0x12 0x34 0x56 0x78.

In addition to single bit data types (e.g. representing Boolean values) and 16-bit data types
(e.g. representing integers), it is also possible to use large data types such as long integers,
floating point numbers and strings by splitting them over several addresses. However, the
Modbus standard does not stipulate this, hence it is up to the individual user to split and
store data accordingly.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

16 CHAPTER 1 The Modbus standard

1.1.4 emModbus data handling
While Modbus data is always used in big endian emModbus takes addresses and values to
set in registers and values read in host endianess to make your life easier. The data will
then be converted by emModbus so you do not have to do it on your own.

This is easy for register accesses which are U16 registers. This means that you can simply
use an U16 variable with emModbus for reading/writing a register.

For coils emModbus expects and delivers data as stream of bytes with the bits in each byte
treated in LSB order. For a register base addr. of 1000 this means:
• Bit 0 of the first byte means value of coil at addr. 1000.
• Bit 1 of the first byte means value of coil at addr. 1001.
• Bit 7 of the first byte means value of coil at addr. 1007.
• Bit 1 of the second byte means value of coil at addr. 1008.
• Bit 7 of the second byte means value of coil at addr. 1015.

The byte order itself is treated in MSB by emModbus.

1.1.5 Further reading
This guide explains the usage of the emModbus stack. It describes all functions which are
required to build a Modbus application. For a deeper understanding of the official Modbus
protocol, please visit:
• Modbus Organization official website: http://www.modbus.org/

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

http://www.modbus.org/

17

1.2 emModbus
emModbus is written in ANSI C and can be used on virtually any CPU. It combines a max-
imum of performance with a small memory footprint and comes with all features typically
required by embedded systems. RAM usage has been kept to a minimum by smart buffer
handling.

1.2.1 Features of emModbus
Features of emModbus include:
• Easy to integrate.
• Low memory footprint.
• ANSI-C code is completely portable and runs on any target.
• Follows the SEGGER coding standards: Efficient and compact, yet easy to read,

understand & debug.
• Supports ASCII, RTU and Modbus/TCP (and UDP) protocol.
• Sample applications for all protocols included.
• Kernel abstraction layer: can be used with or without any RTOS.
• Works out-of-the-box with embOS.
• Modbus/TCP can be used with standard socket interface and any TCP/IP stack.
• Works out-of-the-box with embOS/IP.
• Project for executable on PC for Microsoft Visual Studio available.

The following table shows the contents of the emModbus root directory:

Directory Content

Application*.c
Contains example applications to run em-
Modbus with UART or embOS/IP.

Config*.c
Contains the emModbus configuration
files. Refer to Configuring emModbus on
page 87 for further information.

MB*.c
Contains the emModbus sources such as
MB_Core.c, MB_CHANNEL.c , MB_MASTER.c
and MB_SLAVE.c

SEGGER*.c
Contains optimized memcpy routines to
speed up the stack.

Windows*.c
Contains the source(s), project file(s) and
a executable(s) to run emModbus on a Mi-
crosoft Windows host.

1.2.2 emModbus requirements

TCP/IP stack

For usage of Modbus/TCP, emModbus requires a TCP/IP capable stack. emModbus can be
used with any TCP/IP stack that supports BSD Standard Sockets. The shipment includes
an implementation which uses the socket API of embOS/IP.

Multi tasking

Although emModbus can be used completely without an RTOS, it is recommended to use
emModbus in a multi tasking system, at least when implementing a Modbus master.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

18 CHAPTER 1 emModbus

1.2.3 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant compiler complying with at least
one of the following international standard is required:
• ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
• ISO/IEC 9899:1999 (C99)
• ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will be
a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or DSPs that
we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can therefore
also be programmed in C++ if desired.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

19

1.3 Tasks and interrupt usage
emModbus can be used in an application in two different ways.
• With tasks dedicated to the stack.
• Without tasks dedicated to the stack.

The following chapters provide information on these ways for both ASCII and RTU frames
as well as for Modbus/TCP (or UDP) frames.

1.3.1 ASCII / RTU slave with tasks dedicated to the stack
To use tasks dedicated to the stack is the simplest way to use emModbus with ASCII and/
or RTU frames. The MB_SLAVE_Task handles housekeeping operations and evaluation of
incoming frames. The “Store byte” operation is called and performed from within the In-
terrupt Service Routine, hence no additional task is required.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

20 CHAPTER 1 Tasks and interrupt usage

1.3.2 ASCII / RTU slave without tasks dedicated to the stack
emModbus ASCII and/or RTU frames can also be used without any task dedicated to the
stack, if an application task calls MB_SLAVE_Exec() periodically. The “Store byte” operation
is called and performed from within the Interrupt Service Routine.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

21

1.3.3 TCP / UDP slave with tasks dedicated to the stack
To use tasks dedicated to the stack is the simplest way to use emModbus/TCP. The
MB_SLAVE_Task handles housekeeping operations and evaluation of incoming frames. The
“Read frame” operation is called and performed by another task, MB_SLAVE_PollChannel,
which periodically polls for incoming frames.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

22 CHAPTER 1 Tasks and interrupt usage

1.3.4 TCP / UDP slave without tasks dedicated to the stack
emModbus/TCP can also be used without any task dedicated to the stack, if an application
task consecutively calls MB_SLAVE_PollChannel() and MB_SLAVE_Exec() periodically.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

23

1.3.5 emModbus master
The emModbus master API is independent of the usage of any real-time operating system.
However, by utilizing an RTOS the emModbus interface becomes easier to use and more
comfortable to integrate into any desired application.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

24 CHAPTER 1 Tasks and interrupt usage

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

25

Chapter 2

Getting Started

The first step in getting started with emModbus is to compile it for and run it on the target system.
This chapter explains how to do this.

In this document the IAR Embedded Workbench® IDE is used for all examples and screenshots,
but every other ANSI-C toolchain can be used as well. It is also possible to use makefiles; in this
case, “add to the project” translates into “add to the makefile”.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

26 CHAPTER 2 Installation

2.1 Installation
emModbus is typically shipped as a .ZIP file in electronic form. In order to install emModbus,
extract it to any folder of your choice, preserving the directory structure of the .ZIP file.

To create a running emModbus project, there are three different routes available:
• Upgrade a trial version by adding source code.
• Upgrade an embOS start project.
• Create a project from scratch.

The following example procedures describe each of these routes. They focus on integrating
an emModbus slave device using Modbus/TCP frames, but any other emModbus project can
be created as well by following the same steps.

emModbus via TCP is optimized for use with embOS/IP, SEGGER’s TCP/IP stack. However,
emModbus can be used with any other TCP/IP stack as well. Note that when using ASCII
frames or RTU frames, the integration of a TCP/IP stack is not required and should be
omitted for smaller code size. Similarly, if no real-time operating system is required, the
integration of an RTOS should be omitted as well.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

27

2.2 Upgrade a trial version
Various trial packages for different target hardware are available at SEGGER’s website.

Note that not all trial packages currently available contain a trial of emModbus. If you are
interested in a specific package that does not contain emModbus yet, feel free to contact
us. Including emModbus in a trial package can be completed quickly by our Expert Team.
Additionally, trial packages that do not contain embOS/IP do lack an appropriate TCP/IP
stack, which is required for Modbus/TCP frames. However, ASCII frames and RTU frames
might be used regardless of a TCP/IP stack.

Replace libraries with sources

After downloading the trial package, extract the project contained in the .ZIP file to any
folder of your choice and open the workspace/project file. Copy the source files from the
folder MB of your emModbus shipment into the folder MB of your downloaded package, add
the files to the project and exclude the trial libraries from the build.

Build the project

Build the project; it should compile without errors and warnings. If any problem is encoun-
tered during the build process, checking the include paths and project configurations is
advisable as first step. When building completes, download the output into the designated
target and start the application.

Test the project

We recommend testing emModbus devices by using their respective counterparts, e.g. us-
ing a emModbus/TCP master to test an emModbus/TCP slave and vice versa. Alternative-
ly, devices can also be tested with a desktop computer running an appropriate Modbus
application.

Refer to Testing emModbus applications on page 98 for additional information.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

28 CHAPTER 2 Upgrade an embOS start project

2.3 Upgrade an embOS start project
Begin with a sample project for embOS, SEGGER’s real-time operating system, then include
embOS/IP and emModbus into the project.

The emModbus default configuration is preconfigured with valid values, which match the
requirements of most applications.

Procedure to follow

Integration of emModbus is a relatively simple process, which consists of the following
steps:
1. Open an embOS start project.
2. Add embOS/IP to the start project.
3. Add emModbus to the start project.
4. Build the project.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

29

2.3.1 Step 1: Open an embOS start project
We recommend that you use one of the supplied embOS start projects for your target
system. Compile the project and run it on your target hardware.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

30 CHAPTER 2 Upgrade an embOS start project

2.3.2 Step 2: Adding embOS/IP to the start project
Add all source files in the following directories to your project:
• Config
• IP
• SEGGER (optional)

The Config folder includes all configuration files of embOS/IP. The configuration files are
preconfigured with valid values that match the requirements of most applications. Add the
hardware configuration IP_Config_<TargetName>.c supplied with the driver shipment.

If your hardware is currently not supported, use the example configuration file and the
driver template to write your own driver. The example configuration file and the driver
template is located in the Sample folder.

The SEGGER folder is an optional component of the embOS/IP shipment. It contains opti-
mized MCU and/or compiler specific files, for example an optimized memcopy function.

Replace BSP.c and BSP.h of your embOS start project

Replace the BSP.c source file and the BSP.h header file used in your embOS start project
with the one which is supplied with the embOS/IP shipment. Some drivers require a spe-
cial functions which initializes the network interface of the driver. This function is called
BSP_ETH_Init(). It is used to enable the ports which are connected to the network hard-
ware. All network interface driver packages include the BSP.c and BSP.h files irrespective
if the BSP_ETH_Init() function is implemented.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same directory as the C
file to compile, an include path needs to be set. In order to build the project with all added
files, you will need to add the following directories to your include path:
• Config
• Inc
• IP

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

31

2.3.3 Step 3: Adding emModbus to the start project
Add all source files in the following directories to your project:
• Config
• MB
• SEGGER (optional)

The Config folder includes all configuration files of emModbus. The configuration files are
preconfigured with valid values, which match the requirements of most applications.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same directory as the C
file to compile, an include path needs to be set. In order to build the project with all added
files, you will need to add the following directories to your include path:
• Config
• MB

Select the start application

For quick and easy testing of your emModbus integration, start with the code found in the
folder Application. Add one of the applications to your project (for example OS_IP_M-
B_SlaveTCP.c).

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

32 CHAPTER 2 Upgrade an embOS start project

2.3.4 Step 4: Build the project

Build the project

Build the project; it should compile without errors and warnings. If any problem is encoun-
tered during the build process, checking the include paths and project configurations is
advisable as first step. When done building, download the output into the designated target
and start the application.

Test the project

We recommend testing emModbus devices by using their respective counterparts, e.g. us-
ing a emModbus/TCP master to test an emModbus/TCP slave and vice versa. Alternative-
ly, devices can also be tested with a desktop computer running an appropriate Modbus
application.

Refer to Testing emModbus applications on page 98 for additional information.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

33

2.4 Create a project from scratch
To create a project from scratch, some steps have to be taken:
• A project or make file has to be created for the specific toolchain.
• The project configurations may need adjustments.
• The hardware routines have to be implemented.
• The path of any required header files has to be set as include path.

To get the target up and running is a lot easier if target hardware drivers are already
available. In that case, these drivers can be used.

Creating the project or make file

The screenshot below gives an idea about a possible project setup:

Build the project

Build the project; it should compile without errors and warnings. If any problem is encoun-
tered during the build process, checking the include paths and project configurations is
advisable as first step. When done building, download the output into the designated target
and start the application.

Test the project

We recommend testing emModbus devices by using their respective counterparts, e.g. us-
ing a emModbus/TCP master to test an emModbus/TCP slave and vice versa. Alternative-
ly, devices can also be tested with a desktop computer running an appropriate Modbus
application.

Refer to Testing emModbus applications on page 98 for additional information.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

34 CHAPTER 2 Create a project from scratch

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

35

Chapter 3

Example applications

In this chapter, you will find a description of the emModbus example applications that are deliv-
ered together with the emModbus shipment.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

36 CHAPTER 3 Overview

3.1 Overview
Example applications for emModbus are supplied in source code in the Application folder.
These can be used for testing the correct installation and proper function of the device
running emModbus.

The following start application files are provided:

File Description

OS_IP_MB_MasterTCP.c
Demonstrates the functionality of a Modbus Master
device using TCP frames via network.

OS_IP_MB_SlaveTCP.c
Demonstrates the functionality of a Modbus Slave
device using TCP frames via network.

OS_MB_MasterASCII.c
Demonstrates the functionality of a Modbus Master
device using ASCII frames via serial connection.

OS_MB_MasterRTU.c
Demonstrates the functionality of a Modbus Master
device using RTU frames via serial connection.

OS_MB_SlaveASCII.c
Demonstrates the functionality of a Modbus Slave
device using ASCII frames via serial connection.

OS_MB_SlaveRTU.c
Demonstrates the functionality of a Modbus Slave
device using RTU frames via serial connection.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

37

3.1.1 OS_IP_MB_MasterTCP.c
This sample demonstrates emModbus master functionalities using the Modbus/TCP proto-
col. It opens a channel and tries to establish a TCP connection to a Modbus slave device,
which is known to the master by the slave’s IP address as defined at the beginning of the
file. The master also uses a given port for this connection, which is defined at the beginning
of the file (e.g. port 502, the standard port for Modbus communications). When a connec-
tion is established, the master repeatedly sends queries to the slave, asking it to perform
the function “write coil”, and waits for appropriate responses.

3.1.2 OS_IP_MB_SlaveTCP.c
This sample demonstrates emModbus slave functionalities using the Modbus/TCP protocol.
It opens a channel and waits for incoming TCP connections on a given port, which is known
to the slave as defined at the beginning of the file. When an incoming connection from a
Modbus master device has been established, the slave reacts to queries it receives from
the master. When ordered to write a coil (like the associated Modbus master sample does),
the slave will toggle LEDs to signal its new status.

3.1.3 OS_MB_MasterASCII.c
This emModbus sample demonstrates emModbus master functionalities using ASCII frames.
It opens a channel and repeatedly sends queries to a Modbus slave device (specified by its
slave ID as defined at the beginning of the file), asking it to perform the function “write
coil”, and waits for appropriate responses.

3.1.4 OS_MB_MasterRTU.c
This emModbus sample demonstrates emModbus master functionalities using RTU frames.
It opens a channel and repeatedly sends queries to a Modbus slave device (specified by its
slave ID as defined at the beginning of the file), asking it to perform the function “write
coil”, and waits for appropriate responses.

3.1.5 OS_MB_SlaveASCII.c
This sample demonstrates emModbus slave functionalities using ASCII frames. It opens a
channel and waits for incoming queries from a Modbus master device. When ordered to
write a coil (like the associated Modbus master sample does), the slave will toggle LEDs
to signal its new status.

3.1.6 OS_MB_SlaveRTU.c
This sample demonstrates emModbus slave functionalities using RTU frames. It opens a
channel and waits for incoming queries from a Modbus master device. When ordered to
write a coil (like the associated Modbus master sample does), the slave will toggle LEDs
to signal its new status.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

38 CHAPTER 3 Overview

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

39

Chapter 4

emModbus API

In this chapter, you will find a description of each emModbus core function.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

40 CHAPTER 4 API functions

4.1 API functions
The table below lists the available API functions within their respective categories.

Function Description

Channel specific core functions

MB_CHANNEL_Disconnect()
Disconnect a previously connected chan-
nel, if the channel did any connect at all
and is currently connected.

Master specific core functions

MB_MASTER_AddASCIIChannel()
Adds a master channel that uses the Mod-
bus ASCII protocol via a serial connection.

MB_MASTER_AddIPChannel()
Adds a master channel that uses the Mod-
bus/TCP or Modbus/UDP protocol via IP.

MB_MASTER_AddRTUChannel()
Adds a master channel that uses the Mod-
bus RTU protocol via a serial connection.

MB_MASTER_DeInit()
De-Initializes the master channels, re-
sources and removes the master endpoint
from the global endpoint list.

MB_MASTER_Init()
Initializes the master resources and adds
the master endpoint to the global endpoint
list.

Master instruction set

MB_MASTER_ReadCoils() Reads coils from a slave.
MB_MASTER_ReadDI() Reads Discrete Inputs from a slave.
MB_MASTER_ReadHR() Reads Holding Registers from a slave.
MB_MASTER_ReadIR() Reads Input Registers from a slave.
MB_MASTER_WriteCoil() Writes a single coil to a slave.
MB_MASTER_WriteCoils() Writes multiple coils to a slave.
MB_MASTER_WriteReg() Writes a single register to a slave.
MB_MASTER_WriteRegs() Writes multiple registers to a slave.

Slave specific core functions

MB_SLAVE_AddASCIIChannel()
Adds a slave channel that uses the Modbus
ASCII protocol via a serial connection.

MB_SLAVE_AddIPChannel()
Adds a slave channel that uses the Mod-
bus/TCP or Modbus/UDP protocol via IP.

MB_SLAVE_AddRTUChannel()
Adds a slave channel that uses the Modbus
RTU protocol via a serial connection.

MB_SLAVE_ConfigIgnoreSlaveAddr()
Function that configures if the slave ad-
dress is ignored.

MB_SLAVE_DeInit()
De-Initializes the slave channels, resources
and removes the slave endpoint from the
global endpoint list.

MB_SLAVE_Exec()
Loops once over all slave channels and
processes data when the channel has been
signalled ready.

MB_SLAVE_Init()
Initializes the slave resources and adds the
slave endpoint to the global endpoint list.

MB_SLAVE_PollChannel()
Function that has to be periodically polled
for each slave channel that requires re-

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

41

Function Description
questing data instead of getting it via in-
terrupt.

MB_SLAVE_SetCustomFunctionCodeHan-
dler()

Sets a handler for custom function codes.

MB_SLAVE_Task()
Wrapper function that runs MB_SLAVE_Ex-
ec() in a task.

Other core functions

MB_ConfigTimerFreq()
This function allows setting a user de-
fined timer frequency instead of the de-
fault 1kHz frequency.

MB_OnRx()
Function called by byte oriented transmis-
sion channels that receive an interrupt for
new data received.

MB_OnTx()

Function called by byte oriented transmis-
sion channels once a Tx complete interrupt
has been received to send the next byte or
report back that there is no more to send.

MB_TimerTick()
Function called on each timer interrupt to
manage internal RTU timeout with serial
channels using the RTU protocol.

Helper functions

MB_LoadU16BE()
Loads an U16 value from a big endian
memory location.

MB_StoreU16BE()
Stores an U16 value to a big endian mem-
ory location.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

42 CHAPTER 4 API functions

4.1.1 Channel specific core functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

43

4.1.1.1 MB_CHANNEL_Disconnect()

Description

Disconnect a previously connected channel, if the channel did any connect at all and is
currently connected.

Prototype

void MB_CHANNEL_Disconnect(MB_CHANNEL * pChannel);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

44 CHAPTER 4 API functions

4.1.2 Master specific core functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

45

4.1.2.1 MB_MASTER_AddASCIIChannel()

Description

Adds a master channel that uses the Modbus ASCII protocol via a serial connection.

Prototype

void MB_MASTER_AddASCIIChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_UART * pConfig,
 const MB_IFACE_UART_API * pIFaceAPI,
 U32 Timeout,
 U8 SlaveAddr,
 U32 Baudrate,
 U8 DataBits,
 U8 Parity,
 U8 StopBits,
 U8 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_UART.

pIFaceAPI
Pointer to element of MB_IFACE_UART_API used to read/write
from/to interface.

Timeout Timeout [ms] to wait for answer.
SlaveAddr Slave addr. to listen on.
Baudrate Desired baudrate to configure.
DataBits Number of data bits used in UART protocol.
Parity Parity used in UART protocol.
StopBits Number of stop bits used in UART protocol.
Port UART port number used by this channel.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_UART _MBConfig;
static const MB_IFACE_UART_API _IFaceAPI = {
 _SendByte, _Init, _DeInit, NULL, NULL, NULL, NULL, NULL, NULL
};

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(&_MBChannel, &_MBConfig, &_IFaceAPI, 3000, 1,
 38400, 8, 0, 1, 0); // Add master channel
 do { ... } // e.g. master/slave communications
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

46 CHAPTER 4 API functions

4.1.2.2 MB_MASTER_AddIPChannel()

Description

Adds a master channel that uses the Modbus/TCP or Modbus/UDP protocol via IP.

Prototype

void MB_MASTER_AddIPChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_IP * pConfig,
 const MB_IFACE_IP_API * pIFaceAPI,
 U32 Timeout,
 U8 SlaveAddr,
 U32 IPAddr,
 U16 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_IP.

pIFaceAPI
Pointer to element of MB_IFACE_IP_API used to read/write
from/to interface.

Timeout Timeout [ms] to wait for answer.
SlaveAddr Slave addr. to access.
IPAddr IP addr. of slave.
Port Slave port to connect to.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_IP _MBConfig;
static const MB_IFACE_IP_API _IFaceAPI = {
 NULL, NULL, NULL, _Send, _Recv, _Connect, _Disconnect, NULL, NULL
};

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddIPChannel(&_MBChannel, &_MBConfig, &_IFaceAPI, 3000, 1,
 IP_BYTES2ADDR(192,168,1,80), 502); // Add master channel
 do { ... } // e.g. master/slave communications
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

47

4.1.2.3 MB_MASTER_AddRTUChannel()

Description

Adds a master channel that uses the Modbus RTU protocol via a serial connection.

Prototype

void MB_MASTER_AddRTUChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_UART * pConfig,
 const MB_IFACE_UART_API * pIFaceAPI,
 U32 Timeout,
 U8 SlaveAddr,
 U32 Baudrate,
 U8 DataBits,
 U8 Parity,
 U8 StopBits,
 U8 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_UART.

pIFaceAPI
Pointer to element of MB_IFACE_UART_API used to read/write
from/to interface.

Timeout Timeout [ms] to wait for answer.
SlaveAddr Slave addr. to listen on.
Baudrate Desired baudrate to configure.
DataBits Number of data bits used in UART protocol.
Parity Parity used in UART protocol.
StopBits Number of stop bits used in UART protocol.
Port UART port number used by this channel.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_UART _MBConfig;
static const MB_IFACE_UART_API _IFaceAPI = {
 _SendByte, _Init, _DeInit, NULL, NULL, NULL, NULL, _InitTimer, _DeInitTimer
};

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddRTUChannel(&_MBChannel, &_MBConfig, &_IFaceAPI, 3000, 1,
 38400, 8, 0, 1, 0); // Add master channel
 do { ... } // e.g. master/slave communications
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

48 CHAPTER 4 API functions

4.1.2.4 MB_MASTER_DeInit()

Description

De-Initializes the master channels, resources and removes the master endpoint from the
global endpoint list.

Prototype

void MB_MASTER_DeInit(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

49

4.1.2.5 MB_MASTER_Init()

Description

Initializes the master resources and adds the master endpoint to the global endpoint list.

Prototype

void MB_MASTER_Init(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

50 CHAPTER 4 API functions

4.1.3 Master instruction set

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

51

4.1.3.1 MB_MASTER_ReadCoils()

Description

Reads coils from a slave.

Prototype

int MB_MASTER_ReadCoils(MB_CHANNEL * pChannel,
 U8 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
pData Pointer to application buffer where to store the read data.
Addr Address in slave where to find the coils to access.
NumItems Number of items to read.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U8 _Data;

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Data = 0;
 _Result = MB_MASTER_ReadCoils(&_MBChannel, &_Data, 1000, 2); // Read Coils
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

52 CHAPTER 4 API functions

4.1.3.2 MB_MASTER_ReadDI()

Description

Reads Discrete Inputs from a slave.

Prototype

int MB_MASTER_ReadDI(MB_CHANNEL * pChannel,
 U8 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
pData Pointer to application buffer where to store the read data.
Addr Address in slave where to find the inputs to access.
NumItems Number of items to read.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U16 _aData[2];

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Result = MB_MASTER_ReadDI(&_MBChannel,&_aData[0],1000,2); // Read Discrete Input
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

53

4.1.3.3 MB_MASTER_ReadHR()

Description

Reads Holding Registers from a slave.

Prototype

int MB_MASTER_ReadHR(MB_CHANNEL * pChannel,
 U8 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
pData Pointer to application buffer where to store the read data.
Addr Address in slave where to find the registers to access.
NumItems Number of items to read.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U16 _aData[2];

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Result = MB_MASTER_ReadHR(&_MBChannel,&_aData[0],1000,2); // Read Holding Register
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

54 CHAPTER 4 API functions

4.1.3.4 MB_MASTER_ReadIR()

Description

Reads Input Registers from a slave.

Prototype

int MB_MASTER_ReadIR(MB_CHANNEL * pChannel,
 U8 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
pData Pointer to application buffer where to store the read data.
Addr Address in slave where to find the registers to access.
NumItems Number of items to read.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U16 _aData[2];

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Result = MB_MASTER_ReadIR(&_MBChannel,&_aData[0],1000,2); // Read Input Register
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

55

4.1.3.5 MB_MASTER_WriteCoil()

Description

Writes a single coil to a slave.

Prototype

int MB_MASTER_WriteCoil(MB_CHANNEL * pChannel,
 U16 Addr,
 U8 OnOff);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
Addr Address in slave where to find the coil to access.
OnOff Write coil to 0: Off or 1: On .

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Result = MB_MASTER_WriteCoil(&_MBChannel, 1000, 1); // Write Coil
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

56 CHAPTER 4 API functions

4.1.3.6 MB_MASTER_WriteCoils()

Description

Writes multiple coils to a slave.

Prototype

int MB_MASTER_WriteCoils(MB_CHANNEL * pChannel,
 U8 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.

pData
Pointer to application buffer where the values to write are
stored.

Addr Address in slave where to find the coils to access.

NumItems
Number of items to write. Not to be mistaken with number
of bytes that will be used for x coils.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U8 _Data[2];

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 //
 // Set coils at addr. 1000 & 1003.
 // Clr. coild 1001 - 1002 & 1004 - 1007.
 //
 _Data[0] = (1 << 0) | (1 << 3);
 //
 // Set coil at addr. 1008.
 //
 _Data[1] = (1 << 0); // Add master channel
 _Result = MB_MASTER_WriteCoils(&_MBChannel, &_Data[0], 1000, 9); // Write Coils
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

57

4.1.3.7 MB_MASTER_WriteReg()

Description

Writes a single register to a slave.

Prototype

int MB_MASTER_WriteReg(MB_CHANNEL * pChannel,
 U16 Data,
 U16 Addr);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.
Addr Address in slave where to find the register to access.
Data 16-bit data to write to register.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U16 _Data;

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Result = MB_MASTER_WriteReg(&_MBChannel, _Data, 1000); // Write Register
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

58 CHAPTER 4 API functions

4.1.3.8 MB_MASTER_WriteRegs()

Description

Writes multiple registers to a slave.

Prototype

int MB_MASTER_WriteRegs(MB_CHANNEL * pChannel,
 U16 * pData,
 U16 Addr,
 U16 NumItems);

Parameters

Parameter Description

pChannel Pointer to channel configured to interface a slave.

pData
Pointer to application buffer where the values to write are
stored.

Addr Address in slave where to find the coils to access.
NumItems Number of items to write.

Return value

< 0 Error.
= 0 O.K.

Example

//
// Static declarations
//
static int _Result;
static MB_CHANNEL _MBChannel;
static U16 _aData[2];

//
// Code running in its own task
//
static void _MasterTask(void) {
 MB_MASTER_Init(); // Init master
 MB_MASTER_AddASCIIChannel(...); // Add master channel
 _Data[0] = 0x0001;
 _Data[1] = 0x1234;
 _Result = MB_MASTER_WriteRegs(&_MBChannel,&_aData[0],1000,2); // Write Registers
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

59

4.1.4 Slave specific core function

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

60 CHAPTER 4 API functions

4.1.4.1 MB_SLAVE_AddASCIIChannel()

Description

Adds a slave channel that uses the Modbus ASCII protocol via a serial connection.

Prototype

void MB_SLAVE_AddASCIIChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_UART * pConfig,
 const MB_SLAVE_API * pSlaveAPI,
 const MB_IFACE_UART_API * pIFaceAPI,
 U8 SlaveAddr,
 U8 DisableWrite,
 U32 Baudrate,
 U8 DataBits,
 U8 Parity,
 U8 StopBits,
 U8 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_UART.

pSlaveAPI
Pointer to element of MB_SLAVE_API used to read/write
from/to target.

pIFaceAPI
Pointer to element of MB_IFACE_UART_API used to read/write
from/to interface.

SlaveAddr Slave addr. to listen on.
DisableWrite Disable write access on this channel.
Baudrate Desired baudrate to configure.
DataBits Number of data bits used in UART protocol.
Parity Parity used in UART protocol.
StopBits Number of stop bits used in UART protocol.
Port UART port number used by this channel.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_UART _MBConfig;
static const MB_IFACE_UART_API _IFaceAPI = {
 _SendByte, _Init, _DeInit, NULL, NULL, NULL, NULL, NULL, NULL
};
static const MB_SLAVE_API _SlaveAPI = {
 _WriteCoil, _ReadCoil, _ReadDI, _WriteReg, _ReadHR, _ReadIR
};

//
// Code running in main task
//
void MainTask(void) {
 MB_SLAVE_Init(); // Init slave
 MB_SLAVE_AddASCIIChannel(&_MBChannel, &_MBConfig, &_SlaveAPI, &_IFaceAPI, 1, 0,
 38400, 8, 0, 1, 0); // Add slave channel
 OS_CREATETASK(...); // Start slave task
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

61

4.1.4.2 MB_SLAVE_AddIPChannel()

Description

Adds a slave channel that uses the Modbus/TCP or Modbus/UDP protocol via IP.

Prototype

void MB_SLAVE_AddIPChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_IP * pConfig,
 const MB_SLAVE_API * pSlaveAPI,
 const MB_IFACE_IP_API * pIFaceAPI,
 U8 SlaveAddr,
 U8 DisableWrite,
 U32 IPAddr,
 U16 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_IP.

pSlaveAPI
Pointer to element of MB_SLAVE_API used to read/write
from/to target.

pIFaceAPI
Pointer to element of MB_IFACE_IP_API used to read/write
from/to interface.

SlaveAddr Slave addr. to listen on.
DisableWrite Disable write access on this channel.

IPAddr
Filter addr. If set, only connections on this addr. should be
accepted.

Port Port that accepts connections for this channel.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_IP _MBConfig;
static const MB_IFACE_IP_API _IFaceAPI = {
 NULL, _Init, _DeInit, _Send, _Recv, _Connect, _Disconnect, NULL, NULL
};
static const MB_SLAVE_API _SlaveAPI = {
 _WriteCoil, _ReadCoil, _ReadDI, _WriteReg, _ReadHR, _ReadIR
};

//
// Code running in main task
//
void MainTask(void) {
 MB_SLAVE_Init(); // Init slave
 OS_CREATETASK(...); // Start slave task
 MB_SLAVE_AddIPChannel(&_MBChannel, &_MBConfig, &_SlaveAPI, &_IFaceAPI, 1, 0,
 0, 502); // Add slave channel
 OS_CREATETASK(...); // Start polling task for this channel
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

62 CHAPTER 4 API functions

4.1.4.3 MB_SLAVE_AddRTUChannel()

Description

Adds a slave channel that uses the Modbus RTU protocol via a serial connection.

Prototype

void MB_SLAVE_AddRTUChannel(MB_CHANNEL * pChannel,
 MB_IFACE_CONFIG_UART * pConfig,
 const MB_SLAVE_API * pSlaveAPI,
 const MB_IFACE_UART_API * pIFaceAPI,
 U8 SlaveAddr,
 U8 DisableWrite,
 U32 Baudrate,
 U8 DataBits,
 U8 Parity,
 U8 StopBits,
 U8 Port);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL that is added to linked list.
pConfig Pointer to element of MB_IFACE_CONFIG_UART.

pSlaveAPI
Pointer to element of MB_SLAVE_API used to read/write
from/to target.

pIFaceAPI
Pointer to element of MB_IFACE_UART_API used to read/write
from/to interface.

SlaveAddr Slave addr. to listen on.
DisableWrite Disable write access on this channel.
Baudrate Desired baudrate to configure.
DataBits Number of data bits used in UART protocol.
Parity Parity used in UART protocol.
StopBits Number of stop bits used in UART protocol.
Port UART port number used by this channel.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_UART _MBConfig;
static const MB_IFACE_UART_API _IFaceAPI = {
 _SendByte, _Init, _DeInit, NULL, NULL, NULL, NULL, _InitTimer, _DeInitTimer
};
static const MB_SLAVE_API _SlaveAPI = {
 _WriteCoil, _ReadCoil, _ReadDI, _WriteReg, _ReadHR, _ReadIR
};

//
// Code running in main task
//
void MainTask(void) {
 MB_SLAVE_Init(); // Init slave
 MB_SLAVE_AddRTUChannel(&_MBChannel, &_MBConfig, &_SlaveAPI, &_IFaceAPI, 1, 0,
 38400, 8, 0, 1, 0); // Add slave channel
 OS_CREATETASK(...); // Start slave task}
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

63

4.1.4.4 MB_SLAVE_ConfigIgnoreSlaveAddr()

Description

Function that configures if the slave address is ignored.

Prototype

void MB_SLAVE_ConfigIgnoreSlaveAddr(MB_CHANNEL * pChannel,
 U8 OnOff);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.

OnOff

Ignore the slave addr. and therefore allow slave addr. 0 to
be used as a regular addr.
• 0: Slave addr. 0 is treated as broadcast addr.
• 1: Slave addr. is not checked, 0 is treated as a regular

addr.

Additional information

For Modbus/TCP the standard expects a slave addr. of 0xFF to be used. However it is
recommended to also accept the broadcast address 0 as it is an unicast connection for
TCP. The same does not necessarily apply for UDP connections as well as they can actually
be used for broadcast messages. As IP channels are basically unique by their used ports,
the check for the slave ID can be disabled to allow a master to access a slave by simply
knowing its port.

Example

//
// Static declarations
//
static MB_CHANNEL _MBChannel;
static MB_IFACE_CONFIG_IP _MBConfig;
static const MB_IFACE_IP_API _IFaceAPI = {
 NULL, _Init, _DeInit, _Send, _Recv, _Connect, _Disconnect, NULL, NULL
};
static const MB_SLAVE_API _SlaveAPI = {
 _WriteCoil, _ReadCoil, _ReadDI, _WriteReg, _ReadHR, _ReadIR
};

//
// Code running in main task
//
void MainTask(void) {
 MB_SLAVE_Init(); // Init slave
 OS_CREATETASK(...); // Start slave task
 MB_SLAVE_AddIPChannel(&_MBChannel, &_MBConfig, &_SlaveAPI, &_IFaceAPI, 0, 0,
 0, 502); // Add slave channel with address 0.
 MB_SLAVE_ConfigIgnoreSlaveAddr(&_MBChannel, 1);
 // Allow accepting connections for address 0.
 OS_CREATETASK(...); // Start polling task for this channel
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

64 CHAPTER 4 API functions

4.1.4.5 MB_SLAVE_DeInit()

Description

De-Initializes the slave channels, resources and removes the slave endpoint from the global
endpoint list.

Prototype

void MB_SLAVE_DeInit(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

65

4.1.4.6 MB_SLAVE_Exec()

Description

Loops once over all slave channels and processes data when the channel has been signalled
ready.

Prototype

void MB_SLAVE_Exec(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

66 CHAPTER 4 API functions

4.1.4.7 MB_SLAVE_Init()

Description

Initializes the slave resources and adds the slave endpoint to the global endpoint list.

Prototype

void MB_SLAVE_Init(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

67

4.1.4.8 MB_SLAVE_PollChannel()

Description

Function that has to be periodically polled for each slave channel that requires requesting
data instead of getting it via interrupt.

Prototype

int MB_SLAVE_PollChannel(MB_CHANNEL * pChannel);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.

Return value

< 0 Error.
= 0 No complete Modbus message signalled.
= 1 Complete Modbus message signalled.

Example

//
// Polling a slave channel in a task, allowing it to sleep when possible.
//
static void _PollSlaveChannelTask(void *pChannel) {
 while (1) {
 MB_SLAVE_PollChannel((MB_CHANNEL*)pChannel);
 }
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

68 CHAPTER 4 API functions

4.1.4.9 MB_SLAVE_SetCustomFunctionCodeHandler()

Description

Sets a handler for custom function codes.

Prototype

void MB_SLAVE_SetCustomFunctionCodeHandler
 (MB_CHANNEL * pChannel,
 MB_pfCustomFunctionCodeHandler pf);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.
pf Callback function to execute.

Additional information

The callback is of type

int (*pf)(struct MB_CHANNEL * pChannel,
 MB_CUSTOM_FUNC_CODE_PARA * pPara);

with the following parameters.

Parameter Description

pChannel Context of type MB_CHANNEL provided to the callback.

pPara
Structure of parameters of type MB_CUSTOM_FUNC_CODE_PARA
provided to the callback.

Example

/***
*
* _HandleCustomFunctionCode()
*
* Function description
* Handles custom function codes or overwrites stack internal handling.
*
* Parameters
* pChannel: Pointer to element of type MB_CHANNEL.
* pPara : Input/output parameter structure.
*
* Return value
* >= 0 : O.K., function code handled. Number of bytes to send back.
* < 0 : Error, use official Modbus error codes
* like MB_ERR_ILLEGAL_DATA_VAL .
* == MB_ERR_FUNC_CODE: Function code not handled. Try stack internal handling.
*
* Additional information
* Function code 0x08 (Diagnostic), subfunction code 0x00 0x00 (Return Query Data) :
* This very basic diagnostic subfunction echoes back a two byte
* value that has just been received.
* Function code 0x30 :
* The payload of the message is expected to be a printable
* string with termination. As the string itself is properly
* terminated no length field is necessary.
* One U8 is expected as return code that lets the master
* know if the string has been printed or not. In this sample
* this is decided by checking if MB_DEBUG is active or not.
*/
static int _HandleCustomFunctionCode(MB_CHANNEL *pChannel,
 MB_CUSTOM_FUNC_CODE_PARA *pPara) {
 U32 SubCode;
 int r;

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

69

 MB_USE_PARA(pChannel);
 r = MB_ERR_FUNC_CODE; // Assume that we can not handle this function code.

 //
 // Handle custom function codes.
 //
 switch (pPara->Function) {
 case 0x08:
 SubCode = MB_LoadU16BE((const U8*)pPara->pData);
 switch (SubCode) {
 case 0x0000:
 r = 4; // Send back Subfunction Hi/Lo & Data Hi/Lo fields. Data is echoed
 // back as it is in the input/output buffer.
 break;
 }
 break;
 case 0x30:
 //
 // Output the string that has been sent.
 //
 MB_Log((const char*)pPara->pData);
 //
 // Store MB_DEBUG level as 1 byte answer.
 // Up to pPara->BufferSize bytes might be stored.
 //
 *pPara->pData = MB_DEBUG;
 r = 1; // Tell the stack that we are sending back 1 byte data.
 break;
 }
 return r;
}

/***
*
* MainTask()
*
* Function description
* Main task executed by the RTOS to create further resources and
* running the main application.
*/
void MainTask(void) {
 ...
 //
 // Start Modbus slave using Modbus/TCP protocol.
 //
 MB_SLAVE_Init();
 MB_SLAVE_AddIPChannel(&_MBChannel, ...; // Add a slave channel.
 //
 // Add a custom function code handler for this channel.
 //
 MB_SLAVE_SetCustomFunctionCodeHandler(&_MBChannel, _HandleCustomFunctionCode);
 ...
}

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

70 CHAPTER 4 API functions

4.1.4.10 MB_SLAVE_Task()

Description

Wrapper function that runs MB_SLAVE_Exec() in a task.

Prototype

void MB_SLAVE_Task(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

71

4.1.5 Other core functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

72 CHAPTER 4 API functions

4.1.5.1 MB_ConfigTimerFreq()

Description

This function allows setting a user defined timer frequency instead of the default 1kHz
frequency.

Prototype

void MB_ConfigTimerFreq(U32 Freq);

Parameters

Parameter Description

Freq
Timer frequency that shall be used for all all channels to cal-
culate the RTU timeout.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

73

4.1.5.2 MB_OnRx()

Description

Function called by byte oriented transmission channels that receive an interrupt for new
data received.

Prototype

void MB_OnRx(MB_CHANNEL * pChannel,
 U8 Data);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.
Data Received character.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

74 CHAPTER 4 API functions

4.1.5.3 MB_OnTx()

Description

Function called by byte oriented transmission channels once a Tx complete interrupt has
been received to send the next byte or report back that there is no more to send.

Prototype

int MB_OnTx(MB_CHANNEL * pChannel);

Parameters

Parameter Description

pChannel Pointer to element of MB_CHANNEL.

Return value

< 0 Error.
= 0 More data sent.
= 1 No more data to send.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

75

4.1.5.4 MB_TimerTick()

Description

Function called on each timer interrupt to manage internal RTU timeout with serial channels
using the RTU protocol. Needs to be called by the user application each millisecond.

Prototype

void MB_TimerTick(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

76 CHAPTER 4 API functions

4.1.6 Helper functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

77

4.1.6.1 MB_LoadU16BE()

Description

Loads an U16 value from a big endian memory location.

Prototype

U32 MB_LoadU16BE(const U8 * pData);

Parameters

Parameter Description

pData Pointer to data location.

Return value

Data in target endianess.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

78 CHAPTER 4 API functions

4.1.6.2 MB_StoreU16BE()

Description

Stores an U16 value to a big endian memory location.

Prototype

void MB_StoreU16BE(U8 * pData,
 U16 v);

Parameters

Parameter Description

pData Pointer to data location.
v Value to store.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

79

4.2 emModbus data structures

4.2.1 Interface configuration structures

4.2.1.1 Structure MB_IFACE_CONFIG_IP

Description

This structure holds configurations for IP communications.

Prototype

typedef struct {
 MB_SOCKET Sock;
 MB_SOCKET ListenSock;
 U32 IPAddr;
 U16 Port;
 U16 xID;
} MB_IFACE_CONFIG_API;

Member Description

Sock Socket used for send and receive.
ListenSock Socket used by TCP for listen() and accept(). Not needed for UDP.

IPAddr
Master: Addr. to connect to.
Slave: Filter address. If set only connections on this address should
be accepted.

Port
Master: Port to connect to.
Slave: Port that accepts connections for this channel.

xID
Master: Transaction ID that is incremented for each send.
Slave: Ignored.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

80 CHAPTER 4 emModbus data structures

4.2.1.2 Structure MB_IFACE_CONFIG_UART

Description

This structure holds configurations for UART communications.

Prototype

typedef struct {
 U32 Cnt;
 U32 CntReload;
 U32 Baudrate;
 U8 DataBits;
 U8 Parity;
 U8 StopBits;
 U8 Port;
} MB_IFACE_CONFIG_UART;

Member Description

Cnt RTU timeout countdown.
CntReload RTU countdown reload value.
Baudrate Baudrate to use.
DataBits Number of data bits.
Parity Parity as interpreted by application.
StopBits Number of stop bits.
Port Interface index.

Additional information

MB_IFACE_CONFIG is of type MB_IFACE_CONFIG_UART .

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

81

4.2.2 Interface function structures

4.2.2.1 Structure MB_IFACE_IP_API

Description

This structure holds function pointers for IP communications.

Prototype

typedef struct {
 void (*pfSendByte) (MB_IFACE_CONFIG_UART *pConfig,
 U8 Data);
 int (*pfInit) (MB_IFACE_CONFIG_UART *pConfig);
 void (*pfDeInit) (MB_IFACE_CONFIG_UART *pConfig);
 int (*pfSend) (MB_IFACE_CONFIG_UART *pConfig,
 const U8 *pData,
 U32 NumBytes);
 int (*pfRecv) (MB_IFACE_CONFIG_UART *pConfig,
 U8 *pData,
 U32 NumBytes,
 U32 Timeout);
 int (*pfConnect) (MB_IFACE_CONFIG_UART *pConfig,
 U32 Timeout);
 void (*pfDisconnect) (MB_IFACE_CONFIG_UART *pConfig);
 void (*pfInitTimer) (U32 MaxFreq);
 void (*pfDeInitTimer) (void);
} MB_IFACE_IP_API;

Member Description

pfSendByte
Send first byte. Every next byte will be sent via MB_OnTx() from in-
terrupt.
NULL if stream oriented interface, as pfSend gets used instead.

pfInit
Init IP and get listen socket and bring it in listen state if needed.
NULL if not needed.

pfDeInit
Close listen socket and de-init IP.
NULL if not needed.

pfSend
Send data for stream oriented interface.
NULL if byte oriented interface is used, as pfSendByte gets used in-
stead.

pfRecv Request more data.

pfConnect
Master: Connect to slave.
Slave: Accept connection if needed.
NULL if not needed.

pfDisconnect
Master: Disconnect from slave.
Slave: Close connection if needed.
NULL if not needed.

pfInitTimer NULL.
pfDeInitTimer NULL.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

82 CHAPTER 4 emModbus data structures

4.2.2.2 Structure MB_IFACE_UART_API

Description

This structure holds function pointers for UART communications.

Prototype

typedef struct {
 void (*pfSendByte) (MB_IFACE_CONFIG_UART *pConfig,
 U8 Data);
 int (*pfInit) (MB_IFACE_CONFIG_UART *pConfig);
 void (*pfDeInit) (MB_IFACE_CONFIG_UART *pConfig);
 int (*pfSend) (MB_IFACE_CONFIG_UART *pConfig,
 const U8 *pData,
 U32 NumBytes);
 int (*pfRecv) (MB_IFACE_CONFIG_UART *pConfig,
 U8 *pData,
 U32 NumBytes,
 U32 Timeout);
 int (*pfConnect) (MB_IFACE_CONFIG_UART *pConfig,
 U32 Timeout);
 void (*pfDisconnect) (MB_IFACE_CONFIG_UART *pConfig);
 void (*pfInitTimer) (U32 MaxFreq);
 void (*pfDeInitTimer) (void);
} MB_IFACE_UART_API;

Member Description

pfSendByte
Send first byte. Every next byte will be sent via MB_OnTx() from in-
terrupt.
NULL if stream oriented interface, as pfSend gets used instead.

pfInit
Init hardware.
NULL if not needed.

pfDeInit
De-Init hardware.
NULL if not needed.

pfSend
Send data for stream oriented interface.
NULL if byte oriented interface, as pfSendByte gets used instead.

pfRecv
Typically data is received via MB_OnRx() from interrupt.
NULL if not using polling mode.

pfConnect NULL.
pfDisconnect NULL.

pfInitTimer
Typically needed for RTU interfaces only. Initializes a timer needed for
RTU timeout.
NULL if not needed.

pfDeInitTimer
De-initialize RTU timer.
NULL if not needed.

Additional information

MB_IFACE_API is of type MB_IFACE_UART_API.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

83

4.2.3 Slave structures

4.2.3.1 Structure MB_SLAVE_API

Description

This structure holds function pointers used by slaves.

Prototype

typedef struct {
 int (*pfWriteCoil) (U16 Addr, char OnOff);
 int (*pfReadCoil) (U16 Addr);
 int (*pfReadDI) (U16 Addr);
 int (*pfWriteReg) (U16 Addr, U16 Val);
 int (*pfReadHR) (U16 Addr, U16 *pVal);
 int (*pfReadIR) (U16 Addr, U16 *pVal);
} MB_SLAVE_API;

Member Description

pfReadCoil Read coil status.
pfReadDI Read discrete input registers.
pfReadHR Read holding register.
pfReadIR Read input register.
pfWriteCoil Write coil.
pfWriteReg Write register.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

84 CHAPTER 4 emModbus data structures

4.2.3.2 Structure MB_CUSTOM_FUNC_CODE_PARA

Description

This structure holds function pointers used by slaves.

Prototype

typedef struct {
 U8 *pData;
 U32 DataLen;
 U32 BufferSize;
 U8 SlaveAddr;
 U8 Function;
} MB_CUSTOM_FUNC_CODE_PARA;

Member Description

pData Beginning of input/output buffer.
DataLen Data length received.
BufferSize Max. buffer size that can be used for an answer.
SlaveAddr Slave addr. for which the message has been received.
Function Function code received.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

85

4.3 Error codes
The following table contains a list of emModbus error codes.

Generally, success is indicated by 0 and definite errors are indicated by negative numbers.

Symbolic name Value Description

Slave errors

MB_ERR_ILLEGAL_FUNC -1

The function code received in the query is
an illegal function code for the slave. This
may be because the function code was
not implemented in the selected device. It
could also indicate that the slave is in the
wrong state to process a request of this
type.

MB_ERR_ILLEGAL_DATA_ADDR -2

The data address received in the query
is an invalid address for the slave. More
specifically, the combination of reference
number and transfer length is invalid.

MB_ERR_ILLEGAL_DATA_VAL -3

A value contained in the query data field
is an invalid value for the slave. This indi-
cates a fault in the structure of a request,
such as an incorrect implied length.

MB_ERR_SLAVE_FAIL -4
An unrecoverable error occurred while the
slave was attempting to perform the re-
quested action.

MB_ERR_ACK -5

The slave has accepted the request and is
processing it, but a long duration of time
will be required to do so. This response is
returned to prevent a timeout error from
occurring in the master, which can then
poll for process completion.

MB_ERR_SLAVE_BUSY -6
The slave is engaged in processing a long-
duration command. The master should re-
transmit the message later.

MB_ERR_NACK -7
The requested function cannot be per-
formed. Issue poll to obtain detailed device
dependent error information.

MB_ERR_MEM_PARITY_ERR -8

The slave attempted to perform the query,
but detected a parity error in the memory.
The master can retry the request, but ser-
vice may be required on the slave device.

Stack internal errors

MB_ERR_MISC -20 Unspecified error.
MB_ERR_CONNECT -21 Error while connecting.
MB_ERR_CONNECT_TIMEOUT -22 Timeout while connecting.
MB_ERR_DISCONNECT -23 Interface signaled disconnect.
MB_ERR_TIMEOUT -24 No answer received on request.

MB_ERR_CHECKSUM -25 Received message did not pass LRC/CRC
check.

MB_ERR_PARAM -26 Parameter error in API call.

MB_ERR_SLAVE_ADDR -27 Received valid response with wrong slave
address.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

86 CHAPTER 4 Error codes

Symbolic name Value Description

MB_ERR_FUNC_CODE -28 Received valid response with wrong func-
tion code.

MB_ERR_REF_NO -29 Received valid response with wrong refer-
ence number.

MB_ERR_NUM_ITEMS -30 Received valid response with more or less
items than requested.

MB_ERR_DATA -31 Received valid response for a single write
with different data than written.

MB_ERR_TRIAL_LIMIT -32

Trial limit exceeded. When using trial li-
braries, this error occurs after 12 hours of
run time. Except from this, the trial library
is fully functional and includes all features
of emModbus.

MB_ERR_WOULD_BLOCK -33 TCP non-blocking recv() would block situa-
tion.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

87

Chapter 5

Configuring emModbus

emModbus can be used without changing any of the compile-time flags. All compile-time con-
figuration flags are preconfigured with valid values, which match the requirements of most ap-
plications.

The default configuration of emModbus can be changed via compile-time flags which can be
added to MB_Conf.h. MB_Conf.h is the main configuration file for the emModbus stack.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

88 CHAPTER 5 Compile-time configuration

5.1 Compile-time configuration
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration file.
These switches can enable or disable a certain functionality or behavior. Switches are the
simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the code in place of a numerical constant. A typical
example is the configuration of the sector size of a storage medium.

Function replacements "F"

Macros can be treated like regular functions although certain limitations apply, as a macro
is still put into the code as simple text replacement. Function replacements are mainly used
to add specific functionality to a module which is highly hardware dependent. This type of
macro is always declared using brackets (and optional parameters).

5.1.1 Compile-time configuration switches

Type Symbolic name Default Description

System configuration macros

B MB_IS_BIGENDIAN 0 Macro to define if a big endian target
is used.

B MB_ALLOW_STREAM_H-
DR_UNDERFLOW

0

Macro to allow to receive the head-
er on a streaming interface (Mod-
bus/TCP or Modbus/UDP) in multiple
recv() calls. Typically this should nev-
er happen and if it happens this typ-
ically means that communication got
out of sync.

B MB_DISCONNEC-
T_ON_MSG_TOO_BIG

1

Macro to define if we discon-
nect if a message bigger than
MB_MAX_MESSAGE_SIZE is received
(determined by header length field).

Debug macros

N MB_DEBUG 0

Macro to define the debug level of
the emModbus build. Refer to Debug
level on page 89 for a description
of the different debug level.

Optimization macros

F MB_MEMCMP
memcmp (C-
routine in stan-
dard C-library)

Macro to define an optimized mem-
cmp routine to speed up the stack.
An optimized memcmp routine is typ-
ically implemented in assembly lan-
guage.

F MB_MEMCPY
memcpy (C-
routine in stan-
dard C-library)

Macro to define an optimized mem-
cpy routine to speed up the stack. An
optimized memcpy routine is typically
implemented in assembly language.
Optimized versions for IAR and GCC
compilers are supplied.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

89

Type Symbolic name Default Description

F MB_MEMMOVE
memmove (C-
routine in stan-
dard C-library)

Macro to define an optimized mem-
move routine to speed up the stack.
An optimized memmove routine is
typically implemented in assembly
language.

F MB_MEMSET
memset (C-
routine in stan-
dard C-library)

Macro to define an optimized mem-
set routine to speed up the stack. An
optimized memset routine is typically
implemented in assembly language.

5.1.2 Debug level
emModbus can be configured to display debug information at higher debug levels to locate
a problem (Error) or potential problem. To display information, emModbus uses the logging
routines (see chapter Debugging on page 91). These routines can be blank, they are
not required for the functionality of emModbus. In a target system, they are typically not
required in a release (production) build, since a production build typically uses a lower
debug level.

If (IP_DEBUG = 0): used for release builds. Includes no debug options.
If (IP_DEBUG = 1): MP_PANIC() is mapped to MP_Panic().
If (IP_DEBUG ≥ 2): MP_PANIC() is mapped to MP_Panic() and logging support is activated.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

90 CHAPTER 5 Compile-time configuration

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

91

Chapter 6

Debugging

emModbus comes with debugging options including optional warning and log outputs.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

92 CHAPTER 6 Message output

6.1 Message output
The debug builds of emModbus include a debug system which helps to analyze the correct
implementation of the stack in your application. All modules can output logging and warning
messages via terminal I/O.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

93

6.1.1 Debug API functions

Function Description

I/O functions

MB_Log()
This function is called by the stack in de-
bug builds with log output.

MB_Panic()
This function is called if the stack encoun-
ters a critical situation.

MB_Warn()
This function is called by the stack in de-
bug builds with warning output.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

94 CHAPTER 6 Message output

6.1.1.1 MB_Log()

Description

This function is called by the stack in debug builds with log output. In a release build, this
function may not be linked in.

Prototype

void MB_Log(const char * s);

Parameters

Parameter Description

s String to output.

Additional information

Interrupts and task switches: printf() has a re-entrance problem on a lot of systems if
interrupts are not disabled. Strings to output would be scrambled if during an output from a
task an output from an interrupt would take place. In order to avoid this problem, interrupts
are disabled.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

95

6.1.1.2 MB_Panic()

Description

This function is called if the stack encounters a critical situation. In a release build, this
function may not be linked in.

Prototype

void MB_Panic(const char * s);

Parameters

Parameter Description

s String to output.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

96 CHAPTER 6 Message output

6.1.1.3 MB_Warn()

Description

This function is called by the stack in debug builds with warning output. In a release build,
this function may not be linked in.

Prototype

void MB_Warn(const char * s);

Parameters

Parameter Description

s String to output.

Additional information

Interrupts and task switches: printf() has a re-entrance problem on a lot of systems if
interrupts are not disabled. Strings to output would be scrambled if during an output from a
task an output from an interrupt would take place. In order to avoid this problem, interrupts
are disabled.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

97

6.2 Using a network sniffer to analyse Ethernet
communication problems

Using a network sniffer to analyze your local Ethernet traffic may give you a deeper under-
standing of the data that is being sent in your network. For this purpose you can use several
network sniffers. Some of them are available for free such as Wireshark. An example of a
network sniff using Wireshark is shown in the screenshot below:

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

98 CHAPTER 6 Testing emModbus applications

6.3 Testing emModbus applications
We recommend testing emModbus devices by using their respective counterparts, e.g. us-
ing a emModbus/TCP master to test a emModbus/TCP slave and vice versa. Alternatively,
devices can also be tested with a desktop computer running an appropriate Modbus appli-
cation.

To solely test emModbus on target hardware, we recommend building a corresponding
project for the specific application. For example, the application contained in OS_IP_M-
B_SlaveTCP.c, can be tested using a project for the application contained in OS_IP_M-
B_MasterTCP.c. Configuration of some parameters (e.g. IP address) is required before
compiling the project and downloading the output into a second target. When connected to
the same network, both devices should then start communication with each other.

To test emModbus using a desktop computer, an appropriate software package is required.
The shipment contains Windows applications for Modbus master and slave devices using
Modbus/TCP, which can be used to test both devices via that connection. In addition, sev-
eral vendors offer Modbus testing applications for Microsoft Windows and other operating
systems, many of which are free or at least free to evaluate for a limited time. We rec-
ommend “Modbus Poll” for testing emModbus slave functionalities and “Modbus Slave” for
testing emModbus master functionalities. Both applications can be downloaded from http://
www.modbustools.com.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

http://www.modbustools.com
http://www.modbustools.com

99

Chapter 7

OS Integration

emModbus is designed to be used in a multitasking environment. The interface to the operating
system is encapsulated in a single file, the MB/OS interface. For embOS, all functions required
for this MB/OS interface are implemented in a single file which comes with emModbus.

This chapter provides descriptions of the functions required to fully support emModbus in mul-
titasking environments.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

100 CHAPTER 7 General information

7.1 General information
All OS interface functions for embOS are implemented in MB_X_embOS.c, which is located
in the Shared folder of the emModbus stack.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

101

7.2 OS layer API functions
Function Description

General functions

MB_OS_DeInitMaster()
De-Initialize (remove) all objects required for task
syncronisation of the master.

MB_OS_DeInitSlave()
De-Initialize (remove) all objects required for task
synchronisation and signalling of the slave.

MB_OS_DisableInterrupt() Disables interrupts before critical operations.
MB_OS_EnableInterrupt() Enables interrupts after critical operations.
MB_OS_GetTime() Return the current system time in ms.

MB_OS_InitMaster()
Initialize (create) all objects required for task syn-
chronisation of the master.

MB_OS_InitSlave()
Initialize (create) all objects required for task syn-
chronisation and signalling of the slave.

Synchronization functions

MB_OS_SignalItem()
Sets an object to signaled state, or resumes tasks
which are waiting at the event object.

MB_OS_SignalNetEvent()
Wakes the MB_SLAVE_Task() waiting for a NET-
event or timeout in the function MB_OS_Wait-
NetEvent().

MB_OS_WaitItemTimed() Suspends a task which needs to wait for an object.

MB_OS_WaitNetEvent()
Blocks until the timeout expires or a NET-event oc-
curs, meaning MB_SignalNetEvent() is called from
an ISR.

7.2.1 General functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

102 CHAPTER 7 OS layer API functions

7.2.1.1 MB_OS_DeInitMaster()

Description

De-Initialize (remove) all objects required for task syncronisation of the master. If the
entire stack executes from a single task, no functionality is required here.

Prototype

void MB_OS_DeInitMaster(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

103

7.2.1.2 MB_OS_DeInitSlave()

Description

De-Initialize (remove) all objects required for task synchronisation and signalling of the
slave. If the entire stack executes from a single task, no functionality is required here.

Prototype

void MB_OS_DeInitSlave(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

104 CHAPTER 7 OS layer API functions

7.2.1.3 MB_OS_DisableInterrupt()

Description

Disables interrupts before critical operations.

Prototype

void MB_OS_DisableInterrupt(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

105

7.2.1.4 MB_OS_EnableInterrupt()

Description

Enables interrupts after critical operations.

Prototype

void MB_OS_EnableInterrupt(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

106 CHAPTER 7 OS layer API functions

7.2.1.5 MB_OS_GetTime()

Description

Return the current system time in ms. The value will wrap around after approximately 49.7
days. This is taken into account by the stack.

Prototype

U32 MB_OS_GetTime(void);

Return value

System time in ms.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

107

7.2.1.6 MB_OS_InitMaster()

Description

Initialize (create) all objects required for task synchronisation of the master. This is one
semaphore for protection of critical code, which may not be executed from multiple tasks
at the same time, and a hook in case a task currently executing Modbus master API is
terminated.

Prototype

void MB_OS_InitMaster(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

108 CHAPTER 7 OS layer API functions

7.2.1.7 MB_OS_InitSlave()

Description

Initialize (create) all objects required for task synchronisation and signalling of the slave.
This is one semaphore for protection of critical code which may not be executed from
multiple task at the same time.

Prototype

void MB_OS_InitSlave(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

109

7.2.2 Synchronization functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

110 CHAPTER 7 OS layer API functions

7.2.2.1 MB_OS_SignalItem()

Description

Sets an object to signaled state, or resumes tasks which are waiting at the event object.

Prototype

void MB_OS_SignalItem(void * pWaitItem);

Parameters

Parameter Description

pWaitItem Pointer to item a task is waiting for.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

111

7.2.2.2 MB_OS_SignalNetEvent()

Description

Wakes the MB_SLAVE_Task() waiting for a NET-event or timeout in the function
MB_OS_WaitNetEvent(). If the entire stack executes from a single task, no functionality
is required here.

Prototype

void MB_OS_SignalNetEvent(void);

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

112 CHAPTER 7 OS layer API functions

7.2.2.3 MB_OS_WaitItemTimed()

Description

Suspends a task which needs to wait for an object. This object is identified by a pointer to
it and can be of any type, e.g. channel.

Prototype

void MB_OS_WaitItemTimed(void * pWaitItem,
 unsigned Timeout);

Parameters

Parameter Description

pWaitItem
Pointer to item a task shall wait for until signalled or timeout
occurs.

Timeout Timeout [ms] to wait for item to be signalled.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

113

7.2.2.4 MB_OS_WaitNetEvent()

Description

Blocks until the timeout expires or a NET-event occurs, meaning MB_SignalNetEvent()
is called from an ISR. If the entire stack executes from a single task, no functionality is
required here. Called from MB_SLAVE_Task() only.

Prototype

void MB_OS_WaitNetEvent(unsigned ms);

Parameters

Parameter Description

ms Time to wait for a NET-event to occur in ms. 0 for infinite.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

114 CHAPTER 7 OS layer API functions

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

115

Chapter 8

Resource usage

This chapter covers the resource usage of emModbus. It contains information about the memory
requirements in typical systems, which can be used to obtain sufficient estimates for most target
systems.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

116 CHAPTER 8 Memory footprint

8.1 Memory footprint
emModbus is designed to fit many kinds of embedded design requirements. Some features
might be excluded from a build to get a minimal system. Note that the values are only
valid for the given configurations.

8.1.1 ARM7 system
The following table shows the hardware and the toolchain details of the project:

Detail Description

CPU ARM7
Tool chain IAR Embedded Workbench for ARM V6.30.6
Model ARM7, Thumb instructions; interwork;
Compiler options Highest size optimization;

8.1.1.1 ROM usage
The following table shows the ROM requirement of emModbus:

Description ROM

master using ASCII approx. 1.5 Kbytes
master using TCP approx. 0.9 Kbytes
master using RTU approx. 2.1 Kbytes
slave using ASCII approx. 2.0 Kbytes
slave using TCP approx. 1.6 Kbytes
slave using RTU approx. 2.6 Kbytes

8.1.1.2 RAM usage
emModus requires approximately 30 Bytes of RAM for the stack itself and approximately
300 Bytes of RAM for each channel added.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

117

Chapter 9

Support

This chapter should help if any problem occurs, e.g. with the use of the emModbus functions,
and describes how to contact the emModbus support.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

118 CHAPTER 9 Contacting support

9.1 Contacting support
If you are a registered emModbus user and you need to contact the emModbus sup- port,
please send the following information via email to support@segger.com:
• Which emModbus do you use? (Master/Slave)
• The emModbus version.
• Your emModbus registration number.
• If you are unsure about the above information, you may also use the name of the

emModbus ZIP-file (which contains the above information).
• A detailed description of the problem.
• Optionally, a project with which we can reproduce the problem.

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

mailto:support@segger.com

119

Chapter 10

Index

A
Application Data Unit 13

C
Coil ... 15
Compiler, required compliance 18
Compile-time flags 88
Core functions 40
Cyclic Redundancy Check 13

D
Data table .. 15
Data types, primary 15
Debug functions 93
Discrete Input 15

E
Endianess .. 15

F
Frames, Modbus-compliant variants 12
Function code 13
Function replacements 88

H
Holding Register 15

I
Input Register 15

L
Log output ... 94
Longitudinal Redundancy Check 13

M
Master (device) 12
Memory requirement 116
Modbus Application Header (Modbus/TCP) . 14
Modbus Organization 12

Modbus, standard protocol 12
Modicon ... 12
Multi tasking .. 17

N
Network sniffer 97

O
OS integration functions 101

P
Port number (Modbus/TCP) 12
Protocol Data Unit (PDU) 13
Protocol ID (Modbus/TCP) 14

Q
Query .. 12

S
Schneider Electric SA 12
Slave (device) 12
Syntax, conventions used 5

T
TCP/IP stack ... 17
Transaction ID (Modbus/TCP) 14

U
Unit ID .. 13

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

120 CHAPTER 10

emModbus User Guide & Reference Manual © 2014-2018 SEGGER Microcontroller GmbH

