

Spec No.: DS86-2015-0004Effective Date: 02/03/2016

Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Description

The LTR-390UV-01 is an integrated low voltage I2C ambient light sensor (ALS) and ultraviolet light sensor (UVS) in a single miniature 2x2mm chipled lead-free surface mount package.

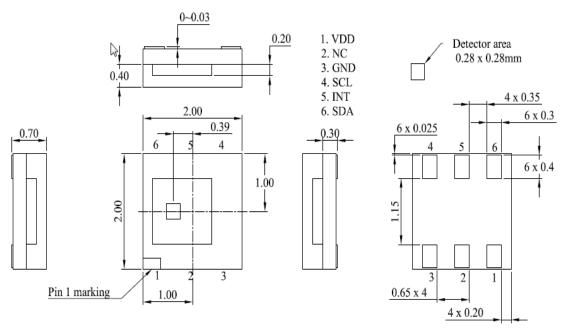
This sensor converts light intensity to a digital output signal capable of direct I2C interface. It provides a linear ALS response over a wide dynamic range, and is well suited to applications under high ambient brightness.

The sensor has a programmable interrupt with hysteresis to response to events and that removes the need to poll the sensor for a reading which improves system efficiency. This CMOS design and factory-set one time trimming capability ensure minimal sensor-to-sensor variations for ease of manufacturability to the end customers.

Application

- Identifying the UV index in ambient light helps people to effectively protect themselves from sunburns, cancer or eye damage.
- To control brightness and color of the display panel in mobile, computing, and consumer devices.

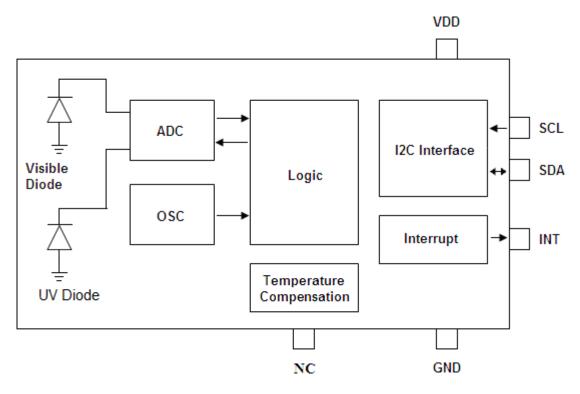
Features


- I²C interface capable of Standard mode @100kHz or Fast mode @400kHz communication; 1.8V logic compatible
- Ambient Light / Ultraviolet light (UVS) Technology in one ultra-small 2x2mm ChipLED package
- Very low power consumption with sleep mode capability
- Operating voltage ranges: 1.7V to 3.6V
- Operating temperature ranges: -40 to +85 °C
- Built-in temperature compensation circuit
- Programmable interrupt function for ALS, UVS with upper and lower thresholds
- RoHS and Halogen free compliant
- **UVS/ALS Features**
 - 13 to 20 bits effective resolution
 - Wide dynamic range of 1:18,000,000 with linear response
 - Close to human eye spectral response
 - Automatic rejection for 50Hz/60Hz lighting flicker

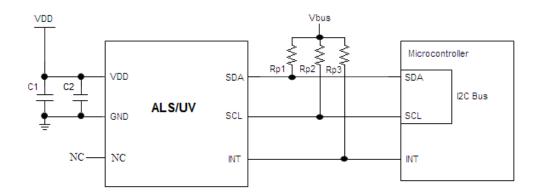
Ordering Information

Part Number	Packaging Type	Package	Quantity
LTR-390UV-01	Tape and Reel	6-pin chipled package	2500

1. Outline Dimensions



- 1. All dimensions in mm
- 2. Tolerances is +/-0.2
- 3. LTC reserve the right to to change the drawing till final datasheet release


2. Functional Block Diagram

LTR-390UV-01 contains 2 integrated photodiodes (ALS/UVS) for respective photocurrent measurements. The photodiode currents are converted to digital values by ADCs. The sensor also includes some peripheral circuits such as an internal oscillator and voltage reference.

3. Application Circuit

I/O Pins Configuration Table

Pin	I/O Type	Symbol	Description
1		VDD	Power Supply Voltage
2		NC	No connection to this pin
3		GND	Ground
4	I	SCL*	I ² C serial clock. This pin is an open drain input.
5	0	INT*	Level Interrupt Pin. This pin is an open drain output.
6	I/O	SDA*	I ² C serial data. This pin is an open drain input / output.

^{*} Note: For noisy environment, add 10pF capacitor from signal to GND for additional noise filtering.

Recommended Application Circuit Components

Component	Recommended Value
Rp1, Rp2, Rp3 [1]	1 kΩ to 10 kΩ
C1	0.1uF
C2	4.7uF

Notes:

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I2C Specifications: http://www.nxp.com/documents/user_manual/UM10204.pdf

4. Rating and Specification

4.1. Absolute Maximum Rating at Ta=25°C

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	VDD		4.0	V
Digital Voltage Range	SCL, SDA, INT	-0.5	4.0	V
Storage Temperature	T_{stg}		-45 to 95	°C
Max. Input Current	SCL,SDA,INT	-100	100	mA
Electrostatic Discharge Protection (Human Body Model JESD22-A114)	V _{НВМ}		2000	V

Note: Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

4.2. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	1.7		3.6	V
Interface signal input high	$V_{\rm I2Chigh}$	1.5		VDD	V
Interface signal input low	V _{I2Clow}	0		0.4	V
Operating Temperature	T _{ope}	-40		85	°C

4.3. Electrical Specifications (VDD = 2.8V, Ta=25°C, unless otherwise noted)

			•		<u> </u>
Parameter	Min.	Тур.	Max.	Unit	Condition
ALS Active Mode Current		110		uA	Max. duty cycle, Vdd=2.8V, Gain 3x
UVS Active Mode Current		100		uA	Max. duty cycle, Vdd=2.8V
Standby Current		1		uA	Standby / Sleep Mode
Wakeup Time from Standby		5	10	ms	From Standby to Active mode where measurement can start

4.4. Characteristics Ambient Light

Parameter	Min.	Тур.	Max.	Unit	Condition
ALS Output Resolution	13	18	20	Bit	Programmable for 13,16,17,18,19, 20 bit
Dark Level Count		0	5	count	0 Lux, T _{ope} =25°C, 18-bit range
Calibrated Lux Error In Gain Range 3	-10		10	%	White LED,5000K, T _{ope} =+25°C
ALS Accuracy	-25		25	%	Across different light sources
50/60 Hz flicker noise error	-5		5	%	

4.5. Characteristics UVS Sensor

Parameter	Min.	Тур.	Max.	Unit	Condition
UVS Output Resolution	13	18	20	Bit	Programmable for 13,16,17,18,19,20 bit
UV Count		160		count	UV LED 310nm, T _{ope} =25°C, 18-bit Gain range =18, Irradiance =70uW/cm2
UV Sensitivity		2300		Counts/UVI	Gain range = 18, 20-bit
10//	-20		20	%	Gain range = 18, 20-bit for UVI>5
UVI accuracy	-1		1	UVI	UVI<5

4.6. Typical Device Parameter

(VDD = 2.8V, Ta=25°C, Default power-up settings, unless otherwise noted)

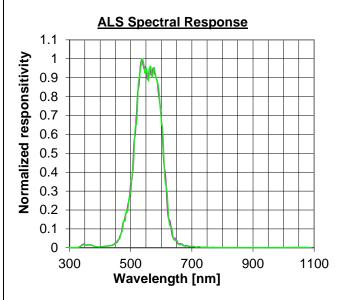


Figure 4.1 Spectral Response of ALS

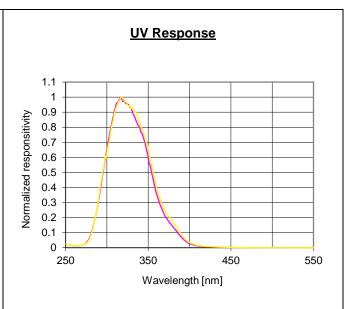


Figure 4.2 UV Spectral Response

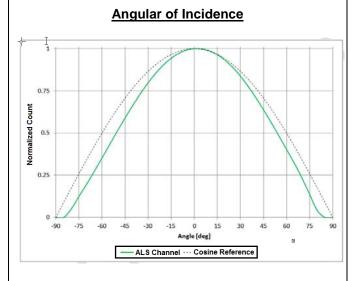
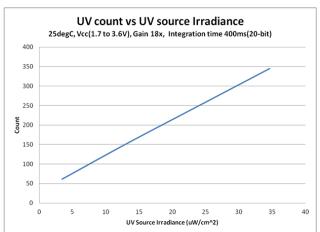
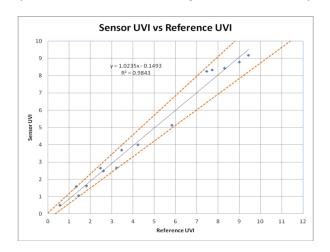


Figure 4.3 ALS Sensitivity vs. Angular of Incidence

UV Count vs Source Irradiance

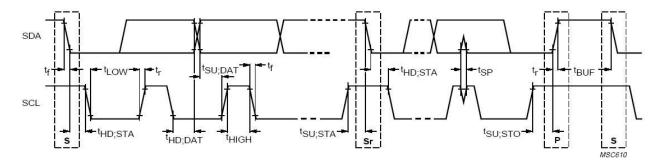



Figure 4.4 UV Count vs Source Irradiance

Count vs Gain Setting 25degC, Vcc=3V, UV Source Irradiance=34.6uW/cm^2, Integration Time=400ms(20-bit) 400 350 300 250 ### 200 150 0 2 4 6 8 10 12 14 16 18 20 Gain Setting (x number of times)

Figure 4.5 UV Count vs Gain

Sensor UVI vs Ref UVI (Gain 18x, 20-Bit, Sensitivity=2300 counts/UVI)

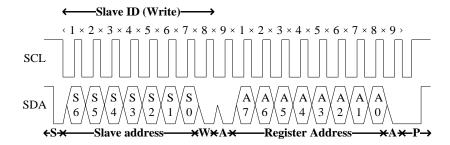

<u>Figure 4.6</u> Sensor UVI vs Reference UVI (Reference meter UVMICROLOG by sglux)

4.8. AC Electrical Characteristics

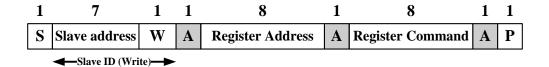
All specifications are at VBus = 1.7V, T_{ope} = 25°C, unless otherwise noted.

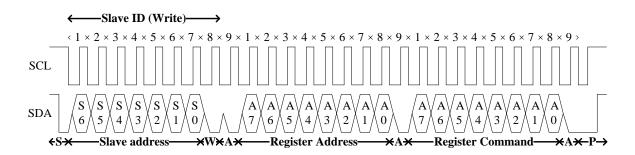
Parameter	Symbol	Standard (Min)	Fast (Min)	Unit
SCL clock frequency	$f_{\it SCL}$	100	400	KHz
Bus free time between a STOP and START condition	t_{BUF}	4.7		us
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{HD;STA}$	4		us
LOW period of the SCL clock	t_{LOW}	4.7		us
HIGH period of the SCL clock	t_{HIGH}	4		us
Set-up time for a repeated START condition	$t_{SU;STA}$	4.7		us
Set-up time for STOP condition	$t_{SU;STO}$	4		us
Rise time of both SDA and SCL signals	t_r	30	300	ns
Fall time of both SDA and SCL signals	t_f	30	300	ns
Data hold time	$t_{HD;DAT}$	0		us
Data setup time	$t_{SU;DAT}$	100	100	ns
Pulse width of spikes which must be suppressed by the input filter	t_{SP}	0	50	ns

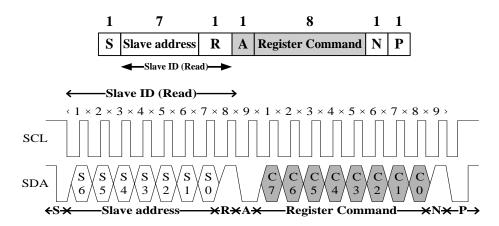
Definition of timing for I²C bus

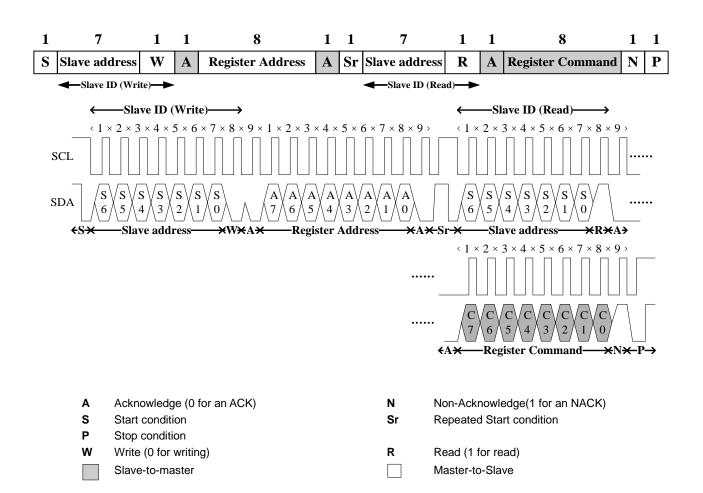


5. Principle of Operation


5.1 I2C Protocol


I. I2C Write Protocol


II. I2C Write (Block Write) Protocol



III. I2C Read Protocol

IV. I2C Read (Block Read) Protocol

V. I2C Slave Address

The device has a 7-bit slave address of 0x53. A read/write bit should be appended to the slave address by the master device to properly communicate with the device.

	I ² C Slave Address (Default)											
Command (0x53)							W/R					
Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	value			
Write	1	0	1	0	0	1	1	0	0xA6			
Read	1	0	1	0	0	1	1	1	0xA7			

6. Register Set

Address	R/W	Register Name	Description	Reset Value
0x00	R/W	MAIN_CTRL	ALS/UVS operation mode control, SW reset	0x00
0x04	R/W	ALS_UVS_MEAS_RATE	ALS/UVS measurement rate and resolution in Active Mode	0x22
0x05	R/W	ALS_UVS_GAIN	ALS/UVS analog Gain range	0x01
0x06	R	PART_ID	Part number ID and revision ID	0xB2
0x07	R	MAIN_STATUS	Power-On status, Interrupt status, Data status	0x20
0x0D	R	ALS_DATA_0	ALS ADC measurement data, LSB	0x00
0x0E	R	ALS_DATA_1	ALS ADC measurement data	0x00
0x0F	R	ALS_DATA_2	ALS ADC measurement data, MSB	0x00
0x10	R	UVS_DATA_0	UVS ADC measurement data, LSB	0x00
0x11	R	UVS_DATA_1	UVS ADC measurement data	0x00
0x12	R	UVS_DATA_2	UVS ADC measurement data, MSB	0x00
0x13 – 0x18	R	Reserved	Reserved	0x00
0x19	R/W	INT_CFG	Interrupt configuration	0x10
0x1A	R/W	INT_PST	Interrupt persist setting	0x00
0x21	R/W	ALS_UVS_THRES_UP_0	ALS/UVS interrupt upper threshold, LSB	0xFF
0x22	R/W	ALS_UVS_THRES_UP_1	ALS/UVS interrupt upper threshold, intervening bits	0xFF
0x23	R/W	ALS_UVS_THRES_UP_2	ALS/UVS interrupt upper threshold, MSB	0x0F
0x24	R/W	ALS_UVS_THRES_LOW_0	ALS/UVS interrupt lower threshold, LSB	0x00
0x25	R/W	ALS_UVS_THRES_LOW_1	ALS/UVS interrupt lower threshold, intervening bits	0x00
0x26	R/W	ALS_UVS_THRES_LOW_2	ALS/UVS interrupt lower threshold, MSB	0x00

6.1 MAIN_CTRL Register (Address: 0x00) (Read/Write)

This register controls the operation modes of UVS/ALS, which can be set to either standby or active mode. When writing to this register, it will cause a stop to any ongoing measurements ALS/UVS and start new measurement.

0x00		MAIN_CTRL (default = 0x00)									
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Reserved		Software Reset	UVS_Mode	0	ALS/UVS Enable	0				

Field	Bits	Default		Description
Reserved	7:5	000		
SW Reset	4	0	0	Software reset is NOT triggered (default)
SW IVESEL	4	Ů	1	Software reset is triggered
UVS_Mode	3	0	0	ALS Mode
	3		1	UVS Mode
Reserved	2	0		Reserved
ALS/UVS	4	0	0	Light sensor (ALS/ or UVS) standby
Enable	ı	0	1	Light sensor (ALS/ or UVS) active
Reserved	0	0	0	Write as '0'

6.2 ALS_UVS_MEAS_RATE Register (Address: 0x04) (Read/Write)

This register controls ALS/UVS measurement resolution, Gain setting and measurement rate. When the measurement rate is programmed to be faster than possible for the programmed ADC measurement, the rate will be lowered than programmed (maximum speed).

0x04		ALS_UVS_MEAS_RATE (default = 0x22)										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	0	ALS/UVS Resolution			0	ALS/UVS	S Measureme	ent Rate				

Field	Bits	Default		Description
Reserved	7	0		
			000	20 Bit, Conversion time = 400ms
			001	19 Bit, Conversion time = 200ms
		010	010	18 Bit, Conversion time = 100ms(default)
ALS/UVS Resolution	6:4		011	17 Bit, Conversion time = 50ms
resolution			100	16 Bit, Conversion time = 25ms
			101	13 Bit, Conversion time = 12.5ms
			110/111	Reserved
Reserved	3	0		Reserved
			000	25ms
			001	50ms
ALS/UVS			010	100ms (default)
Measurement	2:0	010	011	200ms
Rate			100	500ms
			101	1000ms
			110/111	2000ms

6.3 ALS_UVS_GAIN (Address: 0x05) (Read/Write)

This register controls ALS/UVS measurement Gain Range.

0x05		ALS_UVS_GAIN (default = 0x01)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
			Reserved	ALS/UV	'S Gain Rang	уе					

Field	Bits	Default	Description	Description				
Reserved	7:3	00000		Reserved				
	2:0	001	000	Gain Range: 1				
			001	Gain Range: 3 (default)				
ALS/UVS Gain Range			010	Gain Range: 6				
			011	Gain Range: 9				
			100	Gain Range: 18				

PART_ID Register (Address: 0x06) (Read Only) 6.4

This register defines the part number and revision identification of the sensor.

0x06		PART_ID (default = 0xB2)										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
		Part Nu	mber ID		Revision ID							

Field	Bits	Default	Description
Part Number ID	7:4	1011	Part Number ID
Revision ID	3:0	0010	Revision ID of the component. The value increases by one each time a new silicon revision is manufactured.

6.5 MAIN_STATUS Register (Address: 0x07) (Read Only)

This register stores the information about the ALS/UVS interrupts and data status. The interrupt status in Bit 4 determines if the ALS/UVS interrupt criteria are met in Normal Interrupt Mode. It triggers when the UVS/ALS data is above the upper or below the lower threshold for a specified number of consecutive measurements in respective interrupt persist settings.

0x07	MAIN_STATUS (default = 0x20)										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Reserved		Power-On status	ALS/UVS Interrupt status	ALS/UVS data status		Reserved				

Field	Bits	Default	Description	
Reserved	7:6	00		
Power-On Status	5	1	1	Power on event and all interrupt threshold settings in the registers have been reset to power on default states and should be examined if necessary.
Ciaido			0	This flag is cleared after the register is read.
ALS/UVS Interrupt Status	4	0	0	Interrupt is NOT triggered (default)
			1	Interrupt is triggered and will be cleared after read
UVS/ALS			0	UVS/ALS data is old data (Data has been read)
Data Status	3	0	1	UVS/ALS data is new data (Data has not been read and will be cleared after read)
Reserved	2:0	000		

ALS_DATA Registers (Address: 0x0D/ 0x0E/0x0F) (Read Only) 6.6

The Ambient Light Sensor Channel digital output data are expressed as a 13 to 20 bit unsigned integer data. When I²C read operation is active and points to any of the register address between 0x07 and 0x12, all 3 registers will be locked until the I²C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the actual ALS_DATA registers will be updated as soon as there is no on-going I^2C read operation to the address range 0x07 to 0x12.

0x0D		ALS_DATA_0 (default = 0x00)									
	Bit 7	Bit 7									
	ALS_DATA_0, Low										

0x0E		ALS_DATA_1 (default = 0x00)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
	ALS_DATA_1, Middle										

0x0F		ALS_DATA_2 (default = 0x00)									
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
		Rese	erved		ALS_DATA_2, High						

Field	Address	Bits	Default	Description
ALS_Data_0, Low	0x0D	7:0	00000000	ALS Data lower byte data
ALS_Data_1, Middle	0x0E	7:0	00000000	ALS Data Middle byte data
ALS_Data_2,	00	7:4	0000	Reserved
High	0x0F	3:0	0000	ALS Data Higher byte data

6.7 UVS_DATA Registers (Address: 0x10/0x11/0x12) (Read Only)

The UV Sensor Channel digital output data are expressed as a 16 to 20 bit unsigned integer data. When I²C read operation is active and points to any of the register address between 0x07 and 0x12, all 3 registers will be locked until the I²C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the UV Sensor registers will be updated as soon as there is no on-going I²C read operation to the address range 0x07 to 0x12.

0x10		UVS_DATA_0 (default = 0x00)						
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			U	VS_Data_0, L	.ow Byte Dat	a		
0x11			UV	S_DATA_1 (d	default = 0x0	0)		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			UV	S_Data_1, Mi	iddle Byte Da	nta		
0x12			UV	S_DATA_2 (d	default = 0x0	0)		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Rese	erved		UV	S_Data_2, Hig	gher Byte Da	ta

Field	Address	Bits	Default	Description
UVS_Data_0	0x10	7:0	00000000	UVS Data lower byte data
UVS_Data_1	0x11	7:0	00000000	UVS Data Middle byte data
11)/O Data 0		7:4	0000	Reserved
UVS_Data_2	0x12	3:0	0000	UVS Data Higher byte data

6.8 INT_CFG Register (Address: 0x19) (Read/Write)

This register controls the operation of the interrupt pin and functions. The ALS/UVS interrupt is enabled by LS_INT_EN=1 (Bit 2). The ALS/UVS interrupt source generator either uses the ALS_DATA or the UVS_DATA registers as input. The ALS/UVS interrupt source is selected by the LS_INT_SEL bits in the INT_CFG register

0x19		INT_CFG (default = 0x10)							
	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
	Res	erved	LS_IN	T_SEL	Reserved	LS_INT_EN	Resei	ved	

Field	Bits	Default		Description
Reserved	7:6	00		
			00	Reserved
LS	5:4	01	01	ALS Channel (Default)
Interrupt Selection	3. 4	01	10	Reserved
			11	UVS Channel
Reserved	3	0		
LS	2	0	0	LS interrupt disabled (default)
interrupt enable	2	0	1	LS interrupt enabled
Reserved	1:0	00	Write as '00	Y

6.9 INT_PST Register (Address: 0x1A) (Read/Write)

This register INT_PST (Interrupt Persist) sets the ALS/UV persist level. Persist is the N number of times the measurement data is outside the range defined by the upper and lower threshold limits before asserting the interrupt.

0x1A		INT Persist (default = 0x00)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		ALS/UV	Persist			Reser	ved			

Field	Bits	Default		Description
			0000	Every ALS/UV value out of threshold range asserts an interrupt (default)
ALS/UV	7:4	0000	0001	2 consecutive ALS/UV values out of threshold range assert an interrupt
Persist		0000		
			1111	16 consecutive ALS/UV values out of threshold range assert an interrupt
Reserved	3:0	0000		

6.10 UVS_ALS_THRES Registers (Address: 0x21/0x22/0x23/0x24/0x25/0x26) (Read/Write)

The UVS/ALS_THRES_UP (up to 20-bits) and UVS/ALS_THRES_LOW (up to 20-bits) registers determines the upper and lower limit of the interrupt threshold value respectively. Interrupt will be triggered if measurement data in DATA_x registers is exceeding the upper and lower limits.

0x21	UVS/ALS_THRES_UP_0 (default = 0xFF)								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			U	/S/ALS Upper	Threshold, L	ow			
0x22			UVS/A	LS_THRES_U	P_1 (default =	= 0xFF)			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			UVS	S/ALS Upper 1	Threshold, Mi	ddle			
0x23			UVS/A	LS_THRES_U	P_2 (default :	= 0x0F)			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
		Rese	erved		UVS	S/ALS Upper 1	Threshold, Hig	gher	

0x24	UVS/ALS_THRES_LOW_0 (default = 0x00)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			U	VS/ALS Low	Threshold, Lo	w		
0x25			UVS/AL	S_THRES_LC	W_1 (default	= 0x00)		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			υv	S/ALS Low Ti	hreshold, Mid	dle		
0x26			UVS/AL	S_THRES_LC	W_2 (default	= 0x00)		
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Rese	erved		UV	S/ALS Low Th	reshold, High	ner

Field	Address	Bits	Default	Description
UVS/ALS Upper Threshold, Low	0x21	7:0	11111111	CS/ALS upper interrupt threshold, Low byte
UVS/ALS Upper Threshold, Mid	0x22	7:0	11111111	CS/ALS upper interrupt threshold, Mid byte
UVS/ALS Upper	0.00	7:4	0000	Reserved
Threshold, Higher	0x23	3:0	1111	UVS/ALS upper interrupt threshold, Higher byte
UVS/ALS Lower Threshold, Low	0x24	7:0	00000000	UVS/ALS lower interrupt threshold, Low byte
UVS/ALS Lower Threshold, Mid	0x25	7:0	00000000	UVS/ALS lower interrupt threshold, Mid byte
UVS/ALS Lower	0.00	7:4	0000	Reserved
Threshold, Higher	0x26	3:0	0000	UVS/ALS lower interrupt threshold, Higher byte

7. ALS/UVI Formula

ALS Lux Formula 7.1

Lux_Calc is the calculated lux reading based on the output ADC from ALS DATA regardless of light sources.

$$Lux_{Calc} = \frac{0.6 \times ALS_DATA}{(GAIN \times INT)} \times W_{FAC}$$

Where:

- 1. ALS_DATA = Data stored in the registers (Address: 0x0D-0x0F)
- 2. For device under tinted window with coated-ink of flat transmission rate at 400-600nm wavelength, window factor is to compensate light loss due to the lower transmission rate from the coated-ink.
 - a. WFAC = 1 for NO window / clear window glass.
 - b. WFAC >1 device under tinted window glass. Calibrate under white LED.
- 3. The Gain factors & Integration time factors:

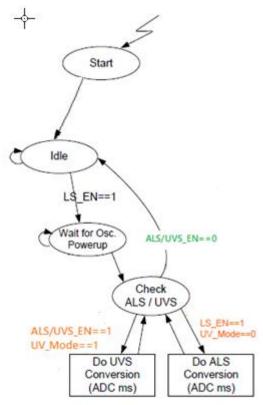
ALS Gain	GAIN
X1	1
Х3	3
X6	6
X9	9
X18	18

Resolution (bit) / Integration Time (ms)	INT
16-bit, 25ms	0.25
17-bit, 50ms	0.5
18-bit, 100ms	1
19-bit, 200ms	2
20-bit, 400ms	4

7.2 **UVI Conversion Formula**

$$UVI_{Calc} = \frac{UV \ Sensor \ Count}{UV \ Sensitivity} \times W_{FAC}$$

where:


1. WFAC depends on the type of window used. WFAC =1 (no window)

8. Device Operation (State Machine and Interrupt Features)

8.1 State Machine

Below diagram is the main state machine of LTR-390UV.

ALS measurements can be activated by setting the UVS/ALS_Enable bit to 1 and the UVS_Mode bit to 0 in the MAIN_CTRL register. UV measurements can be activated by setting the LS_EN bit to 1 and the UVS_Mode bit to 1 in the MAIN_CTRL register. As soon as ALS or UVS become activated through an I²C™ command, the internal support blocks are powered on. Once the voltages and currents are settled (typically after 5ms), the state machine checks for trigger events from a measurement scheduler to start the ALS or UVS conversions according to the selected measurement repeat rates. Once LS_EN is changed back to 0, a conversion running on the respective channel will be completed and the relevant ADCs and support blocks will move to standby mode.

8.2 Interrupt Features

This device generates Light Sensor (ALS or UVS depending on configuration) interrupt signals and output to the INT pad. The interrupt conditions are always evaluated after completion of a new conversion on the ALS/UV channels.

8.2.1 ALS/UVS Sensor Interrupt

The LS interrupt is enabled by LS_INT_EN=1. The ALS/UVS interrupt source generator either uses the ALS_DATA or the UVS_DATA registers as input. The ALS/UVS interrupt source is selected by the ALS/UVS_INT_SEL bits in the INT_CFG register. The Light Sensor threshold interrupt is enabled with ALS/UVS_INT_EN=1. It is set when the ALS_DATA or UVS_DATA data is above the upper or below the lower threshold for a specified number of consecutive measurements. It is set when the absolute value of the difference between the previous and current ALS/UVS data is above the decoded ALS/UVS variance threshold for a specified number of consecutive measurements (1+ALS/UVS_PERSIST).

9. Pseudo Codes Examples

```
SLAVE Addresses
Slave\_Addr = 0x53
                                                // Slave address
MAIN_CTRL Register
// This defines the operating modes of the ALS,UV. Default setting is 0x00 in Standby mode.
                                                //MAIN CTRL register
Register Addr = 0x00
Command = 0x02
                                                // ALS in Active Mode
                                                // UVS in Active Mode, Command = 0x0A
WriteByte(Slave_Addr, Register_Addr, Command);
ALS_UVS_MEAS_RATE Register
// This controls the ALS/UVS Resolution & Measurement rate.
// Default setting of the register is 0x22
                                                // ALS_UVS_MEAS_RATE register
Register_Addr = 0x04
Command = 0x22
                                                // Resolution=18bits, Meas Rate = 100ms
                                                // Resolution=20bits, Meas Rate = 500ms, Command=0x04
WriteByte(Slave_Addr, Register_Addr, Command)
ALS_UVS_GAIN Register
// This controls the ALS/UVS GAIN.
// Default setting of the register is 0x01
Register_Addr = 0x05
                                                // ALS_UVS_GAIN register
Command = 0x01
                                                // Gain Range=3.
                                                // Gain Range=18, Command=0x04
WriteByte(Slave_Addr, Register_Addr, Command)
INT_CFG Register
// This controls the interrupt mode of ALS, UVS.
// Default setting of the register is 0x10
Register_Addr = 0x19
                                                // INT_CFG register
Command = 0x14
                                                // ALS_INT_EN=1.
                                                // UVS_INT_EN=1, Command=0x34
WriteByte(Slave_Addr, Register_Addr, Command)
INT_PST Register
// This controls the persistence of interrupt of ALS, UVS.
// Default setting of the register is 0x00
Register_Addr = 0x1A
                                                // INT_CFG register
Command = 0x00
                                                // ALS/UVS Persist=0.
                                                // ALS/UVS Persist=1, Command=0x10
WriteByte(Slave_Addr, Register_Addr, Command)
```


ALS_DATA Registers (Read Only)

//The registers 0x0D, 0x0E & 0x0F contain ALS data, up to 20bits.

Register_Addr = 0x0D // ALS_DATA_0 address

Data1 = ReadByte(Slave_Addr, Register_Addr)

Register_Addr = 0x0E // ALS_DATA_1 address

Data2 = ReadByte(Slave_Addr, Register_Addr)

Register_Addr = 0x0F // ALS_DATA_2 address

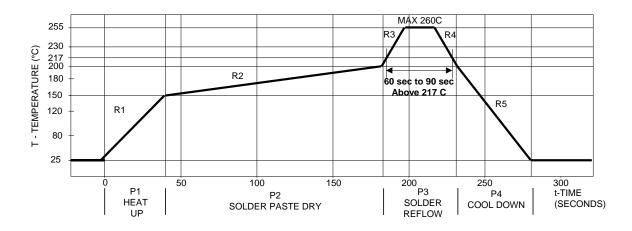
Data3 = ReadByte(Slave_Addr, Register_Addr) // ALS_DATA=Data3*65536+Data2*256+Data1.

UVS_DATA Registers (Read Only)

//The registers 0x10, 0x11 & 0x12 contain UVS data, up to 20bits.

Register_Addr = 0x10 // UVS_DATA_0 address

Data1 = ReadByte(Slave_Addr, Register_Addr)
Register_Addr = 0x11 // UVS_DATA_1 address


Data2 = ReadByte(Slave_Addr, Register_Addr)

Register_Addr = 0x12 // UVS_DATA_2 address

Data3 = ReadByte(Slave_Addr, Register_Addr) // UVS_DATA=Data3*65536+Data2*256+Data1.

10. Recommended Leadfree Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration	
Heat Up	P1, R1	25°C to 150°C	3°C/s	
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s	
Solder Reflow	P3, R3	200°C to 260°C	3°C/s	
Solder Reliow	P3, R4	260°C to 200°C	-6°C/s	
Cool Down	P4, R5	200°C to 25°C	-6°C/s	
Time maintained above liquid's point , 217°C		> 217°C	60s to 90s	
Peak Temperature		260°C	-	
Time within 5°C of actual Peak Temperature		> 255°C	20s	
Time 25°C to Peak Temperature		25°C to 260°C	8mins	

It is recommended to perform reflow soldering no more than twice.

Moisture Proof Packaging 11.

All LTR-390UV-01 are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

Time from Unsealing to Soldering

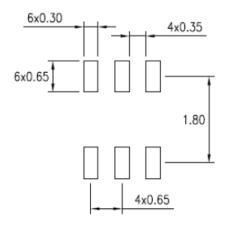
After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days. When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

1. Recommended Storage Conditions

Sto	rage Temperature	10°C to 30°C
Rel	ative Humidity	Below 60% RH

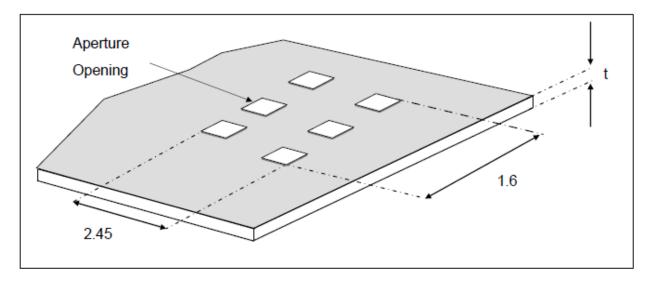
2. Baking Conditions

Package	Temperature	Time
In Reels	60°C	48 hours
In Bulk	100°C	4 hours


Baking should only be done once.

12. Recommended Land Pattern

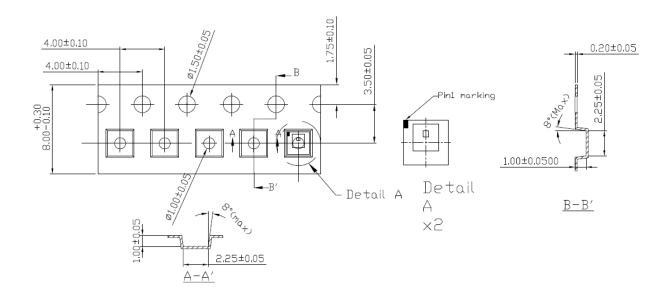
Recommended Land Pattern for LTR-390UV-01

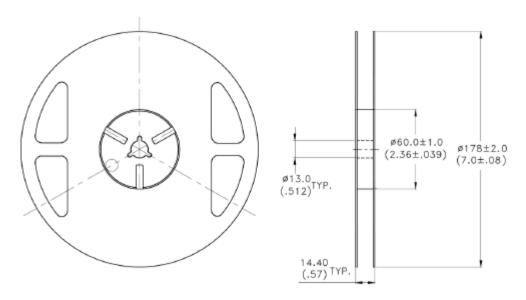

Note: All dimensions are in millimeters

13. Metal Stencil Aperture

It is recommended that the metal stencil used for solder paste printing has a thickness (t) of 0.11mm (0.004 inches / 4 mils) or 0.127mm (0.005 inches / 5 mils).

The stencil aperture opening is recommended to be 0.3mm x 0.65mm which has the same dimension as the land pattern. This is to ensure adequate printed solder paste volume and yet no shorting.




Note:

1. All dimensions are in millimeters

Tape and Reel Dimensions 14.

Notes:

- 1. All dimensions are in millimeters (inches)
- 2. Empty component pockets sealed with top cover tape
- 3. 7 inch reel 2500 pieces per reel
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications

Revision Table:

Version	Update	Page	Date
1.0	Datasheet as created	Total 30	28-Jul-15
1.1	ALS lux formula updated	Total 33	24-Aug-15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lite-On: