Dual inverting Schmitt trigger Rev. 2 — 14 March 2014

#### 1. **General description**

The 74HC2G14; 74HCT2G14 is a dual inverter with Schmitt-trigger inputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V<sub>CC</sub>. Schmitt trigger inputs transform slowly changing input signals into sharply defined jitter-free output signals.

#### **Features and benefits** 2.

- Wide supply voltage range from 2.0 V to 6.0 V
- Complies with JEDEC standard no. 7A
- Input levels:
  - For 74HC2G14: CMOS level
  - For 74HCT2G14: TTL level
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- Unlimited input rise and fall times
- Multiple package options
- ESD protection:
  - HBM JESD22-A114E exceeds 2000 V
  - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

#### **Applications** 3.

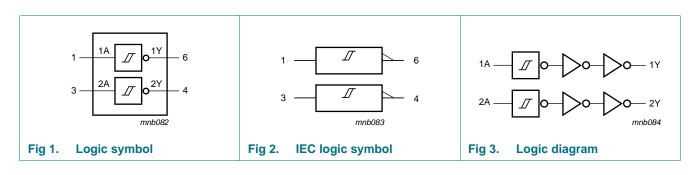
- Wave and pulse shaper for highly noisy environments
- Astable multivibrators
- Monostable multivibrators

# nexperia

Dual inverting Schmitt trigger

## 4. Ordering information

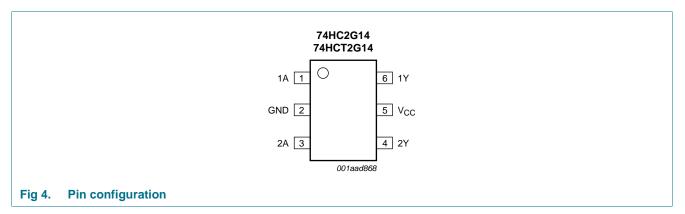
| Table 1.         Ordering information |                   |       |                                                  |         |  |  |  |  |
|---------------------------------------|-------------------|-------|--------------------------------------------------|---------|--|--|--|--|
| Type number                           | Package           |       |                                                  |         |  |  |  |  |
|                                       | Temperature range | Name  | Description                                      | Version |  |  |  |  |
| 74HC2G14GW                            | –40 °C to +125 °C | SC-88 | plastic surface-mounted package; 6 leads         | SOT363  |  |  |  |  |
| 74HC2G14GV                            | –40 °C to +125 °C | SC-74 | plastic surface-mounted package (TSOP6); 6 leads | SOT457  |  |  |  |  |
| 74HCT2G14GW                           | –40 °C to +125 °C | SC-88 | plastic surface-mounted package; 6 leads         | SOT363  |  |  |  |  |
| 74HCT2G14GV                           | –40 °C to +125 °C | SC-74 | plastic surface-mounted package (TSOP6); 6 leads | SOT457  |  |  |  |  |


## 5. Marking

#### Table 2. Marking

| Type number | Marking code <sup>[1]</sup> |
|-------------|-----------------------------|
| 74HC2G14GW  | НК                          |
| 74HC2G14GV  | H14                         |
| 74HCT2G14GW | ТК                          |
| 74HCT2G14GV | T14                         |

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


### 6. Functional diagram



**Dual inverting Schmitt trigger** 

## 7. Pinning information

### 7.1 Pinning



### 7.2 Pin description

| Table 3.         Pin description |     |                |  |  |  |  |  |
|----------------------------------|-----|----------------|--|--|--|--|--|
| Symbol                           | Pin | Description    |  |  |  |  |  |
| 1A                               | 1   | data input     |  |  |  |  |  |
| GND                              | 2   | ground (0 V)   |  |  |  |  |  |
| 2A                               | 3   | data input     |  |  |  |  |  |
| 2Y                               | 4   | data output    |  |  |  |  |  |
| V <sub>CC</sub>                  | 5   | supply voltage |  |  |  |  |  |
| 1Y                               | 6   | data output    |  |  |  |  |  |

### 8. Functional description

#### Table 4. Function table<sup>[1]</sup>

| Input | Output |
|-------|--------|
| nA    | nY     |
| L     | Н      |
| Н     | L      |

[1] H = HIGH voltage level;

L = LOW voltage level.

### 9. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol Parameter |                         | Conditions                                           | Conditions |      |      |    |
|------------------|-------------------------|------------------------------------------------------|------------|------|------|----|
| V <sub>CC</sub>  | supply voltage          |                                                      |            | -0.5 | +7.0 | V  |
| I <sub>IK</sub>  | input clamping current  | $V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V         | <u>[1]</u> | -    | ±20  | mA |
| I <sub>OK</sub>  | output clamping current | $V_{O}$ < -0.5 V or $V_{O}$ > $V_{CC}$ + 0.5 V       | <u>[1]</u> | -    | ±20  | mA |
| lo               | output current          | $V_{O} = -0.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$ | <u>[1]</u> | -    | ±25  | mA |
| I <sub>CC</sub>  | supply current          |                                                      | <u>[1]</u> | -    | +50  | mA |
| I <sub>GND</sub> | ground current          |                                                      | <u>[1]</u> | -    | -50  | mA |
| T <sub>stg</sub> | storage temperature     |                                                      |            | -65  | +150 | °C |
| P <sub>tot</sub> | total power dissipation |                                                      | [2]        | -    | 250  | mW |

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SC-88 and SC-74 packages: above 87.5  $^\circ$ C the value of P<sub>tot</sub> derates linearly with 4.0 mW/K.

## 10. Recommended operating conditions

#### Table 6. Recommended operating conditions

| Symbol           | Parameter           | Conditions | Min | Тур | Max             | Unit |
|------------------|---------------------|------------|-----|-----|-----------------|------|
| Type 74HC        | 2G14                |            |     |     |                 |      |
| V <sub>CC</sub>  | supply voltage      |            | 2.0 | 5.0 | 6.0             | V    |
| VI               | input voltage       |            | 0   | -   | V <sub>CC</sub> | V    |
| Vo               | output voltage      |            | 0   | -   | V <sub>CC</sub> | V    |
| T <sub>amb</sub> | ambient temperature |            | -40 | +25 | +125            | °C   |
| Type 74HC        | T2G14               |            | i   |     |                 |      |
| V <sub>CC</sub>  | supply voltage      |            | 4.5 | 5.0 | 5.5             | V    |
| VI               | input voltage       |            | 0   | -   | V <sub>CC</sub> | V    |
| Vo               | output voltage      |            | 0   | -   | V <sub>CC</sub> | V    |
| T <sub>amb</sub> | ambient temperature |            | -40 | +25 | +125            | °C   |

Dual inverting Schmitt trigger

## **11. Static characteristics**

#### Table 7. Static characteristics for 74HC2G14

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                | Parameter                 | Conditions                                             | Min  | Тур  | Max  | Unit |
|-----------------------|---------------------------|--------------------------------------------------------|------|------|------|------|
| T <sub>amb</sub> = 25 | °C                        | ,<br>,                                                 | I    |      |      |      |
| V <sub>OH</sub>       | HIGH-level output voltage | $V_I = V_{T+} \text{ or } V_{T-}$                      |      |      |      |      |
|                       |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$              | 1.9  | 2.0  | -    | V    |
|                       |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$              | 4.4  | 4.5  | -    | V    |
|                       |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$              | 5.9  | 6.0  | -    | V    |
|                       |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$      | 4.18 | 4.32 | -    | V    |
|                       |                           | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$      | 5.68 | 5.81 | -    | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_I = V_{T+} \text{ or } V_{T-}$                      |      |      |      |      |
|                       |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$               | -    | 0    | 0.1  | V    |
|                       |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$               | -    | 0    | 0.1  | V    |
|                       |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$               | -    | 0    | 0.1  | V    |
|                       |                           | $I_0 = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$         | -    | 0.15 | 0.26 | V    |
| 1                     |                           | $I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$         | -    | 0.16 | 0.26 | V    |
| lı                    | input leakage current     | $V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$ | -    | -    | ±0.1 | μA   |
| I <sub>CC</sub>       | supply current            | $V_I = GND \text{ or } V_{CC}; I_O = 0 \ \mu A;$       | -    | -    | 1.0  | μA   |
|                       |                           | $V_{CC} = 6.0 V$                                       |      |      |      |      |
| CI                    | input capacitance         |                                                        | -    | 2.0  | -    | pF   |
| T <sub>amb</sub> = -4 | 0 °C to +85 °C            |                                                        | Ċ    |      |      |      |
| V <sub>ОН</sub>       | HIGH-level output voltage | $V_{I} = V_{T+} \text{ or } V_{T-}$                    |      |      |      |      |
|                       |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$              | 1.9  | -    | -    | V    |
|                       |                           | $I_O = -20 \ \mu A; \ V_{CC} = 4.5 \ V$                | 4.4  | -    | -    | V    |
|                       |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$              | 5.9  | -    | -    | V    |
|                       |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$      | 4.13 | -    | -    | V    |
|                       |                           | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V};$     | 5.63 | -    | -    | V    |
| V <sub>OL</sub>       | LOW-level output voltage  | $V_{I} = V_{T+} \text{ or } V_{T-}$                    |      |      |      |      |
|                       |                           | $I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$                 | -    | -    | 0.1  | V    |
|                       |                           | $I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$                 | -    | -    | 0.1  | V    |
|                       |                           | $I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$                 | -    | -    | 0.1  | V    |
|                       |                           | $I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$       | -    | -    | 0.33 | V    |
|                       |                           | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$       | -    | -    | 0.33 | V    |
| l <sub>l</sub>        | input leakage current     | $V_I = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$ | -    | -    | ±1.0 | μA   |
| I <sub>CC</sub>       | supply current            | $V_I = GND \text{ or } V_{CC}; I_O = 0 \ \mu A;$       | -    | -    | 10.0 | μA   |
|                       |                           | $V_{CC} = 6.0 V$                                       |      |      |      |      |

Rev. 2 — 14 March 2014

Dual inverting Schmitt trigger

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                 | Parameter                 | Conditions                                               | Min | Тур | Max  | Unit |
|------------------------|---------------------------|----------------------------------------------------------|-----|-----|------|------|
| T <sub>amb</sub> = -40 | °C to +125 °C             |                                                          | I   | I   | I    |      |
| V <sub>OH</sub>        | HIGH-level output voltage | $V_I = V_{T+}$ or $V_{T-}$                               |     |     |      |      |
|                        |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$                | 1.9 | -   | -    | V    |
|                        |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$                | 4.4 | -   | -    | V    |
|                        |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$                | 5.9 | -   | -    | V    |
|                        |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$        | 3.7 | -   | -    | V    |
|                        |                           | $I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V};$       | 5.2 | -   | -    | V    |
| V <sub>OL</sub>        | LOW-level output voltage  | $V_{I} = V_{T+}$ or $V_{T-}$                             |     |     |      |      |
|                        |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$                 | -   | -   | 0.1  | V    |
|                        |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$                 | -   | -   | 0.1  | V    |
|                        |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$                 | -   | -   | 0.1  | V    |
|                        |                           | $I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$         | -   | -   | 0.4  | V    |
|                        |                           | $I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$         | -   | -   | 0.4  | V    |
| l <sub>i</sub>         | input leakage current     | $V_{I} = GND \text{ or } V_{CC}; V_{CC} = 6.0 \text{ V}$ | -   | -   | ±1.0 | μA   |
| I <sub>CC</sub>        | supply current            | $V_I = GND \text{ or } V_{CC}; I_O = 0 \ \mu A;$         | -   | -   | 20.0 | μA   |
|                        |                           | $V_{CC} = 6.0 V$                                         |     |     |      |      |

#### Table 8. Static characteristics for 74HCT2G14

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                  | Parameter                 | Conditions                                                                                                           | Min  | Тур  | Max  | Unit |
|-------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| T <sub>amb</sub> = 25 ° | O                         |                                                                                                                      |      |      |      |      |
| V <sub>OH</sub>         | HIGH-level output voltage | $V_{I} = V_{T+}$ or $V_{T-}$                                                                                         |      |      |      |      |
|                         |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$                                                                            | 4.4  | 4.5  | -    | V    |
|                         |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                    | 4.18 | 4.32 | -    | V    |
| V <sub>OL</sub>         | LOW-level output voltage  | $V_I = V_{T+}$ or $V_{T-}$                                                                                           |      |      |      |      |
|                         |                           | $I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$                                                                | -    | 0    | 0.1  | V    |
|                         |                           | $I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                     | -    | 0.15 | 0.26 | V    |
| l <sub>l</sub>          | input leakage current     | $V_I = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$                                                               | -    | -    | ±0.1 | μA   |
| I <sub>CC</sub>         | supply current            | $\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ \muA; \\ V_{CC} = 5.5 \ V \end{array}$ | -    | -    | 1.0  | μA   |
| ΔI <sub>CC</sub>        | additional supply current |                                                                                                                      | -    | -    | 300  | μA   |
| CI                      | input capacitance         |                                                                                                                      | -    | 2.0  | -    | pF   |

Dual inverting Schmitt trigger

#### Table 8. Static characteristics for 74HCT2G14 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                 | Parameter                 | Conditions                                                                                        | Min  | Тур | Max  | Unit |
|------------------------|---------------------------|---------------------------------------------------------------------------------------------------|------|-----|------|------|
| T <sub>amb</sub> = -40 | ) °C to +85 °C            | -                                                                                                 |      | I   |      |      |
| V <sub>OH</sub>        | HIGH-level output voltage | $V_I = V_{T+}$ or $V_{T-}$                                                                        |      |     |      |      |
|                        |                           | $I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$                                                         | 4.4  | -   | -    | V    |
|                        |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                 | 4.13 | -   | -    | V    |
| V <sub>OL</sub>        | LOW-level output voltage  | $V_I = V_{T+}$ or $V_{T-}$                                                                        |      |     |      |      |
|                        |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$                                                          | -    | -   | 0.1  | V    |
|                        |                           | $I_0 = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                    | -    | -   | 0.33 | V    |
| I <sub>I</sub>         | input leakage current     | $V_{I} = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$                                          | -    | -   | ±1.0 | μA   |
| I <sub>CC</sub>        | supply current            | $V_I = GND \text{ or } V_{CC}; I_O = 0 \ \mu A;$<br>$V_{CC} = 5.5 \ V$                            | -    | -   | 10.0 | μA   |
| Δl <sub>CC</sub>       | additional supply current | $V_{I} = V_{CC} - 2.1 \text{ V};$<br>$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_{O} = 0 \ \mu\text{A}$ | -    | -   | 375  | μA   |
| T <sub>amb</sub> = -40 | ) °C to +125 °C           |                                                                                                   | I    |     |      |      |
| V <sub>OH</sub>        | HIGH-level output voltage | $V_I = V_{T+}$ or $V_{T-}$                                                                        |      |     |      |      |
|                        |                           | $I_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V$                                                           | 4.4  | -   | -    | V    |
|                        |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                 | 3.7  | -   | -    | V    |
| V <sub>OL</sub>        | LOW-level output voltage  | $V_I = V_{T+}$ or $V_{T-}$                                                                        |      |     |      |      |
|                        |                           | $I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$                                                          | -    | -   | 0.1  | V    |
|                        |                           | $I_0 = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                    | -    | -   | 0.4  | V    |
| lı                     | input leakage current     | $V_{I} = GND \text{ or } V_{CC}; V_{CC} = 5.5 \text{ V}$                                          | -    | -   | ±1.0 | μA   |
| I <sub>CC</sub>        | supply current            | $V_I = GND \text{ or } V_{CC}; I_O = 0 \ \mu A;$<br>$V_{CC} = 5.5 \ V$                            | -    | -   | 20.0 | μA   |
| Δl <sub>CC</sub>       | additional supply current | $V_{I} = V_{CC} - 2.1 \text{ V};$<br>$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_{O} = 0 \ \mu\text{A}$ | -    | -   | 410  | μΑ   |

Dual inverting Schmitt trigger

## **12. Dynamic characteristics**

#### Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>.

| Symbol          | Parameter                     | Conditions                                              |            |     | 25 °C |     | –40 °C to +125 °C |                |                 |    |
|-----------------|-------------------------------|---------------------------------------------------------|------------|-----|-------|-----|-------------------|----------------|-----------------|----|
|                 |                               |                                                         |            | Min | Тур   | Max | Min               | Max<br>(85 °C) | Max<br>(125 °C) |    |
| 74HC2G1         | 4                             |                                                         |            |     |       |     |                   |                |                 |    |
| t <sub>pd</sub> | propagation delay             | nA to nY; see Figure 5                                  | <u>[1]</u> |     |       |     |                   |                |                 |    |
|                 |                               | $V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 53    | 125 | -                 | 155            | 190             | ns |
|                 |                               | $V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 16    | 25  | -                 | 31             | 38              | ns |
|                 |                               | $V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 13    | 21  | -                 | 26             | 32              | ns |
| t <sub>t</sub>  | transition time               | nY; see Figure 5                                        | [2]        |     |       |     |                   |                |                 | -  |
|                 |                               | $V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 20    | 75  | -                 | 95             | 110             | ns |
|                 |                               | $V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 7     | 15  | -                 | 19             | 22              | ns |
|                 |                               | $V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 5     | 13  | -                 | 16             | 19              | ns |
| C <sub>PD</sub> | power dissipation capacitance | $V_{I} = GND$ to $V_{CC}$                               | [3]        | -   | 10    | -   | -                 | -              | -               | pF |
| 74HCT2G         | 14                            |                                                         |            |     |       |     |                   |                |                 | -  |
| t <sub>pd</sub> | propagation delay             | nA to nY; see Figure 5                                  | <u>[1]</u> |     |       |     |                   |                |                 |    |
|                 |                               | $V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 21    | 32  | -                 | 40             | 48              | ns |
| t <sub>t</sub>  | transition time               | nY; see Figure 5                                        | [2]        |     |       |     |                   |                |                 |    |
|                 |                               | $V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$ |            | -   | 6     | 15  | -                 | 19             | 22              | ns |
| C <sub>PD</sub> | power dissipation capacitance | $V_I = GND$ to $V_{CC} - 1.5$ V                         | <u>[3]</u> | -   | 10    | -   | -                 | -              | -               | pF |

[1]  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ 

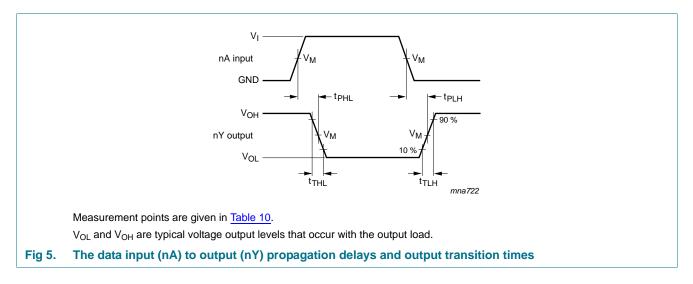
 $\label{eq:ttilde} [2] \quad t_t \text{ is the same as } t_{TLH} \text{ and } t_{THL}$ 

 $\begin{array}{ll} \mbox{[3]} & C_{PD} \mbox{ is used to determine the dynamic power dissipation (P_D in $\mu$W).} \\ & P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \mbox{ where:} \end{array}$ 

 $f_i$  = input frequency in MHz;

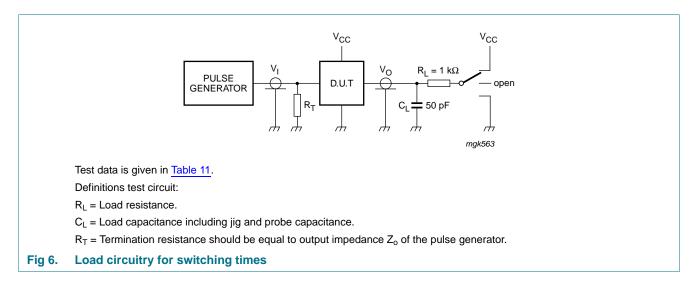
 $f_o = output frequency in MHz;$ 

 $C_L$  = output load capacitance in pF;


 $V_{CC}$  = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$  = sum of the outputs.


Dual inverting Schmitt trigger

### 13. Waveforms



#### Table 10. Measurement points

| Туре      | Input              |                        |             | Output             |
|-----------|--------------------|------------------------|-------------|--------------------|
|           | V <sub>M</sub>     | VI                     | $t_r = t_f$ | V <sub>M</sub>     |
| 74HC2G14  | 0.5V <sub>CC</sub> | GND to V <sub>CC</sub> | 6.0 ns      | 0.5V <sub>CC</sub> |
| 74HCT2G14 | 1.3 V              | GND to 3.0 V           | 6.0 ns      | 1.3 V              |



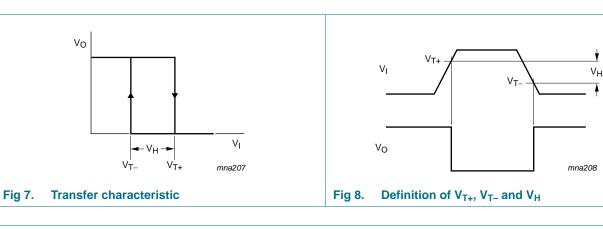
#### Table 11. Test data

| Туре      | Input                  | Test                            |                                     |
|-----------|------------------------|---------------------------------|-------------------------------------|
|           | VI                     | t <sub>r</sub> , t <sub>f</sub> | t <sub>PHL</sub> , t <sub>PLH</sub> |
| 74HC2G14  | GND to V <sub>CC</sub> | 6 ns                            | open                                |
| 74HCT2G14 | GND to 3.0 V           | 6 ns                            | open                                |

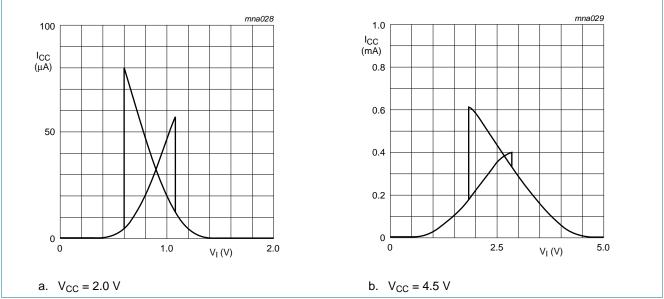
74HC\_HCT2G14
Product data sheet

Dual inverting Schmitt trigger

## **14. Transfer characteristics**

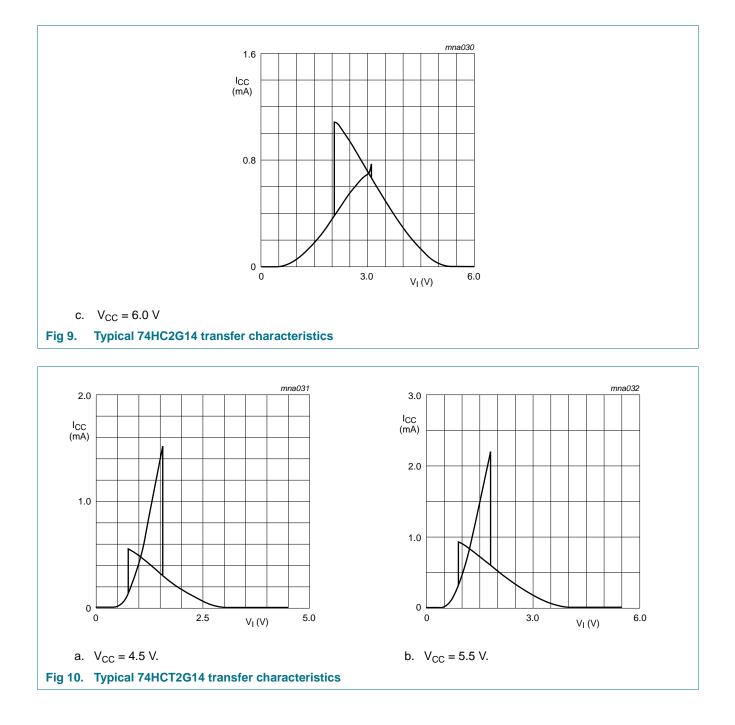

#### Table 12. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>.


| Symbol                         | Parameter          | Conditions                                                                   |      | 25 °C |      |      | –40 °C to +125 °C |                 |   |  |
|--------------------------------|--------------------|------------------------------------------------------------------------------|------|-------|------|------|-------------------|-----------------|---|--|
|                                |                    |                                                                              | Min  | Тур   | Max  | Min  | Max<br>(85 °C)    | Max<br>(125 °C) |   |  |
| 74HC2G                         | 14                 |                                                                              |      |       |      |      |                   |                 | _ |  |
| V <sub>T+</sub>                | positive-going     | see Figure 7, Figure 8                                                       |      |       |      |      |                   |                 |   |  |
|                                | threshold voltage  | $V_{CC} = 2.0 V$                                                             | 1.00 | 1.18  | 1.50 | 1.00 | 1.50              | 1.50            | V |  |
|                                |                    | $V_{CC} = 4.5 V$                                                             | 2.30 | 2.60  | 3.15 | 2.30 | 3.15              | 3.15            | V |  |
|                                |                    | $V_{CC} = 6.0 V$                                                             | 3.00 | 3.46  | 4.20 | 3.00 | 4.20              | 4.20            | V |  |
| V <sub>T-</sub>                | negative-going     | see Figure 7, Figure 8                                                       |      |       |      |      |                   |                 |   |  |
|                                | threshold voltage  | $V_{CC} = 2.0 V$                                                             | 0.30 | 0.60  | 0.90 | 0.30 | 0.90              | 0.90            | V |  |
|                                |                    | $V_{CC} = 4.5 V$                                                             | 1.13 | 1.47  | 2.00 | 1.13 | 2.00              | 2.00            | V |  |
|                                |                    | V <sub>CC</sub> = 6.0 V                                                      | 1.50 | 2.06  | 2.60 | 1.50 | 2.60              | 2.60            | V |  |
| V <sub>H</sub>                 | hysteresis voltage | $(V_{T+} - V_{T-})$ ; see <u>Figure 7</u> ,<br>Figure 8 and <u>Figure 9</u>  |      |       |      |      |                   |                 |   |  |
|                                |                    | V <sub>CC</sub> = 2.0 V                                                      | 0.30 | 0.60  | 1.00 | 0.30 | 1.00              | 1.00            | V |  |
|                                |                    | V <sub>CC</sub> = 4.5 V                                                      | 0.60 | 1.13  | 1.40 | 0.60 | 1.40              | 1.40            | V |  |
|                                |                    | V <sub>CC</sub> = 6.0 V                                                      | 0.80 | 1.40  | 1.70 | 0.80 | 1.70              | 1.70            | V |  |
| 74HCT2                         | G14                |                                                                              |      | 1     |      | 1    |                   | -               | - |  |
| V <sub>T+</sub> positive-going |                    | see Figure 7 and Figure 8                                                    |      |       |      |      |                   |                 |   |  |
|                                | threshold voltage  | $V_{CC} = 4.5 V$                                                             | 1.20 | 1.58  | 1.90 | 1.20 | 1.90              | 1.90            | V |  |
|                                |                    | V <sub>CC</sub> = 5.5 V                                                      | 1.40 | 1.78  | 2.10 | 1.40 | 2.10              | 2.10            | V |  |
| V <sub>T-</sub>                | negative-going     | see Figure 7 and Figure 8                                                    |      |       |      |      |                   |                 |   |  |
|                                | threshold voltage  | $V_{CC} = 4.5 V$                                                             | 0.50 | 0.87  | 1.20 | 0.50 | 1.20              | 1.20            | V |  |
|                                |                    | V <sub>CC</sub> = 5.5 V                                                      | 0.60 | 1.11  | 1.40 | 0.60 | 1.40              | 1.40            | V |  |
| V <sub>H</sub>                 | hysteresis voltage | $(V_{T+} - V_{T-})$ ; see <u>Figure 7</u> ,<br>Figure 8 and <u>Figure 10</u> |      |       |      |      |                   |                 |   |  |
|                                |                    | $V_{CC} = 4.5 V$                                                             | 0.40 | 0.71  | -    | 0.40 | -                 | -               | V |  |
|                                |                    | $V_{CC} = 5.5 V$                                                             | 0.40 | 0.67  | -    | 0.40 | -                 | -               | V |  |

Dual inverting Schmitt trigger

¥




## 15. Waveforms transfer characteristics



## 74HC2G14; 74HCT2G14

### Dual inverting Schmitt trigger



**Dual inverting Schmitt trigger** 

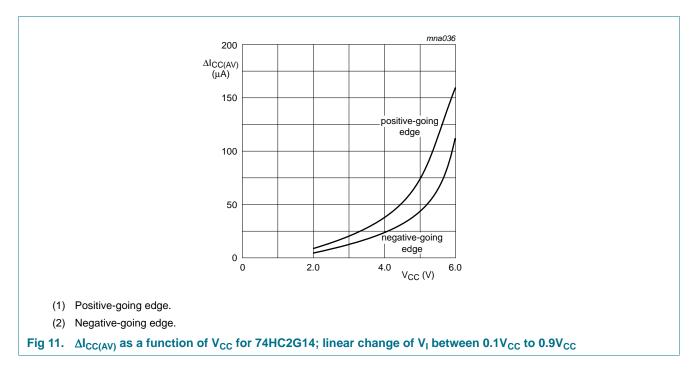
### **16. Application information**

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC} \text{ where:}$ 

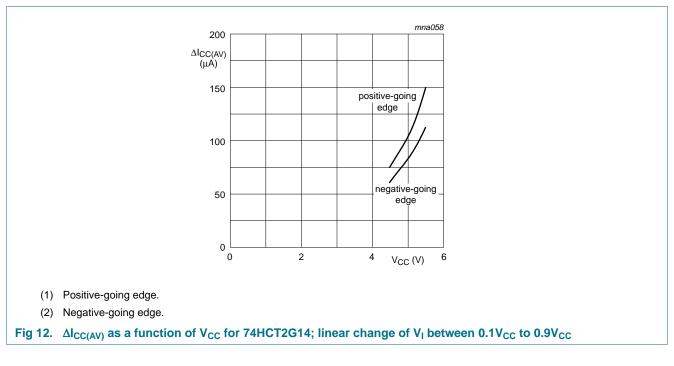
 $P_{add}$  = additional power dissipation ( $\mu$ W);

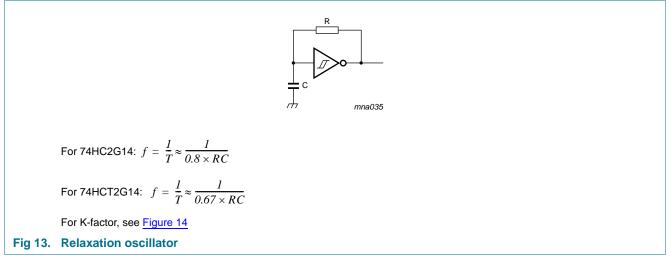
 $f_i = input frequency (MHz);$ 


 $t_r$  = input rise time (ns); 10 % to 90 %;

 $t_f$  = input fall time (ns); 90 % to 10 %;

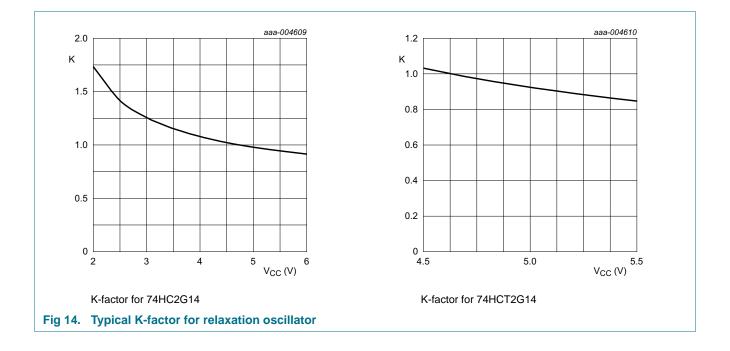
 $\Delta I_{CC(AV)}$  = average additional supply current (µA).


 $\Delta I_{CC(AV)}$  differs with positive or negative input transitions, as shown in Figure 11 and Figure 12.


An example of a relaxation circuit using the 74HC2G14/74HCT2G14 is shown in Figure 13.



## 74HC2G14; 74HCT2G14


**Dual inverting Schmitt trigger** 





## 74HC2G14; 74HCT2G14

Dual inverting Schmitt trigger



**Dual inverting Schmitt trigger** 

### 17. Package outline

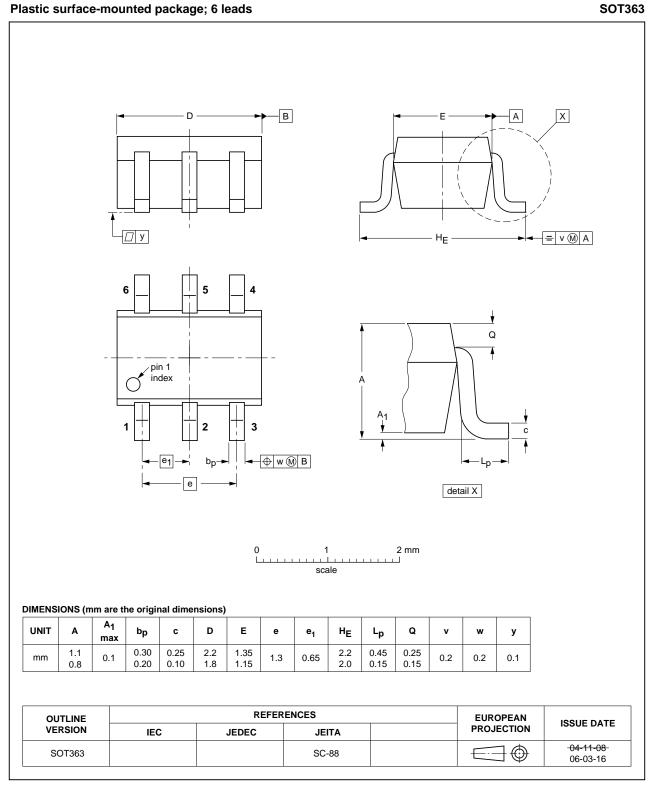



Fig 15. Package outline SOT363 (SC-88)

| All information | provided in | this | document is | s subject | to | legal | disclain | ners |
|-----------------|-------------|------|-------------|-----------|----|-------|----------|------|
|                 |             |      |             |           |    |       |          |      |

74HC\_HCT2G14

Dual inverting Schmitt trigger

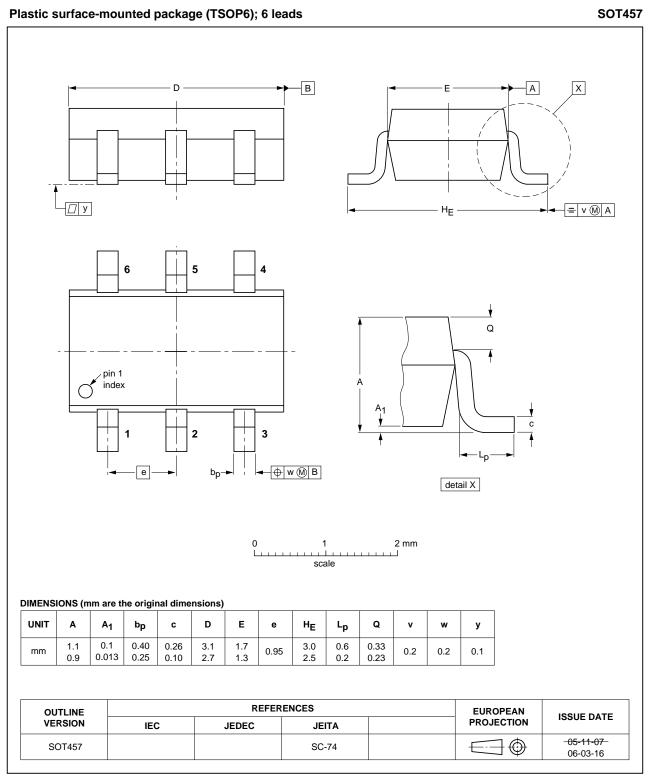



Fig 16. Package outline SOT457 (SC-74)

All information provided in this document is subject to legal disclaimers.

74HC\_HCT2G14

Dual inverting Schmitt trigger

## **18. Abbreviations**

| Table 13. Abbreviations |                                         |  |  |  |
|-------------------------|-----------------------------------------|--|--|--|
| Acronym                 | Description                             |  |  |  |
| CMOS                    | Complementary Metal Oxide Semiconductor |  |  |  |
| ESD                     | ElectroStatic Discharge                 |  |  |  |
| HBM                     | Human Body Model                        |  |  |  |
| MM                      | Machine Model                           |  |  |  |
| DUT                     | Device Under Test                       |  |  |  |

## 19. Revision history

#### Table 14. Revision history

| Document ID      | Release date                                                                      | Data sheet status  | Change notice | Supersedes       |  |
|------------------|-----------------------------------------------------------------------------------|--------------------|---------------|------------------|--|
| 74HC_HCT2G14 v.2 | 20140314                                                                          | Product data sheet | -             | 74HC_HCT2G14 v.1 |  |
| Modifications:   | <ul> <li>Figure 14 added (typical K-factor for relaxation oscillator).</li> </ul> |                    |               |                  |  |
| 74HC_HCT2G14 v.1 | 20061011                                                                          | Product data sheet | -             | -                |  |

### 20. Legal information

### 20.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

### 20.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

## 74HC2G14; 74HCT2G14

#### **Dual inverting Schmitt trigger**

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Non-automotive qualified products** — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 21. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

## 74HC2G14; 74HCT2G14

Dual inverting Schmitt trigger

### 22. Contents

| 1    | General description 1                 |
|------|---------------------------------------|
| 2    | Features and benefits 1               |
| 3    | Applications 1                        |
| 4    | Ordering information 2                |
| 5    | Marking 2                             |
| 6    | Functional diagram 2                  |
| 7    | Pinning information 3                 |
| 7.1  | Pinning 3                             |
| 7.2  | Pin description 3                     |
| 8    | Functional description 3              |
| 9    | Limiting values 4                     |
| 10   | Recommended operating conditions 4    |
| 11   | Static characteristics 5              |
| 12   | Dynamic characteristics 8             |
| 13   | Waveforms 9                           |
| 14   | Transfer characteristics 10           |
| 15   | Waveforms transfer characteristics 11 |
| 16   | Application information 13            |
| 17   | Package outline 16                    |
| 18   | Abbreviations                         |
| 19   | Revision history                      |
| 20   | Legal information 19                  |
| 20.1 | Data sheet status 19                  |
| 20.2 | Definitions 19                        |
| 20.3 | Disclaimers                           |
| 20.4 | Trademarks                            |
| 21   | Contact information 20                |
| 22   | Contents 21                           |