Solder-In Style High Temp EMI Filters

WS/WR Series - .400 Dia. - Circuits Available - C & L

APPLICATIONS

The WS series expands greatly upon the XS and YS offerings by providing increased filtering in the HF through MICROWAVE frequency spectrum from 500 KHz up to 10 GHz. The larger diameter of the WS series means even higher values of capacitance, a rated DC current of 15 Amps, plus 125 VAC/400 Hz ratings are available. Designed to be soldered into a package, bracket or bulkhead (and maintain hermeticity), it is ideal for low to medium impedance circuits where large amounts of capacitance to ground can be tolerated. In the "L" section version an internal ferrite bead element provides both inductance and series resistance (lossy characteristic) which improves insertion loss and provides superior transient performance.

Alternate lead lengths or special capacitance values may be ordered.

Custom packages or bracket assemblies utilizing this feedthru can be furnished to your specifications.

CHARACTERISTICS

- Meets or exceeds the applicable portions of MIL-F-28861/13. See QPL listings.
- High temperature construction withstands 300°C installation temperatures.
- Features rugged monolithic discoidal capacitor construction.
- · Glass hermetic seal on one end with epoxy seal on the opposite end.
- High purity gold plating provides excellent solderability or compatibility with thermal and ultrasonic wire bonding.

SPECIFICATIONS

- 1. Plating: Gold standard Silver available
- 2. Material:

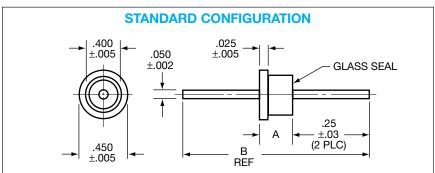
Case: Cold rolled steel Leads: Alloy 52 steel

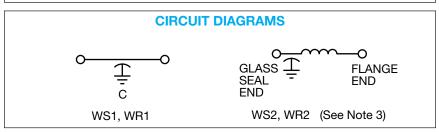
- 3. Operating Temperature Range: -55°C to +125°C
- 4. Insulation Resistance:

At 25°C: 1,000 megohm-microfarad

min., or 100,000 megohms

min., whichever is less


At 125°C: 100 megohm-microfarad min., or 10,000 megohms min., whichever is less


- 5. Dielectric Withstanding Voltage (DWV): R-level designs:
 - 2.0 times rated DC voltage

Class B, Class S designs:

2.5 times rated DC voltage

- 6. DC Resistance (DCR): .01 ohm, maximum
- 7. Dissipation Factor (DF): 3% maximum
- 8. Rated DC Current: 15 Amps, maximum
- 9. Maximum Installation Temperature: 300°C
- 10. Supplied with 60/40 solder preform for easy installation
- 11. Insertion Loss for the "C" and "L" circuits are equivalent due to the saturation characteristic of the ferrite bead element at full rated current. At lower currents the "L" becomes much more effective.

millimeters (inches)

0.05 (.002)	6.35 (.250)
0.13 (.005)	7.62 (.300)
0.64 (.025)	10.16 (.400)
0.8 (.03)	11.43 (.450)
1.27 (.050)	17.78 (.700)
5.08 (.200)	20.32 (.800)

(See Note 4)

	Dimensions					
Circuit Diagram	A ±.005	B Ref.				
L	.300	.800				
С	.200	.700				

Notes:

- 1. Outline drawing shows standard WS configuration. Also available with glass seal at the opposite end, WR reverse configuration.
- 2. MIL-F-28861/13 configuration "A" is equivalent to standard WS configuration. "B" is reverse WR configuration.
- 3. For WS2 or WR2 L-Section Filters inductor always positioned at epoxy-filled end.
- 4. Metric equivalent dimensions given for information only.

MIL-F-28861/13 (See Note 2)

Dash No.	Config.
001 through 008	Α
009 through 016	В

Solder-In Style High Temp EMI Filters

WS/WR Series - .400 Dia. - Circuits Available - C & L

SPECIFICATIONS

					Insertion Loss ² Per MIL-STD-220, +25°C					
AVX P/N	Current AMP	Circuit	DC Voltage	CAP ¹ Min.	500 KHz	1 MHz	10 MHz	100 MHz	1000 MHz	10 GHz
WS1C2-154H	15	С	50	.15	17	24	38	50	70	70
WS1C2-504H	15	С	50	.50	26	34	42	58	70	70
WS1C2-754H	15	С	50	.75	31	37	43	62	70	70
WS1C2-125H	15	С	50	1.2	33	37	52	70	70	70
WS2C2-154H	15	L	50	.15	17	26	40	53	70	70
WS2C2-504H	15	L	50	.50	26	36	44	60	70	70
WS2C2-754H	15	L	50	.75	31	40	44	64	70	70
WS2C2-125H	15	L	50	1.2	33	38	53	70	70	70
WS1N2-704H	15	С	70	.70	30	36	41	60	70	70
WS2N2-704H	15	L	70	.70	30	38	42	62	70	70
WS1A2-154H	15	С	100	.15	17	24	38	50	70	70
WS1A2-504H	15	С	100	.50	26	34	42	58	70	70
WS1A2-754H	15	С	100	.75	31	37	43	62	70	70
WS1A2-105H	15	С	100	1.0	31	40	48	64	70	70
WS2A2-154H	15	L	100	.15	17	26	40	53	70	70
WS2A2-504H	15	L	100	.50	26	34	44	60	70	70
WS2A2-754H	15	L	100	.75	31	40	44	64	70	70
WS2A2-105H	15	L	100	1.0	31	41	50	65	70	70
WS1L2-503H	15	С	200*	.050	7	15	34	42	70	70
WS1L2-154H	15	С	200*	.15	17	24	38	50	70	70
WS2L2-503H	15	L	200*	.050	7	15	34	44	70	70
WS2L2-154H	15	L	200*	.15	17	26	40	53	70	70
WS1E2-103H	15	С	400	.010	_	4	20	34	50	60
WS1E2-503H	15	С	400	.050	7	15	34	44	70	70
WS2E2-103H	15	L	400	.010	_	4	20	35	55	60
WS2E2-503H	15	L	400	.050	7	15	34	44	70	70

^{*} Rated 200 VDC or 125 VAC/400 Hz.

NOTE: AVX Filters' Standard configurations (e.g. ZS, YS, XS, WS) have the hermetic glass seal opposite the flange end. All parts are capable of the reverse configuration with the glass seal at the flange end. All parameters are otherwise identical. The part number changes from "S" to "R" (e.g., standard = ZS1C2-153H; reverse = ZR1C2-153H).

For special multi-unit assemblies see Multi-Component Filter Brackets section.

Decimal point values indicate capacitance in microfarads. Non-decimal point values indicate capacitance in picofarads.

² Insertion loss limits are based on theoretical values. Actual measurements may vary due to internal capacitor resonances and other design constraints.