QOUND

45-1218MHZ GAAS EDGE QAM INTEGRATED AMPLIFIER

Product Description

The RFAM3790 is an Integrated Edge QAM Amplifier Module. The part employs GaAs pHEMT die, GaAs MESFET die, a 20dB range variable attenuator and a power enable feature, has high output capability, and is operated from 45MHz to 1218MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

9 pin, 11.0 mm x 11.0 mm x 1.375 mm package

Product Features

- Excellent Linearity
- Extremely High Output Capability
- Voltage Controlled Attenuator
- Power Enable Featrure
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under all Terminations
- 28.5 dB Typical Gain at 1218MHz
- 410mA Typical at 12VDC

Applications

- 45MHz to 1218MHz Downstream Edge QAM RF Modulators
- Headend Equipment

Ordering Information

Part No.	Description
RFAM3790SB	Sample bag 5 pcs
RFAM3790SQ	Sample bag 25 pcs
RFAM3790SR	7" Reel with 100 pcs
RFAM3790TR7	7" Reel with 250 pcs
RFAM3790TR13	13" Reel with 750 pieces
RFAM3790PCBA-410	Fully assembled Evaluation Board
RFAM3790PCK-410	Fully assembled Evaluation Board with sample bag

Functional Block Diagram

Absolute Maximum Ratings

Parameter	Value / Range			
DC Supply over-voltage (5 minutes)	+14 V			
Storage Temperature	−40 to 110 °C			
Operating Mounting Base Temperature	−30 to 110 °C			

Operation of this device outside the parameter ranges given above may cause permanent damage.

Electrical Specifications

Parameter	Conditions (V+=12V, TMB=30°C, ZS=ZL=75Ω, ATT=0dB)	Min	Тур	Max	Unit
Power Gain	f=45MHz		27.0		dB
Power Gain	f=1218MHz	27.5	28.5	29.5	dB
Slope [1]	f=45MHz to 1218MHz	0.5	1.5	2.5	dB
Flatness of Frequency Response	f=45MHz to 1218MHz (Peak to Valley)		0.5	1.0	dB
Input Return Loss	f=45MHz to 1003MHz	18			dB
	f=1003MHz to 1218MHz	16			dB
Output Return Loss	f=45MHz to 1003MHz				dB
	f=1003MHz to 1218MHz				dB
Noise Figure	f=50MHz to 1218MHz		4.0	5.0	dB
Total Current Consumption (DC)			410	450	mA
Attenuator	V+=12V, TMB=30°C, ZS=ZL=75Ω				
Attenuator Range	Attenuator Voltage 0V to 12V				dB
Power Enable/Disable	V+=12V, TMB=30°C, ZS=ZL=75Ω				
	Logic high (3.3V) applied to power enable pin $^{[2]}$		Amp enabled		
	Logic low (0V) applied to power enable pin ^[3]		Amp disabled		

Electrical Specifications – continued-

Parameter	Conditions (V+=12V, TMB=30°C, ZS=ZL=75Ω, ATT=0dB)	Min	Тур	Max	Unit
Distortion					
Adjacent Channel Power Ratio (ACPR); N=4 contiguous 256QAM channels	Channel Power = 58dBmV; Adjacent channel up to 750 kHz from channel block edge			-58	dBc
	Channel Power = 58dBmV; Adjacent channel (750 kHz from channel block edge to 6MHz from channel block edge)			-60	dBc
	Channel Power = 58dBmV; Next-adjacent channel (6 MHz from channel block edge to 12 MHz from channel block edge)			-63	dBc
	Channel Power = 58dBmV; Third-adjacent channel (12 MHz from channel block edge to 18 MHz from channel block edge)			-65	dBc
2 nd Order Harmonic (HD2); N=1 256QAM channel	Channel Power = 66dBmV; In each of 2N contiguous 6 MHz channels coinciding with 2nd harmonic components (up to 1000MHz);			-63	dBc
3 rd Order Harmonic (HD3); N=1 256QAM channel	Channel Power = 66dBmV; In each of 3N contiguous 6 MHz channels coinciding with 3rd harmonic components (up to 1000MHz);			-63	dBc
СТВ			-67		dBc
XMOD	V _o =46dBmV, flat, 79 analog channels plus 75 digital channels		-60		dBc
CSO	(-6dB offset) ^{[4], [6]}		-70		dBc
CIN			64		dB
СТВ			-67		dBc
XMOD	$V_{\text{O}}\text{=}45\text{dBmV},$ flat, 79 analog channels plus 111 digital channels (-6dB offset) $^{\text{[5], [6]}}$		-61		dBc
CSO			-70		dBc
CIN			65		dB

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. Logic high is defined as power enable voltage >2V

3. Logic low is defined as power enable voltage <0.4V

4. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +46dBmV flat output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.

5. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +45dBmV flat output level, plus 111 digital channels,-6dB offset relative to the equivalent analog carrier.

 Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by ANSI/SCTE 6. Composite Triple Beat (CTB) - The CTB parameter is defined by ANSI/SCTE 6. Cross Modulation (XMOD) - Cross modulation (XMOD) is defined by ANSI/SCTE 58, measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).

Evaluation Board Assembly Drawing

Note:

The ground plane of the RFAM3790 module should be soldered onto a board equipped with as many thermal vias as possible. Underneath this thermal via array a heat sink with thermal grease needs to be placed which is able to dissipate the complete module DC power. In any case the modul backside temperature should not exceed 110°C.

Evaluation Board Schematic

RFAM3790

Evaluation Board Bill of Materials (BOM)

Reference Des.	Value	Description Manuf.		Part Number	
C1, C7	DNI	optional to improve matching in application			
C2, C3, C4, C5, C6, C8, C9	4.7nF	Capacitor, X7R, 50V, 10%, 0402	various		
R1	2.7kΩ	Resistor, TK200, 5%, 0603	various		
FB1	60Ω @ 100MHz	Impedance Bead, DCR 0.10hm, 800mA	Taiyo Yuden	BK 1608HS600-T	
D1, D4	25V	Diode, ESD Protection	QORVO	TQP200002	
D2	5.6V	Diode, Zener, 200mW	On Semiconductor	MM3Z5V6T1G	
D3	33V	Diode, Transient Suppressor, 5%	Diotec	TGL34-33A	
T1	1:1	Transformer	QORVO	RFXF0006	
T2	2.8:1	Transformer	QORVO	RFXF0008	
ТЗ	1:1	Transformer	QORVO	RFXF0009	
U1		Amplifier	QORVO	RFAM3790	

Notes:

Pin Configuration

Pin Description

Pin No.	Label	Description
1	Power Enable	Logic Level (3.3V) Power Enable Control
2	Att. Adjust	Voltage Adjustable Attenuator
3	RF IN (+)	RF AMP Positive Input
4	RF IN (-)	RF AMP Negative Input
5	RF OUT (-)	RF AMP Negative Output
6	12V Out	12V Output
7	RF OUT (+)	RF AMP Positive Output
8	5.6V V+	Supply Voltage 5.6V
9	12V V+	Supply Voltage 12V

RFAM3790

Package Outline Drawing (Dimensions in millimeter)

PCB metal land pattern (Dimensions in millimeter)

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC JS-001-2012	Caution! ESD-Sensitive Device
ESD-Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002	
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

• Halogen Free (Chlorine, Bromine)

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.