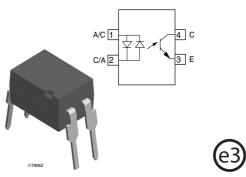


SFH620AA/ SFH620AGB

Vishay Semiconductors

Optocoupler, AC Input, 5300 V_{RMS}

Features


- High Current Transfer Ratios
- at 5 mA: 50-600 %
- at 1.0 mA: 45 % typical (> 13)
- Low CTR Degradation
- Good CTR Linearity Depending on Forward Current
- Isolation Test Voltage, 5300 V_{RMS}
- High Collector-emitter Voltage, V_{CEO} = 70 V
- Low Saturation Voltage
- Fast Switching Times
- Temperature Stable
- Low Coupling Capacitance
- End-stackable, .100'(2.54 mm) Spacing
- High Common-mode Interference Immunity (Unconnected Base)
- SMD Option, See SFH620A/SFH6206 Data Sheet
- · Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, Double Protection
- DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1
- CSA 93751
- BSI IEC60950 IEC60065

Description

The SFH620AA/ SFH620AGB features a high current transfer ratio, low coupling capacitance and high isolation voltage. These couplers have a GaAs infrared

emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic DIP-4 package.

The coupling devices are designed for signal transmission between two electrically separated circuits.

The couplers are end-stackable with 2.54 mm lead spacing.

Creepage and clearance distances of > 8.0 mm are achieved with option 6. This version complies with IEC 60950 (DIN VDE 0805) for reinforced insulation up to an operation voltage of 400 V_{BMS} or DC.

Order Information

Part	Remarks
SFH620AA	CTR 50 - 600 %, DIP-4
SFH620AGB	CTR 100 - 600 %, DIP-4
SFH620AA-X009	CTR 50 - 600 %, SMD-4 (option 9)
SFH620AGB-X007	CTR 100 - 600 %, SMD-4 (option 7)
SFH620AGB-X009	CTR 100 - 600 %, SMD-4 (option 9)

For additional information on the available options refer to Option Information.

Vishay Semiconductors

Absolute Maximum Ratings

 $T_{amb} = 25 \ ^{\circ}C$, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6.0	V
DC Forward current		١ _F	± 60	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	± 2.5	A
Total power dissipation		P _{diss}	100	mW

Output

Parameter	Test condition	Symbol	Value	Unit
Collector-emitter voltage		V _{CE}	70	V
Emitter-collector voltage		V _{EC}	7.0	V
Collector current		Ι _C	50	mA
	$t_p \le 1.0 \text{ ms}$	Ι _C	100	mA
Power dissipation		P _{diss}	150	mW

Coupler

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage (between emitter and detector, refer to climate DIN 40046, part 2, Nov. 74)		V _{ISO}	5300	V _{RMS}
Creepage			≥ 7.0	mm
Clearance			≥ 7.0	mm
Insulation thickness between emitter and detector			0.4	mm
Comparative tracking index per DIN IEC 112/VDE0 303, part 1			175	
Isolation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹²	Ω
	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹¹	Ω
Storage temperature		T _{stg}	- 55 to + 150	°C
Ambient temperature		T _{amb}	- 55 to + 100	°C
Junction temperature		Тј	100	°C
Soldering temperature	max. 10 s. Dip Soldering distance to seating plane ≥ 1.5 mm	T _{sld}	260	℃

Vishay Semiconductors

Electrical Characteristics

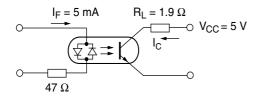
 $T_{amb} = 25 \ ^{\circ}C$, unless otherwise specified

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	$I_F = \pm 60 \text{ mA}$	V _F		1.25	1.65	V
Capacitance	V _R = 0 V, f = 1.0 MHz	CO		50		pF
Thermal resistance		R _{thja}		750		K/W

Output


Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter capacitance	V _{CE} = 5.0 V, f = 1.0 MHz	C _{CE}		6.8		pF
Thermal resistance		R _{thja}		500		K/W

Coupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Collector-emitter saturation voltage	I _F = 10 mA, I _C = 2.5 mA		V _{CEsat}		0.25	0.4	V
Coupling capacitance			CC		0.2		pF
Collector-emitter leakage current	V _{CE} = 10 V	SFH620AA	I _{CEO}		10	100	nA
		SFH620AGB	I _{CEO}		10	100	nA

Current Transfer Ratio

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
I _C /I _F	$I_F = \pm 5$ mA, $V_{CE} = 5.0$ V	SFH620AA			50-600		%
		SFH620AGB			100-600		%

isfh620aa_0

Figure 1. Switching Times (Typical Values) Linear Operation (saturated)

SFH620AA/ SFH620AGB

Vishay Semiconductors

Switching Characteristics

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Turn-on time	I_F = 5 mA, R_L = 1.9 K Ω , V_{CC} = 5 V	t _{on}		2.0		μs
Turn-off time	I_F = 5 mA, R_L = 1.9 K Ω , V_{CC} = 5 V	t _{off}		25		μs

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

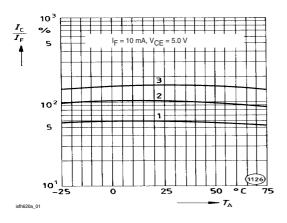


Figure 2. Current Transfer Ratio (CTR) vs. Temperature

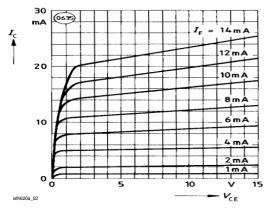


Figure 3. Output Characteristics (typ.) Collector Current vs. Collector-Emitter Voltage

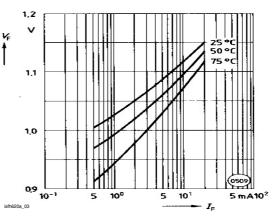


Figure 4. Diode Forward Voltage (typ.) vs. Forward Current

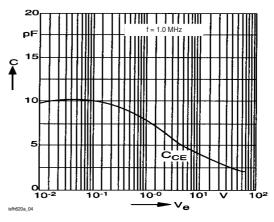


Figure 5. Transistor Capacitance (typ.) vs. Collector-Emitter Voltage

SFH620AA/ SFH620AGB

Vishay Semiconductors

Figure 6. Permissible Pulse Handling Capability Forward Current vs. Pulse Width

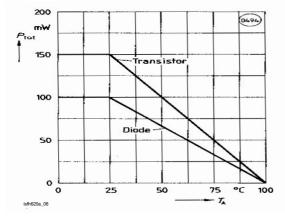


Figure 7. Permissible Power Dissipation vs. Ambient Temperature

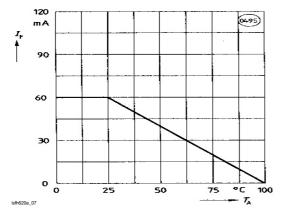
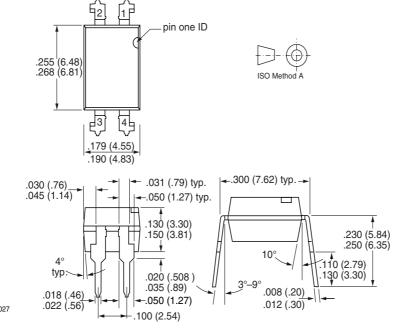
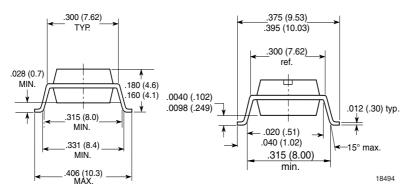



Figure 8. Permissible Diode Forward Current vs. Ambient Temperature

Vishay Semiconductors



i178027

Option 7

Option 9

SFH620AA/SFH620AGB

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.