

RoHS QxxxxLTx Series

Agency Approval

Agency	Agency File Number
<i>.</i> 9 <i>1</i>	L Package : E71639

Schematic Symbol

Main Features

Symbol	Value	Unit
I _{T(RMS)}	4 to 15	А
V _{DRM} /V _{RRM}	400 to 600	V
DIAC V _{BO}	33 to 43	V

Description

The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components.

Standard type devices normally operate in Quadrants I & III triggered from AC line.

Alternistor type Quadracs are used in circuits requiring high dv/dt capability.

Features & Benefits

- RoHS Compliant
- Surge capability up to 200 A

R

- Glass passivated junctions
- Voltage capability up to 600 V

Applications

Excellent for AC switching and phase control applications such as lighting and heating. Typical applications are AC solid-state switches, light dimmers, power tools, home/ brown goods and white goods appliances.

Alternistor Quadracs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated package is offered for ease of heat sinking with highest isolation voltage.

Absolute Maximum Ratings

					Value			
Symbol	Parameter		Oxx04LT	Qxx06LT / Qxx06LTH	Qxx08LT / Qxx08LTH	Qxx10LT / Qxx10LTH	Qxx15LT / Qxx15LTH	Unit
I _{T(RMS)}	RMS forward current	$\begin{array}{l} & \Omega xx04LT: T_{c} = 95^{\circ}C\\ & \Omega xx06LT/\Omega xx08LT/\Omega xx10LT: T_{c} = 90^{\circ}C\\ & \Omega xx15LT: T_{c} = 80^{\circ}C \end{array}$	4	6	8	10	15	А
	Pook pop ropotitivo aurgo aurgont	single half cycle; f = 50Hz; T _J (initial) = 25°C	46	65	83	100	167	А
ITSM	Peak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	55	80	100	120	200	
l²t	l²t value for fusing	t _p = 8.3ms	12.5	26.5	41	60	166	A ² s
di/dt	Critical rate-of-rise of on-state current	$f = 60Hz; T_{J} = 125^{\circ}C$	50		70		100	A/µs
I _{GM}	Peak gate current $T_{J} = 125^{\circ}C$				1.5			А
T _{stg}	Storage temperature range			-40 to 150				°C
Tj	Operating junction temperature range			-	40 to 12	5		°C

Note: xx = voltage

Electrical Characteristics (T_j = 25°C, unless otherwise specified) – Standard Quadrac

Symbol	Test Conditions			Qxx04LT	Qxx06LT	Qxx08LT	QXX10LT	Qxx15LT	Unit
l _H	I _T = 200mA (initial)	M	AX.	40	50	60	60	70	mA
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J}$ =100°C	MIN.	400V	75	150	175	200	300	
dv/dt		IVIIIN.	600V	50	125	150	175	200	V/µs
uvjut	V _p = V _{prm} ; gate open; T _i =125°C	MIN.	400V	50	100	120	150	200	v/µs
	$v_{\rm D} = v_{\rm DRM}$, gate open, $r_{\rm J} = 125$ C	IVIIIN.	600V	50	85	100	120	150	
dv/dt(c)	di/dt(c) = $0.54 \times I_{T(rms)} / ms; T_{J} = 125^{\circ}C$	MIN.		3	4			V/µs	
t _{gt}	(note 1)	T	/P.		3				μs

(1) Reference test circuit in figure 10 and waveform in figure 11; $C_{T} = 0.1 \mu F$ with 0.1 μ s rise time. Note: xx = voltage

Electrical Characteristics (T_J = 25°C, unless otherwise specified) – Alternistor Quadrac

					Va	lue							
Symbol	Test Conditions			<u> Оххо6LTH</u>	Оххо8LTH	Охх10LTH	Охх15LTH	Unit					
I _H	$I_{T} = 20 \text{mA} \text{ (initial)}$	M	AX.	50	50	60	70	mA					
)/)/)/)/ , note an ext 100%C	V V sets anan T 100°C	$V_{\rm c} = V_{\rm c}$; gets energy T = 100°C	$\lambda = \lambda = 100^{\circ}$	MIN.	400V	5	75	92	25	
dv/dt	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 100^{\circ}$ C		600V	42	25	7	75	V/µs					
uvjul	λ' λ' , gets energy 125%	N AINI	400V	4!	450		700						
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 125^{\circ}C$	MIN.	600V	350		60	00						
dv/dt(c)	di/dt(c) = $0.54 \times I_{T(rms)} / ms; T_{J} = 125^{\circ}C$	MIN. 25		25 30		0	V/µs						
t _{gt}	(note 1)	Т	YP.		3			μs					

(1) Reference test circuit in figure 10 and waveform in figure 11; C₇ = 0.1 μ F with 0.1 μ s rise time. Note: xx = voltage

Trigger DIAC Specifications

Symbol	Test Conditions		Value	Unit
ΔV_{BO}	Breakover Voltage Symmetry	MAX.	3	V
\ <i>\</i>	Dreakever Veltage, forward and reverse	MIN.	33	
V _{BO}	Breakover Voltage, forward and reverse	MAX.	43	V
$[\Delta V \pm]$	Dynamic Breakback Voltage, forward and reverse (note 1)	MIN.	5	V
I _{BO}	Peak Breakover Current	MAX.	25	uA
C _T	Trigger Firing Capacitance	MAX.	0.1	μF

(1) Reference test circuit in figure 10 and waveform in figure 11.

Static Characteristics

Symbol	Symbol Test Conditions			Value	Unit
V _{TM}	$I_{T} = 1.41 \times I_{T(rms)} A; t_{p} = 380 \mu s$	$I_{T} = 1.41 \times I_{T(rms)} A; t_{p} = 380 \mu s$			V
		T _J = 25°C		10	
I _{drm} / I _{rrm}	V _{drm} / V _{brm}	T _J = 100°C	MAX.	500	μA
		T _J = 125°C		2000	

Thermal Resistances

Symbol	Parameter		Value	Unit
R _{θ(J-C)}		Qxx04LT	3.6	
	Junction to case (AC)	Qxx06LT / Qxx06LTH	3.3	
		Qxx08LT / Qxx08LTH	2.8	°C/W
		Qxx10LT / Qxx10LTH	2.6	
		Qxx15LT / Qxx15LTH	2.1	
R _{e(J-A)}	Junction to ambient		50	°C/W

Note : xx = voltage

18 Average On-State Power Dissipation $[P_{D(AV)}]$ - (Watts) $\sim P = 9 \propto 0 \ ct = 1 \ dt$ Qxx15LT Qxx15LTH Qxx06LT/Qxx06LTH Qxx08LT/Qxx08LTH Qxx10LT/Qxx10LTH CURRENT WAVEFORM: Sinusoidal LOAD: Resistive or Inductive CONDUCTION ANGLE: 360° luctive 0 0 10 12 6 8 14 16 RMS On-State Current [I_{T(RMS)}] - (Amps)

Figure 5: Power Dissipation vs. RMS On-State Current

(Typical) (6A to 15A)

Figure 4: Power Dissipation vs. RMS On-State Current (Typical) (4A)

Figure 2: On-State Current vs. On-State Voltage (Typical) (4A)

16

QxxxxLTx Series

Figure 7: Surge Peak On-State Current vs. Number of Cycles

Note: xx = voltage

Figure 8: DIAC V_{BO} Change vs. Junction Temperature

Figure 9: Test Circuit

Figure 10: Test Circuit Waveform

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260°C +0/-5
Time within 5°C of actual peak Temperature (t _e)		20 – 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not exc	ceed	280°C

Physical Specifications

Terminal Finish	1005 Matte Tin-plated
Body Material	UL Recognized epoxy meeting flammability classification 94v-0
Lead Material	Copper Alloy

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 125°C, 1008 hours
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 320VDC, 85°C, 85%RH, 1008 hours
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours
Low-Temp Storage	-40°C, 1008 hours
Thermal Shock	MIL-STD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles
Autoclave (Pressure Cooker Test)	EIA/JEDEC: JESD22-A102 121°C, 100%RH, 2atm, 168 hours
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds
Solderability	ANSI/J-STD-002, Category 3, Test A
Lead Bend	MIL-STD-750: Method 2036, Condition E

Dimensions – TO-220AB (L-Package) – Isolated Mounting Tab

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
Ν	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Product Selector

Part Number	Voltage				Туре	Package
	400V	600V	800V	1000V	туре	Гаскауе
Qxx04LT	Х	Х			Quadrac	TO-220L
Qxx06LT	Х	Х			Quadrac	TO-220L
Qxx06LTH	Х	Х			Alternistor Quadrac	TO-220L
Qxx08LT	Х	Х			Quadrac	TO-220L
Qxx08LTH	Х	Х			Alternistor Quadrac	TO-220L
Qxx10LT	Х	Х			Quadrac	TO-220L
Qxx10LTH	Х	Х			Alternistor Quadrac	TO-220L
Qxx15LT	Х	Х			Quadrac	TO-220L
Qxx15LTH	Х	Х			Alternistor Quadrac	TO-220L

Note: xx = Voltage

Packing Options								
Part Number	Marking	Weight	Packing Mode	Base Quantity				
Qxx04LT	Qxx04LT	2.2 g	Bulk	500				
Qxx04LTTP	Qxx04LT	2.2 g	Tube	500 (50 per tube)				
Qxx06LT	Qxx06LT	2.2 g	Bulk	500				
Qxx06LTTP	Qxx06LT	2.2 g	Tube	500 (50 per tube)				
Qxx06LTH	Qxx06LTH	2.2 g	Bulk	500				
Qxx06LTHTP	Qxx06LTH	2.2 g	Tube	500 (50 per tube)				
Qxx08LT	Qxx08LT	2.2 g	Bulk	500				
Qxx08LTTP	Qxx08LT	2.2 g	Tube	500 (50 per tube)				
Qxx08LTH	Qxx08LTH	2.2 g	Bulk	500				
Qxx08LTHTP	Qxx08LTH	2.2 g	Tube	500 (50 per tube)				
Qxx10LT	Qxx10LT	2.2 g	Bulk	500				
Qxx10LTTP	Qxx10LT	2.2 g	Tube	500 (50 per tube)				
Qxx10LTH	Qxx10LTH	2.2 g	Bulk	500				
Qxx10LTHTP	Qxx10LTH	2.2 g	Tube	500 (50 per tube)				
Qxx15LT	Qxx15LT	2.2 g	Bulk	500				
Qxx15LTTP	Qxx15LT	2.2 g	Tube	500 (50 per tube)				
Qxx15LTH	Qxx15LTH	2.2 g	Bulk	500				
Qxx15LTHTP	Qxx15LTH	2.2 g	Tube	500 (50 per tube)				

Note: xx = Voltage

Part Marking System

TO-220 AB - (L Package)