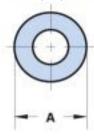
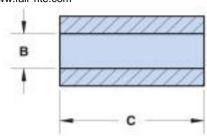

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry


Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com



Part Number: 2673000201

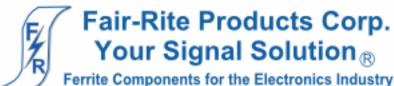
Frequency Range: Lower Frequencies < 50 MHz (73 material)

Description: 73 SHIELD BEAD

Application: Suppression Components

Where Used: Board Component

Part Type: EMI Suppression Beads


Mechanical Specifications

Weight: .040 (g)

Part Type Information

Fair-Rite offers a broad selection of ferrite EMI suppression beads with guaranteed minimum impedance specifications.

- -Beads with a '1' as the last digit of the part number are not burnished. Parts that are burnished to break the sharp edges have a '2' as the last digit.
- -Upon request beads can be supplied with a Parylene coating. The last digit of the Parylene coated part is a '4'. The minimum coating thickness beads is 0.005 mm (.0002").
- -The column 'H (Oe)' gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of 'H' times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note www.fair-rite.com/newfair/pdf/CUP%20Paper.pdf document for 'How to choose Ferrite Components for EMI Suppression.
- -Suppression beads are controlled for impedances only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.
- -Single turn impedance tests for 73 and 43 material beads are performed on the 4193A Vector Impedance Analyzer. The 61 material beads are tested on the 4291A RF Impedance Analyzer. Beads are tested with the shortest practical wire length.
- -For any EMI suppression bead requirement not listed here, feel free to contact our customer service for availability and pricing.
- -The 'C' dimension, the bead length, can be modified to suit specific applications.
- -Our 'Shield Bead Kit' (part number 0199000019) contains a selection of these beads.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1= not burnished, 2 = burnished and 4 = Parylene coated.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2673000201 Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	2.00	-0.15	0.076	-
В	1.05	+0.10	0.043	ı
С	3.80	±0.25	0.150	ı
D	-	-	-	-
Е	•	ı	-	ı
F	•	ı	-	ı
G	•	ı	-	ı
Н	-		-	
J	-		-	
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)		
1 MHz	5.2	
5 MHz	12.5	
10 MHz+	18	
25 MHz+	27	

Electrical Properties	
H(Oe)	2.80

Land Patterns

V	W	Х	Υ	Z
-	-	-		-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{l} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 2673000201 Printed: 2013-07-03

Ferrite Material Constants

Specific Heat 0.25 cal/g/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²


Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

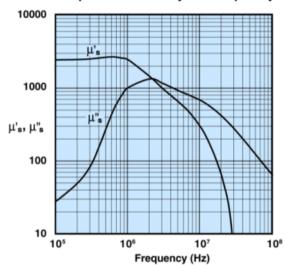
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite, supplied only in small cores, to suppress conducted EMI frequencies below 50 MHz.

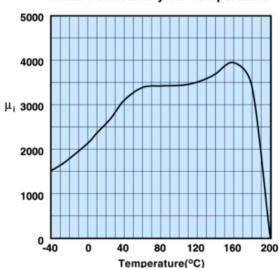
EMI suppression beads, beads on leads, SM beads, and multi-aperture cores are all available in 73 material.

Fair-Rite Product's Catalog Part Data Sheet, 2673000201

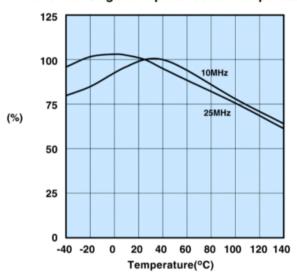
Printed: 2013-07-03



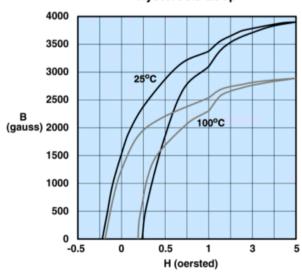
73 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability B < 10 gauss		μ_{i}	2500
Flux Density	gauss	В	3900
@ Field Strength	oersted	н	5
Residual Flux Density	gauss	B _r	1500
Coercive Force	oersted	H _o	0.24
Loss Factor	10-6	tan δ/μ;	10
@ Frequency	MHz		0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.65
Curie Temperature	°C	T _c	>160
Resistivity	Ωcm	ρ	1x10 ²

Complex Permeability vs. Frequency


Measured on a 2673000301 bead using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

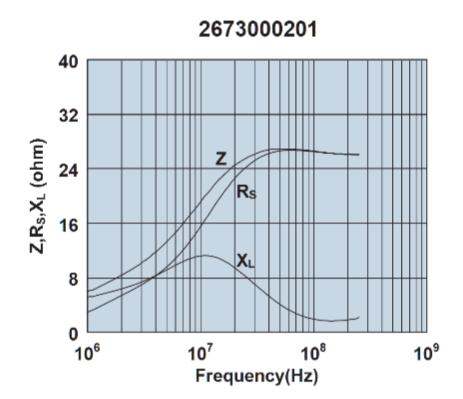

Measured on a 17/10/6mm toroid at 10kHz.

Percent of Original Impedance vs. Temperature

Measured on a 2673000301 using the HP4291A.

Hysteresis Loop

Measured on a 17/10/6mm toroid at 10kHz.



Fair-Rite Product's Catalog Part Data Sheet, 2673000201 Printed: 2013-07-03

Impedance, reactance, and resistance vs. frequency.