MAC12SM, MAC12SN ### **Description** Designed for industrial and consumer applications for full wave control of AC loads such as appliance controls, heater controls, motor controls, and other power switching applications. # **Features** - Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3 - High Commutating di/dt and High Immunity to dv/dt @ 125°C - Minimizes Snubber Networks for Protection - Blocking Voltage to 800 Volts - On-State Current Rating of 12 Amperes RMS at 80°C - High Surge Current Capability – 100 Amperes - Industry Standard TO-220AB Package for Ease of Design - Glass Passivated Junctions for Reliability and Uniformity - These Devices are Pb–Free and are RoHS Compliant ## **Pin Out** ## **Functional Diagram** # **Additional Information** Samples # **Maximum Ratings** $(T_J = 25^{\circ}C \text{ unless otherwise noted})$ | Rating | Symbol | Value | Unit | |--|---|-------------|-------| | · · · · · · · · · · · · · · · · · · · | 2HCDG V _{DRM'}
2HCMG V _{RRM} | 400
600 | V | | On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _c = 70°C) | I _{T (RMS)} | 12 | А | | Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T_c = 125°C) | I _{TSM} | 90 | А | | Circuit Fusing Consideration (t = 8.3 ms) | l²t | 33 | A²sec | | Peak Gate Power (Pulse Width \leq 1.0 μ s, $T_{\rm C}$ = 80°C) | P _{GM} | 16 | W | | Average Gate Power (t = 8.3 ms, T_c = 80°C) | $P_{G(AV)}$ | 0.35 | W | | Operating Junction Temperature Range | T _J | -40 to +110 | °C | | Storage Temperature Range | T _{stg} | -40 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. ### **Thermal Characteristics** | Rating | Symbol | Value | Unit | | |--|---|--------------------------------------|-------------|------| | Thermal Resistance, | Junction-to-Case (AC) Junction-to-Ambient | R _{ejc}
R _{eja} | 2.2
62.5 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | | T_{L} | 260 | °C | ## Electrical Characteristics - OFF (T, = 25°C unless otherwise noted; Electricals apply in both directions) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|------------------------|--------------------|-----|-----|------|-------| | Peak Repetitive Blocking Current | T ₁ = 25°C | I _{DRM} , | - | - | 0.01 | m A | | $(V_D = V_{DRM} = V_{RRM})$; Gate Open) | T _J = 125°C | IRRM | - | - | 2.0 | mA mA | ## Electrical Characteristics - ON (T₁ = 25°C unless otherwise noted; Electricals apply in both directions) | Characteristic | | Symbol | Min | Тур | Max | Unit | |---|--------------|-----------------|------|------|------|------| | Peak On–State Voltage (Note 2) ($I_{TM} = \pm 11 \text{ A}$) | | V _{TM} | - | 1.2 | 1.85 | V | | Gate Trigger Current | MT2(+), G(+) | | - | 13 | 5.0 | mA | | (Continuous dc) | MT2(+), G(-) | I _{GT} | - | 13 | 5.0 | | | $(V_D = 12 \text{ V}, R_L = 100 \Omega)$ | MT2(-), G(-) | | - | 13 | 5.0 | | | Holding Current (V _D = 12 V, Gate Open, Initiating Current = ±150 mA)) | | I _H | - | 30 | 10 | mA | | Latching Current $(V_D = 24 \text{ V, I}_G = 50 \text{ mA})$ | MT2(+), G(+) | I _L | - | 20 | 15 | mA | | | MT2(+), G(-) | | - | 30 | 20 | | | | MT2(-), G(-) | | - | 20 | 15 | | | M | | | 0.45 | 0.68 | 1.5 | | | Gate Trigger Voltage $(V_D = 12 \text{ V}, R_L = 100 \Omega)$ | MT2(+), G(-) | V _{GT} | 0.45 | 0.62 | 1.5 | V | | | MT2(-), G(-) | | 0.45 | 0.67 | 1.5 | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions 2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. # **Dynamic Characteristics** | Characteristic | Symbol | Min | Тур | Max | Unit | |--|--------|-----|-----|-----|------| | Rate of Change of Commutating Current See Figure 10.
$(V_D = 400 \text{V}, \text{I}_{TM} = 4.4 \text{A}, \text{Commutating dv/dt} = 18 \text{V/µs,Gate Open,T}_J = 125 ^{\circ}\text{C}, \text{f} = 250 \text{Hz, No Snubber)} \text{C}_L = 10 \text{µF} \text{L}_L = 40 \text{mH}$ | dV/dt | 8.0 | 10 | - | A/ms | | Critical Rate of Rise of Off-State Voltage
(VD = Rated VDRM, Exponential Waveform, Gate Open, TJ = 125°C) | dV/dt | 15 | 40 | - | V/µs | | Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 µsec; diG/dt = 100 mA/µsec; lgt = 100 mA; f = 60 Hz | di/dt | _ | - | 10 | A/µs | # **Voltage Current Characteristic of SCR** | Symbol | Parameter | | |------------------|---|--| | V _{DRM} | Peak Repetitive Forward Off State Voltage | | | I _{DRM} | Peak Forward Blocking Current | | | V _{RRM} | Peak Repetitive Reverse Off State Voltage | | | I _{RRM} | Peak Reverse Blocking Current | | | V_{TM} | Maximum On State Voltage | | | I _H | Holding Current | | ### **Quadrant Definitions for a Triac** All polarities are referenced to MT1. $\dot{\text{With}}$ in—phase signals (using standard AC lines) quadrants I and III are used Figure 1. Typical Gate Trigger Current vs Junction Temperature Figure 2. Typical Gate Trigger Voltage vs Junction Temperature Figure 3. Typical Holding Current vs Junction Temperature Figure 4. Typical Latching Current vs Junction Temperature **Figure 5. Typical RMS Current Derating** Figure 6. On-State Power Dissipation Figure 8. Typical Thermal Response ### **Dimensions** # **Part Marking System** | Dim | Inches | | Millimeters | | | |-----|--------|-------|-------------|-------|--| | Dim | Min | Max | Min | Max | | | Α | 0.590 | 0.620 | 14.99 | 15.75 | | | В | 0.380 | 0.420 | 9.65 | 10.67 | | | С | 0.178 | 0.188 | 4.52 | 4.78 | | | D | 0.025 | 0.035 | 0.64 | 0.89 | | | F | 0.142 | 0.147 | 3.61 | 3.73 | | | G | 0.095 | 0.105 | 2.41 | 2.67 | | | Н | 0.110 | 0.130 | 2.79 | 3.30 | | | J | 0.018 | 0.024 | 0.46 | 0.61 | | | K | 0.540 | 0.575 | 13.72 | 14.61 | | | L | 0.060 | 0.075 | 1.52 | 1.91 | | | N | 0.195 | 0.205 | 4.95 | 5.21 | | | Q | 0.105 | 0.115 | 2.67 | 2.92 | | | R | 0.085 | 0.095 | 2.16 | 2.41 | | | S | 0.045 | 0.060 | 1.14 | 1.52 | | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | | U | 0.000 | 0.050 | 0.00 | 1.27 | | | V | 0.045 | | 1.15 | _ | | | Z | | 0.080 | _ | 2.04 | | | Pin Assignment | | | | | |----------------|-----------------|--|--|--| | 1 | Main Terminal 1 | | | | | 2 | Main Terminal 2 | | | | | 3 | Gate | | | | | 4 | No Connection | | | | | | | | | | | Ordering Information | | | | | | |----------------------|-----------|------------------|--|--|--| | Device | Package | Shipping | | | | | MAC12SMG | TO-220AB | EOO Unito / Dail | | | | | MAC12SNG | (Pb-Free) | 500 Units / Rail | | | | - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.