
UG376: OCCUPANCY-EXP-EVB User’s
Guide

The Silicon Labs’ OCCUPANCY-EXP-EVB evaluation kit is an ex-
pansion board for EFM32 Starter Kits (STKs). The evaluation kit is
intended for demonstration and evaluation of an occupancy sens-
ing and ambient light sensing system with Silicon Labs MCU and
sensor products.
Note: Software examples are provided for the EFM32 Pearl Gecko12 Starter Kit
SLSTK3402A (sold separately).
 

KEY FEATURES

• Quick start demonstration of occupancy
sensing and ambient light measurements.

• Discusses the theory of operation and
implementation considerations of
occupancy sensing and ambient light
sensing systems.

• Provides performance summary and
testing methodologies for evaluating
systems.

• Compatible with SLSTK3402A EFM32
PG12 starter kit.

SOFTWARE FEATURES

• Firmware Code
• Energy Profiler
• PIR GUI
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1.  Introduction

The Silicon Labs’ OCCUPANCY-EXP-EVB evaluation kit is an expansion board for EFM32 Starter Kits (STKs). The evaluation kit is
intended for demonstration and evaluation of an occupancy sensing and ambient light sensing system with Silicon Labs MCU and sen-
sor products.

Note: Software examples are provided for the EFM32 Pearl Gecko12 Starter Kit SLSTK3402A (sold separately).
 

1.1  Getting Started

1. Connect the OCCUPANCY-EXP-EB board to the SLSTK3402A EFM32 PG12 Starter Kit.
2. Launch the OCCUPANCY-EXP-EVB example code from Simplicity Studio. Follow the instructions in 7.1 Importing the Firmware

Example
3. Select a demo on the LCD screen by navigating with the PB0 button.
4. For the PIR demo, the LED will light up for motion events. The PIR demo will also stream samples to the PIR GUI tool for wave-

form visualization.

For test setup, follow the description in 5.1.1 Detection Sensitivity.The firmware is set to assert the motion signal for 5 seconds
after motion is detected.

5. For the ambient light demo, the ambient light level in lux will be reported on the LCD.
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2.  Kit Block Diagram
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Figure 2.1.  Occupancy Sensing and System Block Diagram
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3.  Kit Hardware Layout
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Figure 3.1.  Kit Hardware Layout
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4.  Theory of Operation

From offices to the home, connected energy-efficient systems can generate energy savings and personalize work and living spaces.
Lighting systems can benefit from occupancy sensors, which can turn off lights when not needed, and ambient light sensors which can
adjust the ambient light level based on available light. These systems need to be robust and low power.

Using Silicon Labs EFM32/EFR32 MCUs and Si1153 ambient light sensor, this evaluation kit demonstrates an occupancy sensing and
ambient light sensing solution.

At a glance, the occupancy sensing circuit is implemented by a low-cost analog PIR sensor with an op-amp based bandpass filter opti-
mized for low power and high sensitivity. The strength of this solution comes in the signal processing implemented on the MCU. The
MCU implements a software digital filter to further reduce noise and a configurable motion detector. The MCU stays in EM2 sleep mode
during sampling and only wakes up for motion events and periodically to update the filter. This design was tested to be robust for occu-
pancy detection and immune against electronic noise, ambient lighting and temperature changes.

The ambient light sensing circuit is based on the Si1153 digital optical proximity and ambient light sensor. The Si1153 has an integrated
photodiode for light measurements and can be configured for autonomous or directed operation. Ambient light levels, as perceived by
humans, are estimated by using both integrated photodiodes. Additionally, optical flicker rejection is reduced through an efficient ADC
sampling method.

This user guide discusses the theory of operation and test results of both the occupancy sensing and ambient light sensing solutions.
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4.1  PIR Sensor & Optical Design

The pyroelectric infrared (PIR) sensor is used in many occupancy-sensing systems. The sensor converts fluctuations in incoming infra-
red (IR) radiation into an analog voltage. PIR sensors consist of an optical filter, pyroelectric elements, and a buffer. The figure below
shows a circuit representation of the sensor. The optical filter only allows IR radiation to enter the sensor. The elements are connected
in series in opposite polarity to generate differential sensing. If a common mode IR disturbance occurs, such as a change in the ambi-
ent temperature, both elements generate voltages that oppose each other and cancel.
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Figure 4.1.  PIR Sensors Have an Optical Filter, Pyroelectric Elements and a Buffer

The output of the pyroelectric elements is buffered with a JFET source follower because of the high-output impedance of the pyroelec-
tric elements. The JFET bias current is set by the Rs resistor, which affects the sensor sensitivity, noise, and current consumption. The
output signal is taken at the source terminal of the sensor.

An illustration of the VSIGNAL output signal is shown in the right half of the figure below moving across the field of view of the sensor.
The DC value is typically between 0.5 – 1 V and the signal amplitude is in the range of 10 s of µV to mV. The amplitude depends on the
object's distance, size, temperature and speed. The width of pulse is related to the speed of the object and the size of the detection
zones.

An important consideration for PIR sensor is power supply rejection. The power supply rejection at the source output is limited to ~20
dB attenuation of variation at the drain input due to the internal source follower circuit. To achieve a low noise signal, proper power
supply design must be considered, which is discussed in 4.4.1 Power Supply Design.

The other major component in the optical design is a Fresnel lens placed in front of the PIR sensor. The lens increases the sensitivity of
the system by focusing the field of view into detection zones and is essential for the proper functioning of a PIR system. The lens is
comprised of multiple lenses at different angles to create the detection zones as shown in the figure below. The lens design will set the
detection pattern and field of view of the application. Examples of optimizations are narrow or wide field of views or detection patterns
meant to cover wide space from overhead. The end application should inform the design of the lens and should not be left unoptimized.

PIR Elements

Lens

Detection 
Zones

2 3 41 5
+ -

1 2 3 4 5

VSIGNAL

Figure 4.2.  PIR Fresnel Lens Focus the IR to Increase Range and are Made of Multiple Lenses to Create Detection Zones

The left-hand side of the figure above shows the pyroelectric elements interacting with a lens array that consists of three lenses. The
lens focuses the light onto the elements. The lens at different angles causes the three detection zones per element. Consider a person
walking across the detection pattern, as indicated by the objects at the top. As they approach position 2, the heat is picked up by the
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positive element, causing a rise in the output voltage. As they walk past position 4, the negative element picks up the heat while the
positive element sees nothing and the output goes negative.
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4.2  Analog Signal Amplification and Filtering

The analog signal amplification and filtering is shown in the figure below. The amplification scales the signal, so that the amplitude is
large enough to interface with the detector. The bandpass filtering removes high-frequency noise and low-frequency drift that are not
associated with motion.
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Figure 4.3.  Simplified Schematic Showing Amplification and Bandpass Filtering

The PIR signal initially comes from the source terminal of U2. The bias current of the PIR sensor is set by R1. Maximum optical sensi-
tivity is obtained around 10-100 kΩ, however these source resistances result in high bias current which is not suitable for low power
designs. The bias current can be calculated by dividing the nominal source voltage specified in the sensor datasheet by the source
resistance. The source resistor was set at 1 MΩ to decrease the bias current to under 1 µA. The increased source resistance was
measured on a typical part to result in -30% sensitivity, which is an acceptable tradeoff for the reduced bias current.

The amplification is provided by the non-inverting op-amp circuit of U5. The non-inverting circuit has high input impedance and does not
require another voltage source to bias the output. An inverting architecture would need a high-impedance resistor divider and sizable
decoupling capacitor to form the virtual ground voltage and avoid coupling power rail variation. The passband gain and filter cutoff fre-
quencies are calculated below. The low-cutoff frequency strongly affects how the system responds to motion. A lower-cutoff frequency
suppresses slow motion peaks less increasing system sensitivity to slow motion, but also allows more flicker noise and drift effects into
the system. Typical designs might use a low-cutoff frequency between 0.1 – 1 Hz. A caution on very low-cutoff frequencies is that it
introduces a long RC into the system which can take a long time to settle and can require large resistances and capacitances which
have implications on size and cost. The high-cutoff frequency can be adjusted to control high-frequency noise. However, be careful to
avoid reducing the passband gain.

Av = 1 + R3
R2 = 101, fc,low = 1

2π × R2 × C1 = 0.48  Hz, fc,high = 1
2π × R3 × C2 = 4.82  Hz

Equation 1: Hand Calculations for Filter Passband Gain and Cutoff Frequencies

The relevant characteristics of the op-amp are its current consumption and voltage noise. For a low-power system, sub µA level op-
amps can be used. In exchange for the low current consumption, these op-amps will have reduced gain-bandwidth or slew rate consid-
erations. Aim to have the gain-bandwidth at least a decade above the circuit gain-bandwidth to avoid non-ideal op-amp effects. Other
analog designs will go to higher passband gain and split the system gain into multiple stages to avoid the gain-bandwidth limitation.
This design demonstrates that the higher gain is not necessary and that a second op-amp stage can be eliminated.

This design uses an external op-amp to get to the lowest system current. The EFM32 MCUs have internal op-amps that can also be
used to replace the external op-amp. This reduces BOM cost and board space as all amplification and detection can be performed
inside the MCU. The firmware supports the internal op-amp configuration. This requires use of the op-amp main ports.

The differential input to the ADC is taken at the main bandpass output and between R2 and C1 which are the components which set the
low-frequency cutoff. The differential voltage between these nodes eliminates the unity gain low-frequency response of the non-invert-
ing amplifier, which is important to remove flow-frequency flicker noise. The magnitude of the bandpass filter is shown in the figure be-
low. The passband gain is slightly less than the hand calculation voltage gain due to the proximity of the two poles.
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Figure 4.4.  Bandpass Characteristic of ADC_P – ADC_N

The start up time of this circuit depends on the time constant R3 * C1. During start-up, the op-amp saturates at the positive power rail
while the C1 capacitor charges. Due to the high resistance and capacitance for large gain and low frequency cutoff, this can lead to
tens of seconds for start up time.

Some designs place diodes across the feedback network of the non-inverting amplifier to short the feedback resistor R3 during start up
when a large forward voltage occurs across the diode. While this is effective in reducing the start-up time, the parasitic parallel resist-
ance and saturation current cause a reduction in the passband gain, even at low voltage. This effect was simulated and measured to
cause approximately a 30% loss in passband gain with a 3.3 MΩ feedback resistor while using a low saturation current diode. Further-
more, this can only be applied to the first stage, as the second stage will consistently exceed the forward voltage due to the high gain,
resulting in gain attenuation.

This design eliminates the feedback diodes to restore the sensitivity. The start up time is equivalent to start up times on designs which
do not have diodes on their second stage and better than two stage designs with no diodes.
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4.3  Signal Digitization and Detection

The motion signal is digitized by an ADC and analyzed by a detection algorithm with adaptive thresholds. The adaptive thresholds are
based upon a software low passed version of the motion signal to provide additional drift removal. The ADC sampling operates fully
autonomously in EM2 deep sleep allowing for low-power operation while the hardware thresholds allow for immediate MCU wakeup
upon detection. A block diagram of the firmware operation is shown in the figure below. The firmware is provided as a demonstration
and the operation can be easily modified or augmented if other optimizations are desired.

ADC_P

ADC_N
Callbacks

32 Hz

8 Hz

ADC Output on Hardware Threshold

Adaptive Thresholds EM2 Deep Sleep  

EM0 Active

Low Pass Filter
0.5 Hz

ADC &
Window 

Threshold

ADC FIFO
4 samples

Detector

Figure 4.5.  Firmware Block Diagram

The ADC is operated differentially to cancel out the low-frequency drift common on the ADC_P and ADC_N inputs. The inputs are rout-
ed through the analog APORT buses allowing for flexible pin selection for the inputs. The sampling clock is driven by the CRYOTIMER
block connected through the peripheral reflex system (PRS) to trigger the ADC sampling. The ADC has software programmable thresh-
olds that can be used to interrupt the MCU. Both the threshold interrupt and ADC FIFO interrupt are enabled, so that the host can be
informed when detection has occurred or to update the thresholds. The batching of samples in the ADC FIFO prior to the low-pass filter
reduces the wakeup frequency of the MCU for the low-pass filter and correspondingly the current consumption.

The ADC is operated on the 1.25 V internal reference and at 16-bit resolution. This configuration gives 19.1 µV PIR sensor input refer-
red resolution.

The detector is a window comparator centered around the output of the software low-pass filter. By adjusting the center of the window,
the detector sensitivity to low-frequency drift is further reduced. The detector threshold determines motion sensitivity and noise sensitivi-
ty of the system which can be translated back to detection distance and false positive rate. The motion sensitivity is Threshold / Hsys-

tem(jω) where Hsystem(jω) is the optical input to ADC output transfer function.

To increase the motion sensitivity and detection distance, either decrease the threshold or increase the system sensitivity in optical,
sensor, or analog blocks. The detection level to noise ratio is Threshold / Noise system where Noise system is the combination of all noise
sources referred to the output. If the threshold is too low, false positives occur, but if it is too high, the motion sensitivity is reduced. As a
rule of thumb, keep the threshold at a minimum of 5 times the RMS noise of the system. Adjusting the threshold is a trade off between
motion sensitivity and noise sensitivity, but to increase the detection distance at a set false positive rate, either the system gain must be
increased, or the system noise must be reduced.

The low-pass filter that feeds the detector is implemented as a discrete time first order IIR low-pass filter. The filtered output is fed back
to the ADC to generate the upper and lower thresholds of a window detector. This helps to eliminate any remaining drift in the signal.
The filter cutoff frequency is configurable in software and was set at 0.5 Hz to match the analog cutoff frequency.
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4.4  Additional Occupancy Sensing Considerations

4.4.1  Power Supply Design

The power supply rejection of the PIR circuit is limited by the PIR sensor JFET source follower to approximately 20 dB. Transients and
noise on the power supply can couple into the system and cause false detections. The power rail should be regulated and filtered to
minimize disturbances.

The PIR sensor supply should be regulated with a separate LDO that has good line regulation. Minimize power rail series resistance to
reduce the voltage droop during heavy load current.
RC filtering should be used at the drain of the PIR sensor to reduce the power supply noise coupling into the signal. The power supply
filter corner should be lower than the signal lower frequency corner. To achieve the low frequency corner, the series resistance can be
increased to keep the capacitance small. The series resistance causes a reduction in the PIR VDS. For this design, reducing the VDS
below 1.5 V was found to start to affect the signal gain. From this VDS,min, combined with VS and RS the maximum drain resistance to
avoid signal gain loss can be computed.

If a disturbance is known ahead of time, such as a wireless transmission, the detection can be temporarily disabled during the event to
prevent false detection. The detection threshold can be increased to reduce the transient sensitivity. However, this also reduces the
motion sensitivity.

4.4.2  Performance Improvements

Applications may want to optimize this system for a specific system performance. This section discusses modifications to optimize for
high sensitivity and low power.

For high-sensitivity long-range detection performance, the system needs to maximize the system gain and minimize noise. Starting at
the sensor, look for PIR sensors with high responsivity and low noise. Set the bias resistance closer to the manufacturer’s recommen-
ded value to avoid the sensitivity loss associated with the low-bias current used in this design. Field of view and detection distance can
be traded off in the Fresnel lens. Multiple PIR sensors can be used to restore the system field of view. Larger Fresnel lens arrays can
be mounted further away from the sensor and focus IR from further distances. The low-frequency corner of the filter can be reduced to
broaden the energy captured. Most designs will not go below 0.1 - 0.25 Hz. The analog gain can be increased but may need to be split
across a second stage. Reducing the system noise will allow decreasing the motion threshold at the same false detection rate.

For low-power designs, the current consumption is mainly in the EM2 sleep current and software processing. The EM2 sleep current
can be reduced further through disabling RAM retention. Decreasing the adaptive threshold refresh rate will reduce the EM0 current
consumption. As an alternative to the software-based detection, the analog comparators on the EFM32 can be used as an analog win-
dow comparator. The comparators can operate at as low as 50 nA current consumption.

UG376: OCCUPANCY-EXP-EVB User’s Guide
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4.5  Ambient Light Sensing

Ambient light sensors measure light in terms of its perceived brightness to the human eye. The scientific field of optics related to per-
ceived human brightness is known as photometry. The human eye has a weighed response to visible light known as the photopic re-
sponse, as shown in the figure below.

Figure 4.6.  Relative Sensitivity Curves for the CIE Photopic Curve and the Si1153 Visible and IR Photodiodes

The amount of light incident on a surface per unit area is known as illuminance. The unit of illuminance is lux. Typical illuminance levels
for several conditions are listed in the table below as a reference. The important parameters of an ambient light sensor are its accuracy,
light source variation, and current consumption.

Table 4.1.  Typical Illuminance Levels

Condition Illumination (lux)

Nighttime < 1

Indoor Lighting 100 - 500

Overcast Day 1000

Full Daylight 10,000 – 100,000

The Si1153 has two photodiode responses, a visible photodiode which peaks near 450 nm and an infrared (IR) photodiode that peaks
near 800 nm. These two measurements are combine to create equations that estimate the illuminance. The equations depend on esti-
mations of the spectral output of the light and the coefficients used depend on the type of light characterized by the IR to visible ratio.
The following equations were empirically derived by testing multiple incandescent, fluorescent, halogen and LED bulbs. These equa-
tions are derived for broadband sources, and should not be used for accurate illuminance measurements of narrow band or colored
sources without additional characterization.
Condition Lux Equation

1 < IR
Visible

lux = 0.0938 × Visible + - 0.0131 × IR

0.7 < IR
Visible < 1 lux = 0.1842 × Visible + - 0.0822 × IR

IR
Visible < 0.7 lux = - 0.2140 × Visible + 0.5302 × IR

Ambient light sensors often have functionality to reject optical flickering of the lights at the power mains frequencies and its harmonics.
In older certain lighting, the optical flickering can be as much as 20% of the average intensity.

Rejection of the optical flicker is accomplished by integrating over 100 ms, which provides both 50 and 60 Hz rejection. In this imple-
mentation, the Si1153 is commanded to perform 16 samples of 24.4 μs evenly spaced in 100 ms. These samples are averaged to form
the final ADC result. This sampling approach provides effective optical flicker rejection while also efficiently conserving power.
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5.  Test Results

5.1  Occupancy Sensing

5.1.1  Detection Sensitivity

The detection distance was tested at various distances. The board was mounted on the wall, 2 m above the floor. Testing was only
performed at the 0° angle. The test consisted of an initial idle time of 30 seconds, walking in alternate directions 5 times at 15 second
intervals, and a final 30 second idle time. The direction of movement was across the field of view of the sensor. Detection is counted if
the system detects motion on any of walks. False detection is counted if the system detects motion at any point during either of the idle
periods.

The software was configured with its default configuration of 32 Hz ADC sampling and 1024 lsb window size.
Lens Type Detection Distance False Detections

IML-0685 Wide Angle 30 ft None

IML-0588 Ceiling Type 25 ft None

Figure 5.1.  Typical Motion Amplitude Over Distance

5.1.2  Noise Immunity

The false alarm rate and noise immunity of the system was tested through several approaches detailed below. The system was found
to be robust against ambient change, temperature changes and vibration.

Table 5.1.  False Alarm Summary

Test False Detections

24-hour Ambient Light & Temperature Test None

Mechanical Shock Test None

Hot Air Test None

The tests were performed without a person in the field of view of the sensor. Any motion detection would be counted as a false detec-
tion.

The 24-hour ambient test was performed by leaving the system in an empty room facing a window with sunlight exposure. The system
was exposed to daylight variation and temperature variation over the course of the day and digitally monitored for false detections. This
long duration test also verified that the electronic noise of the circuit would not trigger a false positive.

The mechanical shock test was performed by mounting the detector on a table and hitting the table next to the detector and verifying
there were no false detections.

The hot air test exposed the detector to turbulent hot air across the face of the detector. The detector was monitored for false detections
when the hot air was turned on and off.
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5.1.3  Power Measurement

The current consumption of the system was measured using the Advanced Energy Monitoring (AEM) tool included in the Starter Kit
hardware and Simplicity Studio. This tool allows for real time monitoring of current consumption with 0.1 µA resolution at 6.3 ksps. Aver-
age current was measured over 30 s to account for the pulsed nature of the software. All current consumption through the VMCU power
rail is measured which includes the MCU, LDO, op-amp, PIR sensor. The indicator LED is not included in the current.

The ‘PIR LCD OFF’ demo was used for the power measurement and will directly give the total system current. Block level currents were
measured by disabling individual blocks in firmware. The LDO / Op-Amp / PIR Sensor measurement was performed by placing the
MCU in EM4 Shutoff for baseline and measuring the current with and without the expander board attached.
Block Current Consumption

LDO / Op-amp / PIR Sensor 1.4 µA

EFM32 MCU EM2 3.4 µA

ADC Sampling 0.3 µA

Software Processing 3.0 µA

TOTAL 8.1 µA

5.2  Ambient Light Sensing

5.2.1  Accuracy

The accuracy of the Si1153 ambient light sensor was measured by comparing the output of the system with a calibrated ILT1400 radio-
meter with SCL110 illuminance attachment.

The illuminance was varied by modifying the source-detector distance. The detectors were aligned in the center of the optical field at
normal-angle incident of light. The source was a white LED bulb.

The error here is defined as the error between the Si1153 and the SCL110 detector head, when they are positioned to the same loca-
tion within the light field. The tests were performed on an optical rail for distance repeatability and aligned to the optical center of the
light field. The test environment was blocked from ambient light to avoid interference.
Parameter Condition Measured

Error White LED ± 25%

Figure 5.2.  Si1153 Output Illuminance vs Input Illuminance
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5.2.2  Power Measurement

The current consumption of the system was measured using the Advanced Energy Monitoring (AEM) tool included in the Starter Kit
hardware and Simplicity Studio. This tool allows for real time monitoring of current consumption with 0.1 µA resolution at 6.3 ksps. Aver-
age current was measured over 30 s to account for the pulsed nature of the software. All current consumption through the VMCU power
rail is measured which includes the MCU, sensor and I2C communication.

The sensor is operated at 1 sample per second output rate triggered by the RTC.
Block Current Consumption

EFM32 MCU EM2 3.4 µA

RTC 1 Hz 0.5 µA

Si1153 Ambient Light Sensing 28.5 µA

TOTAL 32.4 µA
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6.  Hardware Details

6.1  Schematics

To download the schematic files, see the Evaluation Kit Resources for the OCCUPANCY-EXP-EVB on https://www.silabs.com or look
up OCCUPANCY-EXP-EVB in Simplicity Studio.

6.2  Bill of Materials

To download the bill of materials (BOM), see the Evaluation Kit Resources for the OCCUPANCY-EXP-EVB on https://www.silabs.com
or look up OCCUPANCY-EXP-EVB in Simplicity Studio.

6.3  Assembly Drawings

To download the assembly drawings, see the Evaluation Kit Resources for the OCCUPANCY-EXP-EVB on https://www.silabs.com or
look up OCCUPANCY-EXP-EVB in Simplicity Studio.

6.4  Gerber Files

To download the bill of materials (BOM), see the Evaluation Kit Resources for the OCCUPANCY-EXP-EVB on https://www.silabs.com
or look up OCCUPANCY-EXP-EVB in Simplicity Studio.
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6.5  Expansion Header

On the left-hand side of the board, an angled 20 pin expansion header is provided to connect with Silicon Labs’ MCU starter kits. The
figure below shows the pin assignment of the expansion header for the OCCUPANCY-EXP-EVB kit. The diagram is oriented when the
connector is viewed from the top of the board.

1 2
4

8
6

10

3
5

9
7

12
13 14
11

15 16
17 18

2019

VMCU
PA6
PA7
PA8
PA9
PD10
PD11
PC10
5V
3V3

GND
PC9
PD9
PB6
PB7
PB8
PD8

PC11

Board ID SDA
Board ID SCL

Reserved (Board Identification)

TARGET I/O Pin

Figure 6.1.  Expansion Header

Table 6.1.  EXP Header Pin out

Pin Connection EXP Kit Function Peripheral Mapping

20 3V3 Board controller supply

18 5V Board USB voltage

16 PC10 SENSOR_SDA I2C0.SDA

14 PD11 SENSOR_INT

12 PD10 MOTION_B

10 PA9

8 PA8

6 PA7

4 PA6 ADC_N ADC0 adcNegSel4YCH14

2 VMCU EFM32 and sensor voltage domain, included in AEM measure-
ments.

19 BOARD_ID_SDA Connected to MCU starter kit for identification of expansion board.

17 BOARD_ID_SCL Connected to MCU starter kit for identification of expansion board.

15 PC11 SENSOR_SCL I2C0.SCL

13 PD8 LDO_SHDN_B

11 PB8

9 PB7

7 PB6

5 PD9
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Pin Connection EXP Kit Function Peripheral Mapping

3 PC9 ADC_P ADC0 adcPosSel2XCH9

1 GND Ground
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7.  Software Details

7.1  Importing the Firmware Example

This section describes how to import the OccupancySensorExp example code into Simplicity Studio™ and run it on a SLSTK3402A
EFM32PG12 Starter Kit. The project requires Simplicity Studio v4. Simplicity Studio can be downloaded at https://www.silabs.com/prod-
ucts/development-tools/software/simplicity-studio.

1. Download source code from https://github.com/SiliconLabs/occupancy-sensor-exp. A zip file can be downloaded using the 'Clone
or download' button and selecting Download ZIP.

2. In Simplicity Studio, click on File → Import Project
3. Click on More Import Options at the bottom left corner.
4. Choose Existing Projects into Workspace as the import source. Click Next.
5. Navigate to where you downloaded the source code to select the root directory. Select the OccupancySensorExp project and click

Finish.
6. Compile by right clicking on the project in the Project Explorer and selecting Build Project.
7. Download the project to the MCU by right clicking on the project in the Project Explorer and selecting Run As → Silicon Labs ARM

Project.
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7.2  PIR GUI Details

The PIR GUI provides a convenient way to visualize PIR signals in real time so that motion signals can be captured and parameters
optimized. The PIR GUI displays the ADC output, detector thresholds, and motion output from the firmware example code. Captured
data can be exported for future analysis and imported for later viewing.

File 
Import &
Export

Device 
Selection

ADC & 
Threshold 
Graph

Plotting 
Control

Motion 
Output
Graph
(Inverted)

Figure 7.1.  PIR GUI User Interface

The PIR GUI only requires a few steps to get up and running.
• Install the PIR GUI. The software can be downloaded from the Evaluation Kit resources for OCCUPANCY-EXP-EVB on https://

www.silabs.com.
• Run the firmware demo from Simplicity Studio. Start the PIR demo using BTN0 on the STK board. Do not use the PIR LCD OFF

demo as it disables the COM port communication low power current measurements.
• Connect the GUI to the COM port using the Device Selection panel. The description should say JLink CDC UART Port.
• Press Start. The ADC and motion waveforms should appear on the graphs.

Features
• Zooming

By default, the graph shows the last 30 seconds of captured data. This can be toggled using the Zoom Recent/All tool in the toolbar.
Additional selectable zooming can be performed using the Zoom and Pan tools.

• Data Import / Export

Images of the graphs can be saved using the Save icon in the toolbar above the graphs. Data import and export is available through
the File menu. The data is read/written to CSV with following format.

time, adc, motionb, winbase, adcThreshHigh, adcThreshLow

time: Time since capture began in seconds.

adc: ADC differential output. int16_t.

motionb: Motion output of the detector. Active low. bool

winbase: Window center of the detector in ADC codes. int16_t.

adcThreshHigh: Upper threshold of the detector in ADC codes. int16_t

adcThreshLow: Lower threshold of the detector in ADC codes. int16_t
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8.  Kit Revision History and Errata

8.1  Revision History

The kit revision can be found printed on the evaluation board, as outlined in the figure below.

Board
Version

Figure 8.1.  Kit Revision History

Kit Revision Released Description

1.0 2019-02-13 Initial kit release

8.2  Errata

There are no known errata at present.
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9.  Revision History

Revision 1.0

February 13, 2019
• Initial release.
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