Ignition IGBT 12 A, 410 V N-Channel DPAK

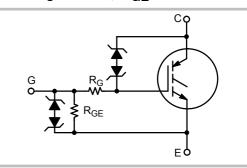
This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over-Voltage clamped protection for use in inductive coil drivers applications. Primary uses include motorbike ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Features

- Ideal for Coil-on-Plug Applications
- DPAK Package Offers Smaller Footprint and Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Low Saturation Voltage
- High Pulsed Current Capability
- These are Pb-Free Devices

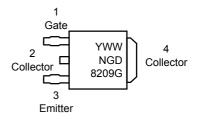
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	445	V_{DC}
Collector-Gate Voltage	V _{CER}	445	V_{DC}
Gate-Emitter Voltage	V_{GE}	15	V_{DC}
Collector Current-Continuous @ T _C = 25°C - Pulsed	I _C	12 30	A _{DC} A _{AC}
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	800	V
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	94 0.63	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1

Littelfuse.com


12 AMPS 410 VOLTS $V_{CE(on)} \le 2.0 \text{ V } @$ $I_C = 6.0 \text{ A}, V_{GE} \ge 4.0 \text{ V}$

DPAK CASE 369C STYLE 7

MARKING DIAGRAM

Y = Year WW = Work Week G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NGD8209NT4G	DPAK (Pb-Free)	2500 / Tape & Reel

UNCLAMPED COLLECTOR-TO-EMITTER AVALANCHE CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Single Pulse Collector-to-Emitter Avalanche Energy	E _{AS}		mJ
V_{CC} = 50 V, V_{GE} = 5.0 V, Pk I _L = 7.4 A, L = 10 mH, Starting T _J = 25°C		274	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.6	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	105	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T_L	275	°C

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Collector-Emitter Clamp Voltage	BV _{CES}	I _C = 2.0 mA	T _J = -40°C to 150°C	380	410	435	V _{DC}
		I _C = 10 mA	T _J = -40°C to 150°C	390	420	445	
Zero Gate Voltage Collector Current	I _{CES}		T _J = 25°C	-	1.0	25	μA_{DC}
		$V_{CE} = 350 \text{ V},$ $V_{GE} = 0 \text{ V}$	T _J = 150°C	-	9.0	50	
		·GE ·	T _J = −40°C	-	0.5	15	
Reverse Collector-Emitter Leakage Current	I _{ECS}		T _J = 25°C	-	0.5	1.0	mA
		$V_{CE} = -24 V$	T _J = 150°C	-	10	30	
			T _J = −40°C	-	0.05	0.5	
Reverse Collector-Emitter Clamp Voltage	B _{VCES(R)}	I _C = −75 mA	T _J = 25°C	26	33	38	V_{DC}
			T _J = 150°C	29	36	41	
			T _J = −40°C	24	32	36	
Gate-Emitter Clamp Voltage	BV _{GES}	I _G = 5.0 mA	T _J = -40°C to 150°C	10	13	16	V _{DC}
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = 10 V	T _J = -40°C to 150°C	380	635	1000	μA _{DC}
Gate Resistor	R_G	-	T _J = -40°C to 150°C	-	70	_	Ω
Gate Emitter Resistor	R _{GE}	-	T _J = -40°C to 150°C	10	16	26	kΩ
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GE(th)}	I _C = 1.0 mA, V _{GE} = V _{CE}	T _J = 25°C	1.0	1.42	2.0	V_{DC}
			T _J = 150°C	0.7	0.95	1.5	1
		*GE *CE	T _J = -40°C	1.1	1.62	2.2	1
Threshold Temperature Coefficient (Negative)	-	-	-	-	3.5	_	mV/°C

^{2.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
ON CHARACTERISTICS (continued) (Note 3)								
Collector-to-Emitter On-Voltage V _{CE(on)}			T _J = 25°C	0.8	1.45	2.0	V_{DC}	
		I _C = 6.0 A, V _{GE} = 4.0 V	T _J = 150°C	0.85	1.44	1.85		
	, GE	T _J = -40°C	1.0	1.5	1.95			
				1.1	1.79	2.3		
		I _C = 10 A, V _{GE} = 4.5 V	T _J = 150°C	1.2	1.9	2.2		
		1 GL	T _J = -40°C	1.3	1.77	2.2		
Forward Transconductance	gfs	V _{CE} = 5.0 V, I _C = 6.0 A	T _J = -40°C to 150°C	5.0	14	30	Mhos	

^{3.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

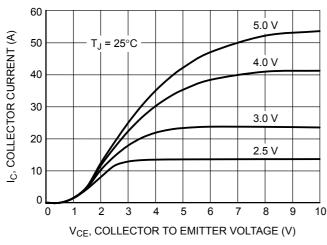


Figure 1. Output Characteristics

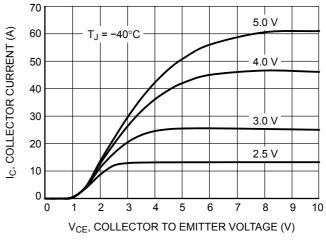


Figure 2. Output Characteristics

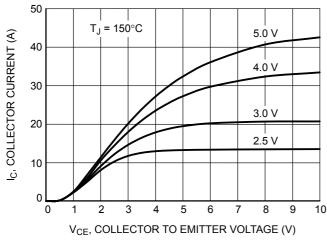
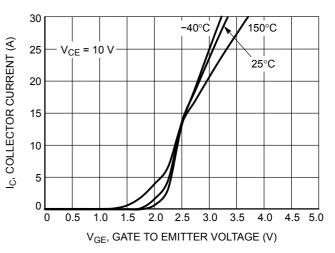
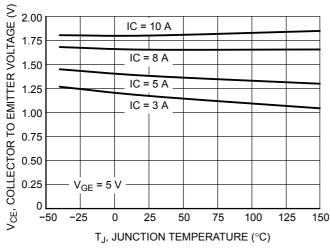
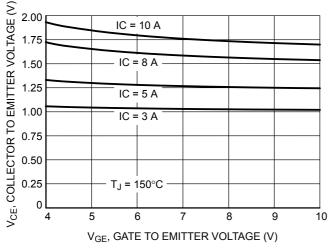




Figure 3. Output Characteristics

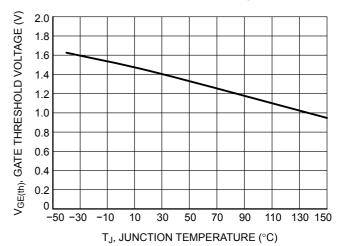
Figure 4. Transfer Characteristics


TYPICAL CHARACTERISTICS

V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V) 2.00 IC = 10 A 1.75 IC = 8 A 1.50 IC = 5 A 1.25 IC = 3 A 1.00 0.75 0.50 0.25 $T_{.1} = 25^{\circ}C$ 0 5 6 7 8 9 10 V_{GE}, GATE TO EMITTER VOLTAGE (V)

Figure 5. Collector-to-Emitter Saturation Voltage vs. Junction Temperature

Figure 6. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage



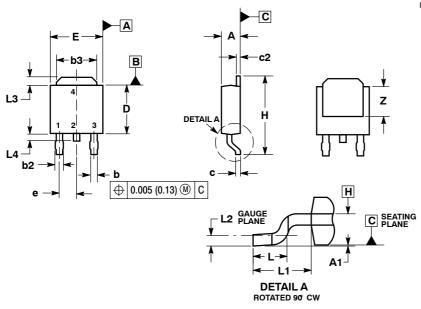
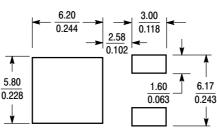

Figure 7. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage

Figure 8. Gate Threshold Voltage vs. Junction Temperature

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE D



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME
 - Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3. L3 and Z.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74 REF		
L2	0.020 BSC		0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

SOLDERING FOOTPRINT*

STYLE 7: PIN 1. GATE

2. COLLECTOR
3. EMITTER
4. COLLECTOR

SCALE 3:1

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:
NGD8209NT4G