- 1 -

Constant Current LED Driver with PWM Control

■ GENERAL DESCRIPTION

The NJW4616 is a constant current LED Driver with PWM control. 45V resisting constant current control and PWM control circuit can be offered with small package.

It can achieve luminance control multiple white or blue and red LEDs. It can contribute to the reliability improvement of the system because it has an overcurrent protection and thermal shutdown circuit.

■ PACKAGE OUTLINE

NJW4616U2 (SOT-89-5)

■ FEATURES

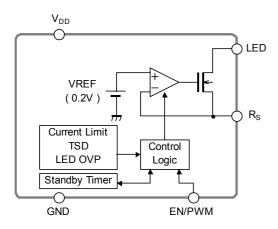
Operating Voltage Range
 Recommended LED Drive Voltage V_{LED}=40V(max.)

● LED Output Current I_{LED}=300mA(max.)

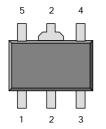
● Output Current Accuracy ±2.0%

To 11 of White LED can be operated. (at LED Vf=3.4V)

Current Consumption
 450µA typ.


With PWM Luminance Control and ON/OFF Control

• Internal Over Current Protection Circuit


Internal Thermal Shutdown Circuit

Package SOT-89-5

■ BLOCK DIAGRAM

■ PIN CONFIGRATION

Ver.2013-09-24

- 1: EN/PWM
- 2: GND
- 3: R_S
- 4: LED
- 5: V_{DD}

^{*} Please note that this device is still under the development and therefore the specifications are subject to change.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETERS	SYMBOL	RATINGS	UNIT
VDD Power Supply	V_{DD}	-0.3 to +45	V
Output voltage	V_{LED}	-0.3 to +45	V
EN/PWM Pin Voltage	V_{ENPWM}	-0.3 to +45	V
Power Consumption	P_D	625 (*1) 2400 (*2)	mW
Junction Temperature	Tj	-40 to +150	°C
Operating Temperature	Topr	-40 to +105	°C
Storage Temperature	Tstg	-40 to +150	°C

^{(*1):} Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard, 2Layers)

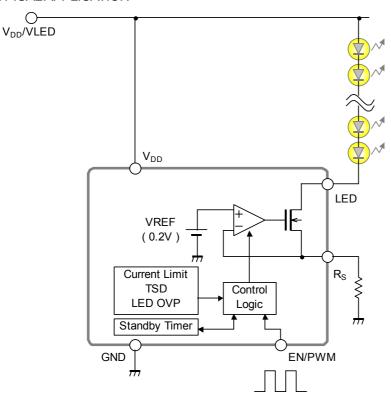
Internal Cu area: 74.2×74.2mm

■ RECOMMENDED OPERATING CONDITIONS

(Ta=25°C)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Operating Voltage	V_{DD}		2.5	-	40	V
Output Current	I _{LED}		20	-	300	mA
Output Voltage	V_{LED}		ı	-	40	V

■ ELECTRICAL CHARACTERISTICS


(Unless otherwise noted, V_{DD}=12V, V_{LED}=1.0V, R_S=2Ω, V_{ENPWM}=V_{DD}, Ta=25°C)

	(81118)	Otherwise Hoted, VDD-12V, VLED-1.0V	, 1 (5 232,	• • ENPVII	, v _{DD} , ia	20 0)
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Quiescent Current	I _{DD}		-	340	550	μA
Quiescent Current at OFF State	I _{DD OFF}	V _{ENPWM} =GND	-	-	0.1	μA
Output Current Accuracy	ΔI_{LED}		-2	1	+2	%
Output Pin Leak Current	I _{LEAK}	V _{ENPWM} =GND, V _{DD} =40V, V _{LED} =40V	-	-	0.1	μA
OFF Delay Time	t _{D OFF}		10	25	50	ms
EN/PWM Pin ON Voltage1	V _{ENPWM ON} 1	V _{DD} <5V, I _{LED} =OFF→ON	$0.7V_{DD}$	-	V_{DD}	٧
EN/PWM Pin ON Voltage2	V _{ENPWM ON} 2	V _{DD} ≥5V, I _{LED} =OFF→ON	3.5	-	V_{DD}	V
EN/PWM Pin OFF Voltage	V_{ENPWM_OFF}	I _{LED} =ON→OFF	0	-	0.5	V
EN/PWM Pin Input Current	I _{ENPWM}		-	7	-	μA
RS Pin Leak Current	I _{OUT RS}	LED=OPEN	-	4	ı	μA
PWM Pin ON Delay Time	t _{PWM_ON}	V_{ENPWM} =L \rightarrow H, I_{LED} =OFF \rightarrow ON, R_S =0.62 Ω	1	10	1	μs
PWM Pin OFF Delay Time	t _{PWM_OFF}	V_{ENPWM} =H \rightarrow L, I_{LED} =ON \rightarrow OFF, R_S =0.62 Ω	-	1.2	-	μs
LED Short Protection Detect Voltage	V _{LED_SHORT}	$R_S = 0\Omega$, $I_{LED} = I_{LED MAX} \rightarrow I_{LED MAX} \times 0.5$	-	22	-	V
Maximum Output Current	I _{LED MAX}	$R_S = 0\Omega$	330	600	-	mA 🖣

^{(*2):} Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard, 4Layers),

^{*} Please note that this device is still under the development and therefore the specifications are subject to change.

■ TYPICAL APPLICATION

The R_s Resistance Setting formula: $R_S(\Omega) = \frac{0.2(V)}{I_{LED}(A)}$

^{*} Please note that this device is still under the development and therefore the specifications are subject to change.

MEMO

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJW4616U2-TE1