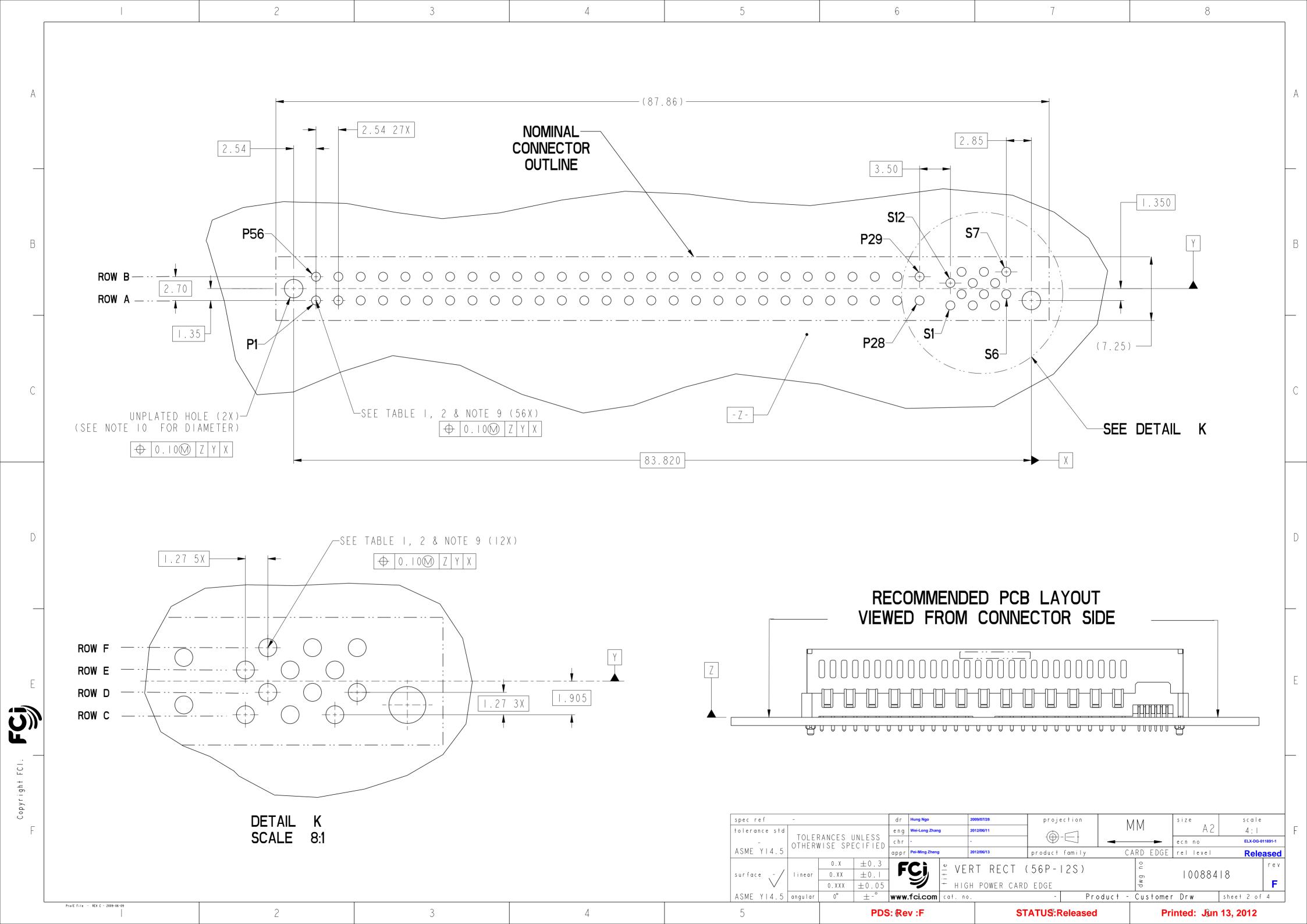
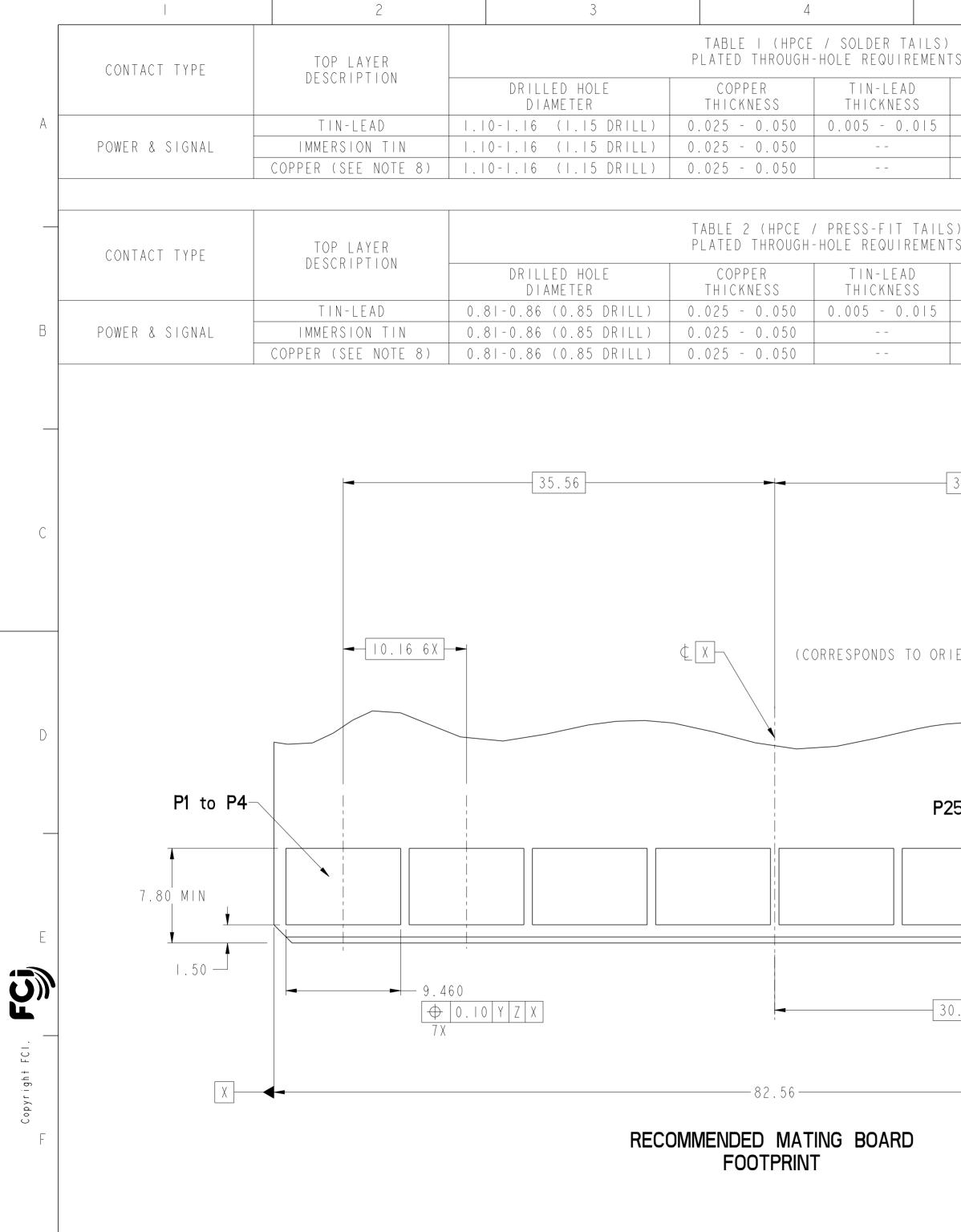


2 3 4

5	6	7	8

А


В


С

D

Е

ASME YI4.5	angular	0°	± -°	www. 5: Re '	fci.com	cat. no		- FATU S :R		duct - Custome	r Drw inted: Jun	sheet 1 of 4	
\checkmark		0.XXX	±0.05		-	⁺ HIG) EDGE		a d		1	F
surface	linear	0.XX	±0.1		Cj	— VE →_	RT RECT	(367-1	23)	6	100884	18	
		0.X	±0.3	C		© \/⊑		(56D-1	201	0 L		r	rev
ASME YI4.5		WIJE JIL		appr	Pei-Ming Zheng		2012/06/13	product	family	CARD EDGE	rel level	Releas	sed
-	I OLEH	RANCES I	JNLESS ECIFIED	chr	-		-			◄──►	ecn no	ELX-DG-0118	91-1
tolerance std				eng	Wei-Long Zhan	9	2012/06/11				A 2	4:1	
spec ref	-			dr	Hung Ngo		2009/07/28	proje	ction	MM	size	scale	

Pro/E File - REV C - 2009-06-09				
	2	3	4	

5	6	7		8	
THICKNESS HOLE 0.94 0.9 - 0.94 0.94	NISHED DIAMETER - I.IO - I.IO - I.IO				A
THICKNESS HOLE 0.65 0.9 1.5um 0.70	NISHED DIAMETER - 0.80 - 0.80 - 0.80				В
32.71 0.800 6X −	I.27 5X		Y		С
POLARIZATION SLOT- IENTATION KEY OPTION /SEE TABLE 3)		-S 6			D
0.48	$45^{\circ}\pm2^{\circ}$	6.50 MIN 6.50 MIN I.50 - 1.50 4X	0.50 45° 2X	Z - 1.57±0.13	E
spec ref - tolerance std - ASME YI4.5 surface -/ linear ASME YI4.5 angular 5	4 X A X A X A X A X A X A MORES A MORES A MARCES UNLESS WISE SPECIFIED A Mei-Long Zhar Chr - A ppr Pei-Ming Zhar Chr - Chr - A ppr Pei-Ming Zhar Chr - Chr - Ch	ng 2012/06/11 - g 2012/06/13 product → + + + + HIGH POWER CARD EDGE	family CARD EDGE 2S) Product - Custome	10088418 F	F

Printed: Jun 13, 2012

STATUS:Released

5

PDS: Rev :F

			2		3	4	
А	PART NUMBER	T A I L T Y P E	ORIENTATION KEY		DIM "A" TYPICAL TAIL LENGTH	DIM "B" RECOMMENDED BOARD THICKNESS	
	10088418-001LF	418-001LF SOLDER			3.17 ±0.25	1.59 - 2.38	
	10088418-002LF	SOLDER	NO		J. IT ±0.23	T. 00 L. 00	
	00884 8-003	PRESS-FIT	ESS-FIT YES				
	10088418-003LF	PRESS-FIT	YES		3.17 ± 0.25	I.57	
В	8 10088418-004	PRESS-FIT	NO		J.II IV.2J	MIN	
	10088418-004LF	PRESS-FIT	NO				

С

D

NOTES:

(/ .

8

(9.)

(|0)

I. CONNECTOR MATERIALS:

HOUSING: HIGH TEMPERATURE THERMAL PLASTIC, BLACK UL 94V-0 COMPLIANT CONTACTS: HIGH PERFORMANCE COPPER ALLOY.

CONTACT FINISH REF. GS-12-604 SECTION 5.2. 2.

PRODUCT SPECIFICATION: GS-12-604. 3.

APPLICATION SPECIFICATION: GS-20-128. 4.

PRODUCT MARKING (FCI - PART NUMBER & DATE CODE) ON HOUSING IN AREA SHOWN. (5.)

PACKAGING MEETS FCI SPECIFICATION GS-14-937. 6.

HOUSING COMPONENT WILL WITHSTAND EXPOSURE TO 260°C PEAK TEMPERATURE FOR 60 SECONDS IN A CONVECTION, INFRA-RED, OR VAPOR PHASE REFLOW OVEN.

COPPER PLATING THICKNESS IN CENTER OF VIA-HOLE CAN BE NO MORE THAN 0.003 LESS THAN OTHER AREAS.

ALL HOLE SIZES ARE FINISHED HOLE SIZES.

MOUNTING HOLES ARE UNPLATED Ø 2.40 +/- 0.1 FOR PRESS-FIT TAILS Ø 2.10 +/- 0.1 FOR SOLDER TAILS Ø 2.40 +/- 0.1 FOR SOLDER TAILS(Note: To reduce insertion force of connector to PCB, mounting hole diameter can be 2.40 +/- 0.1, provided fixturing is used during soldering to hold connector in place.)

FC
FCI.
pyright

ĉ

F

Ε

Pro/E File - REV C - 2009-06-09				
I	2	3	4	

5	6	7	8	
				A
				В
\checkmark			D D D D D D D D D D D D D D D D D D D	С
				D
				E

spec ref	-			dr	Hung Ngo	2	2009/07/28	proj	ection		1 \ /	size	scale	;
tolerance std				eng	Wei-Long Zhang	2	2012/06/11		\square	V	IМ	A 2	4:1	
-		RANCES U VISE SPE		chr	-	-			-	-		ecn no	ELX-DG-	011891-1
ASME YI4.5	UTILIN	NOL OIL		appr	Pei-Ming Zheng	2	2012/06/13	product	family	C A	RD EDGE	rel level	Rele	eased
		0.X	±0.3	ſ		♥ \/EE	RT RECT	56D_	1201		0 L			rev
surface -	linear	0.XX	±0.1			– VEF	NI NECI	. J 0 F -	1237		D	100884	18	
		0.XXX	±0.05		I I	+ HIGH	H POWER CARE) EDGE			a q			F
ASME YI4.5	angular	0°	±-°	www.	fci.com	cat. no.		-	Pr	oduct –	Customer	Drw	sheet 4 of	f 4
5	PDS: Rev :F				ST	ATUS:F	Released	d	Pri	inted: Jun	13, 2012			