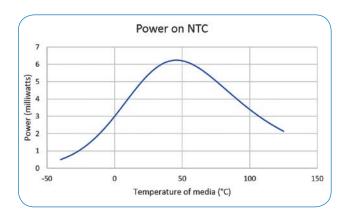
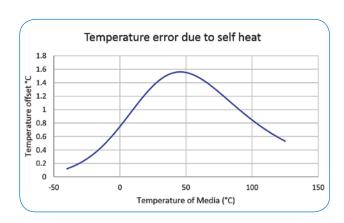

Application Spotlight

Power Budgets / Dissipation

Overview

As electrification continues, power budgets are becoming more and more critical, along with commonly asked questions, such as - How much power does your device consume? What is the max power on your device? These are not trivial questions.


Unlike micro-processors or other active devices, an NTC-based sensor is a passive component, and power consumption depends on other components in the system. In the case of the following circuit, the power curve will reach max power consumption at approximately 45°C.



At this point, power across the NTC will be \sim 6.24 milliwatts. This will be the value needed for the power budget.

So, what about dissipation? Dissipation is described as the amount of power required to raise the part 1°C. The units are mW/°C. In the case of this sensor, the dissipation is ~4 mW/°C in still air. This means that the part will be self-heated by as much as 1.56°C.

This dissipation changes with media and conditions, so it is critical to understand the application in order to limit temperature sensing errors.

www.amphenol-sensors.com

© 2018 Amphenol Corporation. All Rights Reserved. Specifications are subject to change without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Amphenol: GE-1920