| VACUUMSCHMELZE | SPECIFICATION | Item no |).: | T60404-N4 | 646-X664 | |---|---|---|-------------|---|-----------------| | K-no.: 24514 | 50 A Current Sensor for 5V- Sup | oply Voltage | | Date: 1 | 1.08.2014 | | | For electronic current measurement: | . , , | | | | | | DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit | | | | | | | (high power) and secondary circuit | | | | | | | (electronic circuit) | | | | | | Customer: Stand | dard type Custo | omers Part no.: | | Page 1 | of 2 | | Description | <u>Characteristics</u> | Ар | olications | | | | Closed loop (compe | | | | stationary operatio | n in industrial | | Current Sensor with
field probe | | • | lications: | e speed drives and | l convo motor | | Printed circuit board | Very low temperature deport current drift | endency and offset • | drives | e speed drives and | servo motor | | Casing and materia | | et current • | Static conv | erters for DC moto | or drives | | | Short response time | • | , , | plied applications | · (OMDO) | | | Wide frequency bandwidthCompact design | • | | Mode Power Suppliplies for welding a | | | | Reduced offset ripple | • | | tible Power Supplie | | | | ·· | | | | | | Electrical data – Ra | | | | | | | I _{PN} | Primary nominal r.m.s. current | | 50 | | A | | V_{out} | Output voltage @ I _P | | | $_{\rm f}$ ± (0.625* $I_{\rm P}/I_{\rm PN}$) | V | | V_{out} | Output voltage @ I _P =0, T _A =25°C | | | £ 0.000725 | V | | V_{Ref} | External Reference voltage range | | 0 | | V | | | Internal Reference voltage | | | ±0.005 | V | | K_N | Turns ratio | | 1 | 3 : 1400 | | | Accuracy – Dynam | ic performance data | | _ | | | | | May managing range | min. | typ. | max. | Unit | | I _{P,max}
X | Max. measuring range Accuracy @ I _{PN} , T _A = 25°C | ±150 | | 0.7 | % | | | · | | | 0.1 | % | | € _L
V _{out} - V _{Ref} | Coffeet voltage @ L-0 T- 25°C | | | ±0.725 | mV | | | Offset voltage @ I _P =0, T _A = 25°C | 0.5\/ T | 0.7 | | | | $\Delta V_o / V_{Ref} / \Delta T$ | Temperature drift of V _{out} @ I _P =0, V _{Ref} = | =2,5V, I _A = -4085°C | 0.7 | 7 | ppm/°C | | t _r | Response time @ 90% von I _{PN} | | 300 | | ns | | ∆t (I _{P,max})
f | Delay time at di/dt = 100 A/μs | DC 200 | 200 | | ns
Lu- | | General data | Frequency bandwidth | DC200 | | | kHz | | <u>Serierai uata</u> | | min. | typ. | max. | Unit | | T _A | Ambient operating temperature | -40 | | +85 | °C | | Ts | Ambient storage temperature | -40 | | +85 | °C | | m | Mass | | 12 | | g | | V _C | Supply voltage | 4.75 | 5 | 5.25 | V | | | Current consumption | | 15 | | mA | | Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 – 10) | |---| | | Reinforced insulat | ion, Insulation material group 1 | , Pollution degree 2 | | | |--------------------|--------------------|--|----------------------|------|----| | S _{clear} | Clearance (compo | nent without solder pad) | 7.4 | | mm | | Screep | Creepage (compor | nent without solder pad) | 8.0 | | mm | | V_{sys} | System voltage | overvoltage category 3 | RMS | 300 | V | | V_{work} | Working voltage | (tabel 7 acc. to EN61800-5-1) overvoltage category 2 | RMS | 650 | V | | U_{PD} | Rated discharge v | voltage | peak value | 1320 | V | | Max. potential difference acc. to UL 508 | RMS | 600 | V _{AC} | |--|-----|-----|-----------------| | | | | | | Date | Name | Issue | Amendment | | | | | | | |----------|------|---------|--------------|---|--|------------------------|--|--|--| | 11.08.14 | KRe | 83 | Marking chan | larking changed from 4646X664-83 → 4646-X664-83. Electrical data: Vout changed. CN-14-077 | arb: DJ | KB-PM: Sn | | | freig.: HS
released | | | | # VACUUMSCHMELZE ### **SPECIFICATION** Item no.: T60404-N4646-X664 K-no.: 24514 50 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Marking Date: 11.08.2014 Date: 11:00:2017 Customer: Standard type Customers Part no.: Page 2 of # Mechanical outline (mm): #### General tolerances DIN ISO 2768-c 6 4 7 4 + 10 12,7 Tolerances grid distance ±0,2 mm 1...6: Ø 1 mm 7..10: 0,46*0,46 mm Connections: 2 DC = Date Code F = Factory ## Marking: UL-sign 4646-X664-83 F DC #### Schematic diagram ### **Possibilities of wiring** (@ T_A = 85°C) | primary
windings
N _P | primary
RMS | / current
maximal
Î _{P,max} [A] | output voltage
RMS
V _{out} (I _P) [V] | turns ratio | primary
resistance
R _P [mΩ] | wiring | |--|----------------|--|---|-------------|--|---------| | 1 | 50 | ±150 | 2.5±0.625 | 1:1400 | 0.33 | 3 1 4 6 | | 2 | 12 | ±75 | 2.5±0.300 | 2:1400 | 1.5 | 3 1 6 | | 3 | 8 | ±50 | 2.5±0.300 | 3:1400 | 3 | 3 1 | Temperature of the primary conductor should not exceed 110°C. Additional information is obtainable on request. This specification is no declaration of warranty acc. BGB §443. | Hrsg.: KB-E | Bearb: DJ | KB-PM: | Sn | freig.: HS | | |-------------|-----------|--------|----|------------|--| | editor | designer | check | | released | | # **Additional Information** Item No.: T60404-N4646-X664 K-No.: 24514 50 A Current Sensor for 5V- Supply Voltage For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit Date: 11.08.2014 2 of 1 Page **Electrical Data** Customer: | ectrical Data | | | | | | |---|--|-----------|-----------------------|-------------------------------|-----------| | | | min. | typ. | max. | Unit | | V _{Ctot} | Maximum supply voltage (without function) | | | 7 | V | | Ic | Supply Current with primary current | 15mA | $L + I_p * K_N + V_o$ | _{ut} /R _L | mA | | I _{out,SC} | Short circuit output current | | ±20 | | mA | | R_P | Resistance / primary winding @ T _A =25°C | | 1 | | $m\Omega$ | | R _S | Secondary coil resistance @ T _A =85°C | | | 35 | Ω | | $R_{i,Ref}$ | Internal resistance of Reference input | | 670 | | Ω | | R_{i} ,(V_{out}) | Output resistance of Vout | | | 1 | Ω | | R_L | External recommended resistance of Vout | 1 | | | $k\Omega$ | | C_L | External recommended capacitance of Vout | | | 500 | pF | | ΔX _{Ti} / ΔT | Temperature drift of X @ T _A = -40 +85 °C | | | 40 | ppm/K | | $\Delta V_0 = \Delta (V_{out} - V_{Ref})$ | Sum of any offset drift including: | | 2 | 6 | mV | | V_{0t} | Longtermdrift of V ₀ | | 1 | | mV | | V_{0T} | Temperature drift von V ₀ @ T _A = -40+85°C | | 1 | | mV | | V_{0H} | Hysteresis of $V_{out} @ I_P=0$ (after an overload of 10 x I | PN) | | 1 | mV | | $\Delta V_0/\Delta V_C$ | Supply voltage rejection ratio | | | 1 | mV/V | | / _{oss} | Offsetripple (with 1 MHz- filter first order) | | | 35 | mV | | V _{oss} | Offsetripple (with 100 kHz- filter firdt order) | | 2 | 5 | mV | | Voss | Offsetripple (with 20 kHz- filter first order) | | 0.6 | 1 | mV | | • | Maximum possible coupling capacity (primary – s
Mechanical stress according to M3209/3
Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours | econdary) | 5 | 10
30g | pF | Customers Part No.: Inspection (Measurement after temperature balance of the samples at room temperature), SC = significant characteristic | V _{out} (SC) | (V) | M3011/6: | Output voltage vs. external reference (I _P =3x10As, 40-80Hz) | 625±0,7% | mV | |-----------------------|-----|----------|---|----------|----| | Vout-VRef (IP=0 | (V) | M3226: | Offset voltage | ± 0.725 | mV | | V_d | (V) | M3014: | Test voltage, rms, 1 s | 1.5 | kV | | | | | pin 1 – 6 vs. pin 7 – 10 | | | | V _e | (AQ | L 1/S4) | Partial discharge voltage acc.M3024 (RMS) | 1400 | V | | | | , | with V _{vor} (RMS) | 1750 | V | **Type Testing** (Pin 1 - 6 to Pin 7 - 10) | V_W | HV transient test according to M3064 (1,2 μs / 50 μs-wave form) | 8 | kV | |----------------|---|------|----| | V_d | Testing voltage to M3014 (5 s) | 3 | kV | | V _e | Partial discharge voltage acc.M3024 (RMS) | 1400 | V | | | with V _{vor} (RMS) | 1750 | V | #### **Applicable documents** Current direction: A positive output current appears at point V_{out} , by primary current in direction of the arrow. Enclosures according to IEC529: IP50. Further standards UL 508, file E317483, category NMTR2 / NMTR8 | Datum | Name | Index | Amendment | | | | | | | | |-----------|------|-------|----------------|---|------------|--|--|------------------------|--|--| | 11.08.14 | DJ | 83 | Inspection: Vo | spection: Vout changed from Ip=50A, 40-80Hz → Ip=3x10As, 40-80Hz and defined as SC measure. | | | | | | | | | | | Offset voltage | Offset voltage changed. CN-14-077 | | | | | | | | Hrsg.: KB | 8-E | Bea | arb: DJ | | KB-PM: Sn. | | | freig.: HS
released | | | ### **Additional Information** Item No.: T60404-N4646-X664 K-No.: 24514 50 A Current Sensor for 5V- Supply Voltage For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit Date: 11.08.2014 Customer: Customers Part No.: Page 2 of 2 #### Explanation of several of the terms used in the tablets (in alphabetical order) t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9^{\circ}$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_p) Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt \geq 100 A/ μ s. U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2}$ * V_e / 1,5 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1 $V_{vor} = 1,875 * U_{PD} / \sqrt{2}$ V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1 Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2,5V$. $V_0 = V_{out}(0) - 2.5V$ V_{0H}: Zero variation of V_o after overloading with a DC of tenfold the rated value V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right| \%$$ X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN} $$\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$$ $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{\rm I_P}{\rm I_{\rm PN}} - \frac{\rm V_{\it out}(\it I_{\it P})}{\rm V_{\it out}(\it I_{\it PN})} - \frac{\rm V_{\it out}(\it O)}{\rm V_{\it out}(\it I_{\it PN})} \right| \%$ This "Additional information" is no declaration of warranty according BGB §443. | Hrsg.: KB-E | Bearb: DJ | KB-PM: Sn. | freig.: HS | |-------------|-----------|------------|------------| | editor | designer | check | released |