

TS4990

1.2 W audio power amplifier with active-low standby mode

Datasheet - **production data**

Features

- Operating range from $V_{CC} = 2.2 V$ to 5.5 V
- 1.2 W output power at $V_{CC} = 5$ V, THD = 1%, F = 1 kHz, with 8 Ω load
- Ultra-low consumption in standby mode (10 nA)
- 62 dB PSRR at 217 Hz in grounded mode
- Near-zero pop and click
- Ultra-low distortion (0.1%)
- Unity gain stable
- Available in 9-bump flip-chip, miniSO-8 and DFN8 packages

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers
- PDAs
- Portable audio devices

Description

The TS4990 is designed for demanding audio applications such as mobile phones to reduce the number of external components.

This audio power amplifier is capable of delivering 1.2 W of continuous RMS output power into an 8Ω load at 5 V.

An externally controlled standby mode reduces the supply current to less than 10 nA. It also includes an internal thermal shutdown protection.

The unity-gain stable amplifier can be configured by external gain setting resistors.

January 2019 DocID9309 Rev 14 1/33

Contents

1 Absolute maximum ratings and operating conditions

1. All voltage values are measured with respect to the ground pin.

2. The magnitude of the input signal must never exceed V_{CC} + 0.3 V / GND - 0.3 V.

3. The device is protected in case of over temperature by a thermal shutdown active at 150° C.

4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
while the other pins are floating.

Table 2. Operating conditions

1. This thermal resistance is reached with a 100 mm^2 copper heatsink surface.

2. When mounted on a 4-layer PCB.

2 Typical application schematics

Table 3. Component descriptions

ST

3 Electrical characteristics

1. Standby mode is active when V_{STBY} is tied to GND.

2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon
V_{CC}.

Symbol	Parameter		Typ.	Max.	Unit
$I_{\rm CC}$	Supply current No input signal, no load		3.3	6	mA
I_{STBY}	Standby current (1) No input signal, V_{STBY} = GND, R _L = 8 Ω	10	1000	nA	
V_{00}	Output offset voltage No input signal, $R_1 = 8 \Omega$	1	10	mV	
P_{out}	Output power 375 THD = 1% max, F = 1 kHz, R ₁ = 8 Ω		500		mW
$THD + N$	Total harmonic distortion + noise $P_{\text{out}} = 400 \text{ mW}_{\text{rms}}$, A _V = 2, 20 Hz $\le F \le 20 \text{ kHz}$, $R_L = 8 \Omega$		0.1		%
PSRR	Power supply rejection ratio ⁽²⁾ $R_L = 8 \Omega$, $A_V = 2$, $V_{ripole} = 200 \text{mV}_{pp}$, input grounded $F = 217 Hz$ $F = 1$ kHz	55 55	61 63		dB
t _{WU}	Wake-up time $(C_h = 1 \mu F)$		110	140	ms
t _{STBY}	Standby time $(C_b = 1 \mu F)$		10		μs
V _{STBYH}	Standby voltage level high			1.2	V
V _{STBYL}	Standby voltage level low			0.4	V
Φ_{M}	Phase margin at unity gain $R_1 = 8 \Omega$, C ₁ = 500 pF		65		Degrees
GM	Gain margin $R_1 = 8 \Omega$, C ₁ = 500 pF		15		dB
GBP	Gain bandwidth product $R_1 = 8 \Omega$		1.5		MHz
R _{OUT-GND}	Resistor output to GND ($V_{STBY} \leq V_{STBYL}$) V_{out1} V_{out2}		4 44		kΩ

Table 5. Electrical characteristics when $V_{CC} = +3.3$ V, GND = 0 V, T_{amb} = 25°C (unless **otherwise specified)**

1. Standby mode is active when V_{STBY} is tied to GND.

2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon
V_{CC}.

Symbol	Parameter		Typ.	Max.	Unit
$I_{\rm CC}$	Supply current No input signal, no load		3.1	6	mA
I STBY	Standby current (1) No input signal, V_{STBY} = GND, R ₁ = 8 Ω			1000	nA
V_{00}	Output offset voltage No input signal, $R_1 = 8 \Omega$	1	10	mV	
$\mathsf{P}_{\mathsf{out}}$	Output power 220 THD = 1% max, F = 1 kHz, R ₁ = 8 Ω		300		mW
$THD + N$	Total harmonic distortion + noise $P_{\text{out}} = 200 \text{ mW}_{\text{rms}}$, A _V = 2, 20 Hz \leq F \leq 20 kHz, $R_L = 8 \Omega$		0.1		$\%$
PSRR	Power supply rejection ratio ⁽²⁾ $R_L = 8 \Omega$, $A_V = 2$, $V_{ripple} = 200 \text{ mV}_{pp}$, input grounded $F = 217 Hz$ $F = 1$ kHz	55 55	60 62		dB
t_{WU}	Wake-up time $(C_b = 1 \mu F)$		125	150	ms
t _{STBY}	Standby time $(C_b = 1 \mu F)$		10		μs
V _{STBYH}	Standby voltage level high			1.2	V
V _{STBYL}	Standby voltage level low			0.4	V
Φ_{M}	Phase margin at unity gain $R_1 = 8 \Omega$, C ₁ = 500 pF		65		Degrees
GM	Gain margin $R_1 = 8 \Omega$, C ₁ = 500 pF		15		dB
GBP	Gain bandwidth product $R_1 = 8 \Omega$		1.5		MHz
R _{OUT-GND}	Resistor output to GND ($V_{STBY} \leq V_{STBYL}$) V_{out1} V_{out2}		6 46		$k\Omega$

Table 6. Electrical characteristics when V_{CC} = 2.6V, GND = 0V, T_{amb} = 25°C (unless **otherwise specified)**

1. Standby mode is active when V_{STBY} is tied to GND.

2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(V_{out})/rms(V_{ripple})). V_{ripple} is the sinusoidal signal superimposed upon
V_{CC}.

8/33 DocID9309 Rev 14

DocID9309 Rev 14 9/33

12/33 DocID9309 Rev 14

DocID9309 Rev 14 15/33

16/33 DocID9309 Rev 14

Sy

4 Application information

4.1 BTL configuration principle

The TS4990 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

Single-ended output $1 = V_{\text{out}} = V_{\text{out}} (V)$ Single-ended output $2 = V_{\text{out2}} = -V_{\text{out}}(V)$ and V_{out1} - $V_{\text{out2}} = 2V_{\text{out}}$ (V)

The output power is:

$$
\text{P}_{out} = \frac{\left(2 V_{out_{RMS}}\right)^2}{R_L}
$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single-ended configuration.

4.2 Gain in a typical application

The typical application schematics are shown in *[Figure 1 on page 4](#page-3-1)*.

In the flat region (no C_{in} effect), the output voltage of the first stage is (in Volts):

$$
V_{\text{out1}} = (-V_{\text{in}}) \frac{R_{\text{feed}}}{R_{\text{in}}}
$$

For the second stage: $V_{\text{out2}} = -V_{\text{out1}}(V)$

The differential output voltage is (in Volts):

$$
V_{out2} - V_{out1} = 2V_{in} \frac{R_{feed}}{R_{in}}
$$

The differential gain named gain (G_v) for more convenience is:

$$
G_v = \frac{V_{out2} - V_{out1}}{V_{in}} = 2\frac{R_{feed}}{R_{in}}
$$

 V_{out2} is in phase with V_{in} and V_{out1} is phased 180° with V_{in} . This means that the positive terminal of the loudspeaker should be connected to V_{out2} and the negative to V_{out1} .

4.3 Low and high frequency response

In the low frequency region, C_{in} starts to have an effect. C_{in} forms with R_{in} a high-pass filter with a -3 dB cut-off frequency. F_{CL} is in Hz.

$$
F_{CL} = \frac{1}{2\pi R_{in}C_{in}}
$$

In the high frequency region, you can limit the bandwidth by adding a capacitor (C_{feed}) in parallel with R_{feed}. It forms a low-pass filter with a -3 dB cut-off frequency. F_{CH} is in Hz.

$$
F_{CH} = \frac{1}{2\pi R_{feed} C_{feed}}
$$

The graph in $Figure 60$ shows an example of C_{in} and C_{feed} influence.

4.4 Power dissipation and efficiency

Hypotheses:

- Load voltage and current are sinusoidal $(V_{out}$ and I_{out}).
- Supply voltage is a pure DC source (V_{CC}) .

The load can be expressed as:

$$
V_{\text{out}} = V_{\text{PEAK}} \sin \omega t \quad (V)
$$

and

$$
I_{\text{out}} = \frac{V_{\text{out}}}{R_{\text{L}}} \qquad (A)
$$

and

$$
P_{\text{out}} = \frac{V_{\text{PEAK}}^2}{2R_L} \qquad (W)
$$

Therefore, the average current delivered by the supply voltage is:

$$
I_{CC_{AVG}} = 2 \frac{V_{PEAK}}{\pi R_L}
$$
 (A)

The power delivered by the supply voltage is:

$$
P_{\text{supply}} = V_{CC} \cdot I_{CC_{AVG}} \qquad (W)
$$

Therefore, the **power dissipated by each amplifier** is:

 $P_{\text{diss}} = P_{\text{subplv}} - P_{\text{out}} (W)$

 $P_{diss} = \frac{2\sqrt{2}V_{CC}}{\sqrt{2}}$ π $\sqrt{\mathsf{R}}_\mathsf{L}$ $=\frac{-\sqrt{C_{\rm c}}}{\sqrt{P_{\rm out}}-P_{\rm out}}$

and the maximum value is obtained when:

$$
\frac{\delta P_{\text{diss}}}{\delta P_{\text{out}}} = 0
$$

and its value is:

$$
P_{\text{diss}_{\text{max}}} = \frac{2V_{\text{CC}}^2}{\pi^2 R_L}
$$
 (W)

Note: This maximum value is only dependent on power supply voltage and load values.

The **efficiency** is the ratio between the output power and the power supply:

$$
\eta = \frac{P_{out}}{P_{supply}} = \frac{\pi V_{PEAK}}{4V_{CC}}
$$

The maximum theoretical value is reached when $V_{PEAK} = V_{CC}$, so:

$$
\frac{\pi}{4}=78.5\%
$$

4.5 Decoupling of the circuit

Two capacitors are needed to correctly bypass the TS4990: a power supply bypass capacitor C_s and a bias voltage bypass capacitor C_b .

 C_s has particular influence on the THD+N in the high frequency region (above 7 kHz) and an indirect influence on power supply disturbances. With a value for C_s of 1 μ F, you can expect THD+N levels similar to those shown in the datasheet.

In the high frequency region, if C_s is lower than 1 μ F, it increases THD+N and disturbances on the power supply rail are less filtered.

On the other hand, if C_s is higher than 1 μ F, those disturbances on the power supply rail are more filtered.

 C_b has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_b is lower than 1 µF, THD+N increases at lower frequencies and PSRR worsens.

If C_b is higher than 1 µF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial.

Note that C_{in} has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{in}, the higher the PSRR.

4.6 Wake-up time (t_{WU})

When the standby is released to put the device ON, the bypass capacitor C_b is not charged immediately. Because C_b is directly linked to the bias of the amplifier, the bias will not work properly until the C_b voltage is correct. The time to reach this voltage is called wake-up time or t_{WU} and specified in the electrical characteristics tables with $C_b = 1 \mu F$.

If C_b has a value other than 1 μ F, refer to the graph in *[Figure 61](#page-20-2)* to establish the wake-up time.

Note: The bypass capacitor C_b also has a typical tolerance of +/-20%. To calculate the wake-up *time with this tolerance, refer to the graph above (considering for example for* $C_b=1 \mu F$ *in the range of 0.8* μ *F* \leq *C_b* \leq *1.2* μ *F).*

4.7 Standby time

When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in standby mode is a few microseconds. In standby mode, the bypass pin and V_{in} pin are short-circuited to ground by internal switches. This allows a quick discharge of \tilde{C}_b and C_{in} capacitors.

DocID9309 Rev 14 21/33

4.8 Pop performance

Pop performance is intimately linked with the size of the input capacitor C_{in} and the bias voltage bypass capacitor C_{b} .

The size of C_{in} is dependent on the lower cut-off frequency and PSRR values requested. The size of C_b is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, C_b determines the speed with which the amplifier turns ON. In order to reach near zero pop and click, the equivalent input constant time,

 τ_{in} = (R_{in} + 2 k Ω) x C_{in} (s) with R_{in} \geq 5 k Ω

must not reach the τ_{in} maximum value as indicated in *[Figure 63](#page-21-1)* below.

Figure 63. in max. versus bypass capacitor

By following the previous rules, the TS4990 can reach near zero pop and click even with high gains such as 20 dB.

Example:

With $R_{in} = 22$ k Ω and a 20 Hz, -3 dB low cut-off frequency, $C_{in} = 361$ nF. So, $C_{in} = 390$ nF with standard value which gives a lower cut-off frequency equal to 18.5 Hz. In this case, $(R_{in} + 2k\Omega)$ x C_{in} = 9.36 ms. By referring to the previous graph, if C_b = 1 µF and V_{CC} = 5 V, we read 20 ms max. This value is twice as high as our current value, thus we can state that pop and click will be reduced to its lowest value.

Minimizing both C_{in} and the gain benefits both the pop phenomenon, and the cost and size of the application.

4.9 Application example: differential input, BTL power amplifier

The schematics in *[Figure 64](#page-22-1)* show how to configure the TS4990 to work in differential input mode. The gain of the amplifier is:

$$
G_{VDIFF} = 2\frac{R_2}{R_1}
$$

In order to reach the best performance of the differential function, R_1 and R_2 should be matched at 1% max.

Figure 64. Differential input amplifier configuration

The input capacitor C_{in} can be calculated by the following formula using the -3 dB lower frequency required. (\overline{F}_L is the lower frequency required).

$$
C_{\text{in}} \approx \frac{1}{2\pi R_1 F_L} \qquad (F)
$$

Note: This formula is true only if:

$$
F_{CB} = \frac{1}{2\pi (R_1 + R_2)C_B}
$$
 (Hz)

is 5 times lower than F_1 .

Example bill of materials

The bill of materials in *[Table 7](#page-23-0)* is for the example of a differential amplifier with a gain of 2 and a -3 dB lower cut-off frequency of about 80 Hz.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK® is an ST trademark.

5.1 Flip-chip package information

Figure 66. Marking (top view)

Figure 67. Package mechanical data for 9-bump flip-chip package

The daisy chain sample features two-by-two pin connections. The schematics in *[Figure 68](#page-25-0)* illustrate the way pins connect to each other. This sample is used to test continuity on your board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting an Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested.

Figure 69. TS4990 footprint recommendations

Device orientation

The devices are oriented in the carrier pocket with pin number A1 adjacent to the sprocket holes.

5.2 MiniSO-8 package information

Figure 71. MiniSO-8 package mechanical drawing

Table 8. MiniSO-8 package mechanical data

ST

5.3 DFN8 package information

Note: DFN8 exposed pad (E2 x D2) is connected to pin number 7. For enhanced thermal performance, the exposed pad must be soldered to a copper area on the PCB, acting as a heatsink. This copper area can be electrically connected to pin7 or left floating.

Figure 72. DFN8 3x3x0.90 mm package mechanical drawing (pitch 0.5 mm)

Table 9. DFN8 3x3x0.90 mm package mechanical data (pitch 0.5 mm)

5.4 SO-8 package information

Table 10. SO-8 package mechanical data

30/33 DocID9309 Rev 14

6 Ordering information

Order code	Temp. range	Package	Packing	Marking
TS4990EIJT ⁽¹⁾		Flip-chip, 9 bumps	Tape & reel	90
TS4990IST	-40° C, $+85^{\circ}$ C	MiniSO-8	Tape & reel	K990
TS4990IQT		DFN ₈	Tape & reel	K990
TS4990IDT		$SO-8$	Tape & reel	TS4990I

Table 11. Order codes

1. Lead-free Flip-chip part number

7 Revision history

 $17 - Jan-2008$ 11

on page 31.

inverted).

30-Aug-2011 13 Updated DFN8 package (Figure 72)

17-Jan-2019 14 Updated *[Table 11: Order codes](#page-30-1)*

in manufacturer's drawing).

Reformatted package information.

21-May-2008 21-May-2008 Corrected value of output resistance vs. ground in standby mode:

Merged daisy chain flip-chip order code table into Table 11: Order codes

Corrected pitch error in DFN8 package information. Actual pitch is 0.5mm. Updated DFN8 package dimensions to correspond to JEDEC databook definition (in previous versions of datasheet, package dimensions were as

Corrected error in MiniSO-8 package information (L and L1 values were

removed from Table 2, and added in Table 4, Table 5, and Table 6.

Updated ECOPACK® text in Section 5: Package information

Table 12. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

DocID9309 Rev 14 33/33