

CGHV40050

50 W, DC - 4.0 GHz, 50 V, GaN HEMT

Cree's CGHV40050 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40050, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications up to 4 GHz. The reference HPA design in the datasheet operates from 800 MHz to 2 GHz operation instantaneously. It is a demonstration amplifier to showcase the CGHV40050's high efficiency, high gain and wide bandwidth capabilities. The device can be used for a range

Package Types: 440193 & 440206 PN: CGHV40050F & CGHV40050P

of applications from narrow band UHF, L and S Band as well as multi-octave bandwidth amplifiers up to 4 GHz. The transistor is available in a 2-lead flange and pill package.

Typical Performance Over 800 MHz - 2.5 GHz ($T_c = 25$ °c), 50 V

Parameter	800 MHz	1.2 GHz	1.4 GHz	1.8 GHz	2.0 GHz	Units
Small Signal Gain	17.6	16.9	17.7	17.5	14.8	dB
Saturated Output Power	65	70	63	77	60	W
Drain Efficiency @ P _{SAT}	63	63	60	53	52	%
Input Return Loss	5	5.5	4.2	8	5	dB

Note:

Measured CW in the CGHV40050F-TB application circuit.

Features

- Up to 4 GHz Operation
- 50 W Typical Output Power
- 17.5 dB Small Signal Gain at 1.8 GHz
- Application Circuit for 0.8 2.0 GHz
- 55 % Efficiency at P_{SAT}
- 50 V Operation

Large Signal Models Available for SiC & GaN

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	150	Volts	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	25°C
Storage Temperature	T_{STG}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Forward Gate Current	I_{GMAX}	10.4	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	6.3	Α	25°C
Soldering Temperature ²	T_s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{\theta JC}}$	3.04	°C/W	85°C
Thermal Resistance, Junction to Case ⁴	$R_{\scriptscriptstyle{\theta JC}}$	3.11	°C/W	85°C
Case Operating Temperature ⁵	T _c	-40, +80	°C	30 seconds

Note:

Electrical Characteristics ($T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹								
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V_{DC}	V_{DS} = 10 V, I_{D} = 10.4 mA		
Gate Quiescent Voltage	$V_{GS(\mathtt{Q})}$	-	-2.7	-	V_{DC}	$V_{DS} = 50 \text{ V, } I_{D} = 0.3 \text{ A}$		
Saturated Drain Current ²	$\mathbf{I}_{ extsf{DS}}$	8.4	10.4	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	$V_{\rm BR}$	150	-	-	V_{DC}	V_{GS} = -8 V, I_{D} = 10.4 mA		
RF Characteristics ³ ($T_c = 25$ °C, F_0	= 1.8 GHz ur	ıless otherwi	se noted)					
Small Signal Gain	G_{ss}	-	17.5	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 0.3 \text{ A}$		
Power Gain	G _p	-	12.5	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 0.3 \text{ A, } P_{OUT} = P_{SAT}$		
Power Output at Saturation ⁴	P_{SAT}	-	77	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 0.3 \text{ A}$		
Drain Efficiency	η	-	53	-	%	$V_{_{\mathrm{DD}}}$ = 50 V, $I_{_{\mathrm{DQ}}}$ = 0.3 A, $P_{_{\mathrm{OUT}}}$ = $P_{_{\mathrm{SAT}}}$		
Output Mismatch Stress	VSWR	+	-	10:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 0.3 \text{ A}, P_{OUT} = 50 \text{ W CW}$		
Dynamic Characteristics⁵								
Input Capacitance	C_{GS}	-	16	-	pF	V_{DS} = 50 V, V_{gs} = -8 V, f = 1 MHz		
Output Capacitance	C _{DS}	-	5	-	pF	$V_{DS} = 50 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		
Feedback Capacitance	C_{GD}	-	0.3	-	pF	$V_{DS} = 50 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		

¹ Current limit for long term, reliable operation

 $^{^{2}\} Refer\ to\ the\ Application\ Note\ on\ soldering\ at\ \underline{www.cree.com/products/wireless\ appnotes.asp}$

 $^{^3}$ Measured for the CGHV40050P at P $_{\rm DISS} = 41.6$ W. 4 Measured for the CGHV40050F at P $_{\rm DISS} = 41.6$ W.

 $^{^{\}scriptscriptstyle 5}$ See also, Power Derating Curve on Page 7

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

³ Measured in CGHV40050-TB.

 $^{^{\}rm 4}$ $\rm P_{SAT}$ is defined as $\rm I_{\rm G}{\rm =}~1~mA$

⁵ Includes package

CGHV40050 Typical Performance

Figure 1. - Small Signal Gain and Return Losses versus Frequency of the CGHV40050 in the application circuit CGHV40050-TB

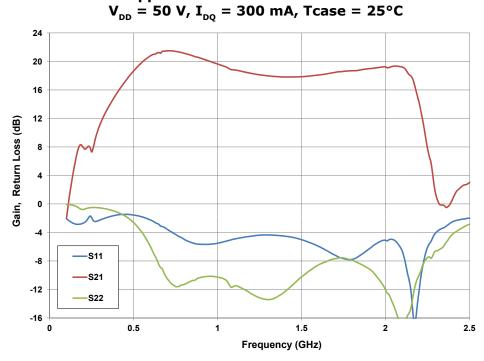
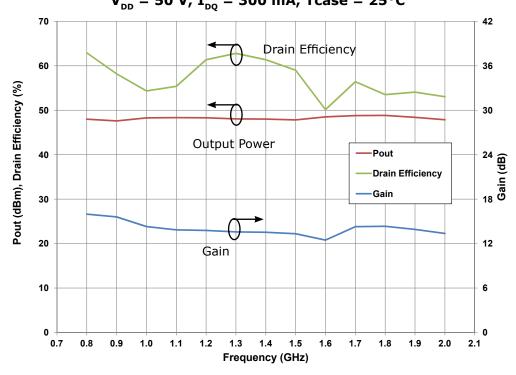
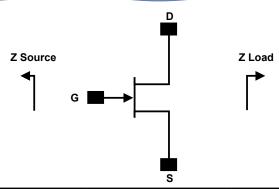



Figure 2. - Gain, Output Power and Drain Efficiency vs Frequency of the CGHV40050 measured in Broadband Amplifier Circuit CGHV40050-TB $V_{\rm DD}=50~{
m V},~I_{\rm DO}=300~{
m mA},~T{
m case}=25^{\circ}{
m C}$

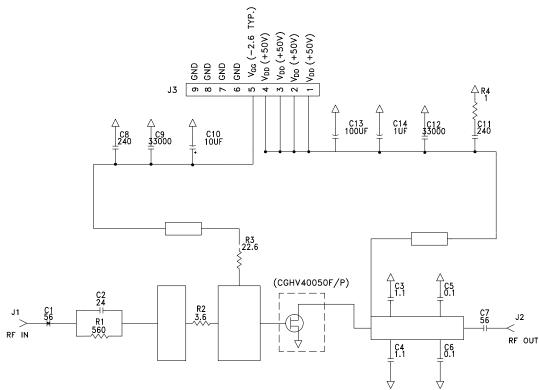


CGHV40050 Typical Performance

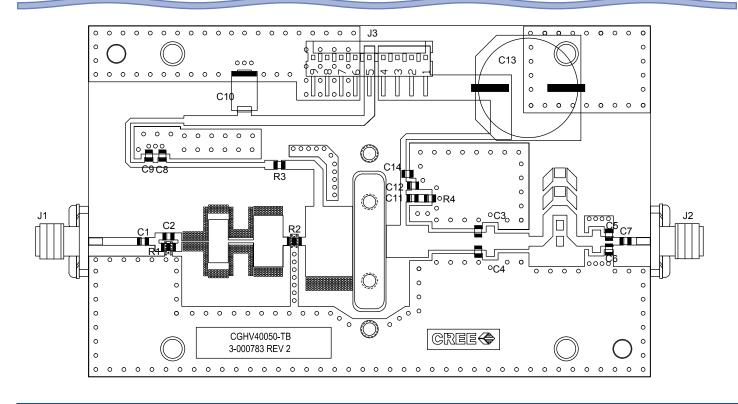
1.25 40 -Gmax -K-Factor 35 0.75 30 GMAX (dB) 25 0.5 20 0.25 0 15 1.5 Frequency (GHz)

Figure 3. - G_{MAX} and K-Factor vs Frequency V_{DD} = 50V, I_{DQ} = 300 mA, Tcase = 25°C

Source and Load Impedances

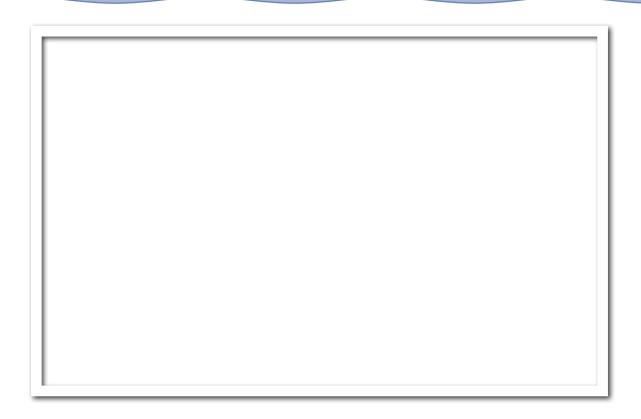


Frequency (MHz)	Z Source	Z Load
500	5.69+j7.82	21.47+j10.28
1000	3.21+j3.48	11.72+j10.50
2000	3.2-j1.74	3.84+j7.07
3000	3.23-j5.23	5.58+j3.02
4000	2.75-j10.6	4.65-j0.74


Note¹: V_{DD} = 50 V, I_{DQ} = 300 mA. In the 440193 package.

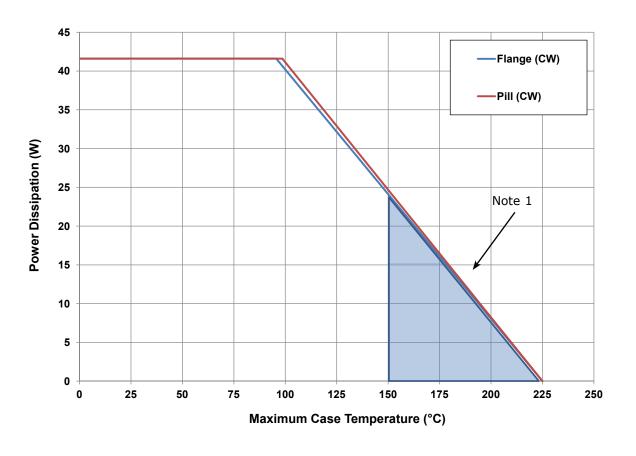
CGHV40050-TB Application Circuit Schematic

CGHV40050-TB Application Circuit



CGHV40050-TB Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 5600hms,5%, 0805, HIGH POWER SMT, IMS	1
R2	RES, 3.60hms, 2%, 1005, HIGH POWER SMT, IMS	1
R3	RES, SMT, 0805, 22 OHM	1
R4	RES, SMT, 0805, 10HM	1
C1, C7	CAP, 56 PF +/- 5%,, 250V, 0805, ATC 600F	3
C2	CAP, 10 pF +/- 5%, 250V, 0805, ATC 600F	1
C3, C4	CAP, 1.1pF, +/-0.1pF, 250V, 0805, ATC600F	2
C5, C6	CAP, 0.1 PF +/- 0.05 pF, 0805, ATC 600F	2
C8, C11	CAP, 240pF, +/-5%, 0805, ATC600F	2
C9, C12	CAP, 33000pF, 0805, 100V, X7R	2
C10	CAP, 10UF, 16V, TANTALUM	1
C13	CAP, 100UF, 80V, ELECTROLYTIC, CAN	1
C14	CAP, 1UF, 0805, 100V, X7S	1
J1,J2	CONN,N,FEM,W/.500 SMA FLNG	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
	BASEPLATE, CGH35120	1
	PCB, RO4350B, 2.5"x4"x0.020", CGHV40100F	1


CGHV40050-TB Demonstration Amplifier Circuit

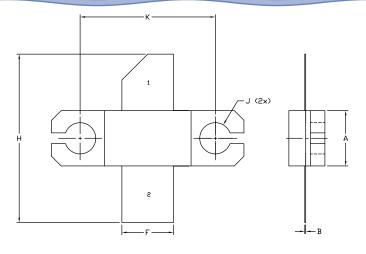
CGHV40050 Power Dissipation De-rating Curve

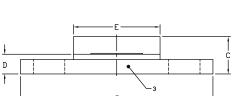
Figure 4. - Transient Power Dissipation De-Rating Curve

Note 1. Area exceeds Maximum Case Temperature (See Page 2).

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C


Typical S-Parameters (Small Signal, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 300 \text{ mA}$, magnitude / angle)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.92	-161.97	13.79	79.27	0.01	-5.56	0.44	-142.42
600 MHz	0.92	-165.42	11.38	74.02	0.01	-9.73	0.46	-143.34
700 MHz	0.92	-168.02	9.62	69.31	0.01	-13.32	0.49	-144.16
800 MHz	0.93	-170.08	8.29	64.99	0.01	-16.49	0.52	-145.04
900 MHz	0.93	-171.8	7.24	60.98	0.009	-19.32	0.55	-146.01
1.0 GHz	0.93	-173.27	6.4	57.23	0.009	-21.83	0.58	-147.07
1.1 GHz	0.93	-174.58	5.7	53.71	0.009	-24.07	0.61	-148.21
1.2 GHz	0.94	-175.77	5.13	50.38	0.008	-26.05	0.63	-149.4
1.3 GHz	0.94	-176.86	4.64	47.24	0.008	-27.77	0.65	-150.62
1.4 GHz	0.94	-177.89	4.23	44.25	0.007	-29.25	0.67	-151.85
1.5 GHz	0.94	-178.87	3.87	41.42	0.007	-30.48	0.69	-153.09
1.6 GHz	0.94	-179.81	3.56	38.72	0.007	-31.46	0.71	-154.33
1.7 GHz	0.95	179.28	3.3	36.14	0.006	-32.19	0.73	-155.54
1.8 GHz	0.95	178.4	3.06	33.68	0.006	-32.66	0.74	-156.74
1.9 GHz	0.95	177.53	2.85	31.32	0.006	-32.85	0.76	-157.91
2.0 GHz	0.95	176.67	2.67	29.06	0.005	-32.75	0.77	-159.06
2.1 GHz	0.95	175.82	2.51	26.88	0.005	-32.33	0.78	-160.18
2.2 GHz	0.95	174.97	2.37	24.78	0.005	-31.57	0.79	-161.28
2.3 GHz	0.95	174.13	2.24	22.75	0.005	-30.43	0.8	-162.34
2.4 GHz	0.96	173.28	2.12	20.78	0.004	-28.87	0.81	-163.39
2.5 GHz	0.96	172.43	2.02	18.87	0.004	-26.86	0.82	-164.4
2.6 GHz	0.96	171.57	1.93	17.02	0.004	-24.35	0.82	-165.4
2.7 GHz	0.96	170.7	1.85	15.2	0.004	-21.31	0.83	-166.37
2.8 GHz	0.96	169.82	1.77	13.43	0.003	-17.72	0.84	-167.32
2.9 GHz	0.96	168.92	1.71	11.69	0.003	-13.6	0.84	-168.25
3.0 GHz	0.96	168.01	1.65	9.98	0.003	-8.98	0.85	-169.17
3.2 GHz	0.96	166.12	1.55	6.62	0.003	1.31	0.86	-170.95
3.4 GHz	0.96	164.13	1.47	3.33	0.003	11.88	0.86	-172.69
3.6 GHz	0.96	162	1.41	0.06	0.004	21.35	0.87	-174.4
3.8 GHz	0.95	159.72	1.36	-3.22	0.004	28.89	0.87	-176.09
4.0 GHz	0.95	157.25	1.33	-6.55	0.005	34.35	0.88	-177.76

To download the s-parameters in s2p format, go to the CGHV40050 Product Page and click on the documentation tab.

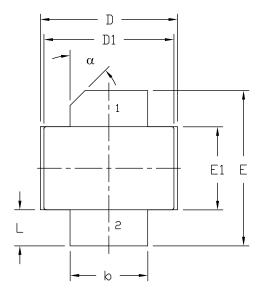
Product Dimensions CGHV40050F (Package Type — 440193)

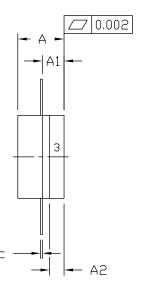
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
C	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
Ε	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.670	0.730	17.02	18.54	
J	ø.	130	3.30		
k	0.5	62	14.28		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGHV40050P (Package Type — 440206)

NUTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIM	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
Ь	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
Е	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45° REF		45°	45° REF	
					2x

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/wireless

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639