
Revision Number: 2.6

Intel® Ethernet Controller I211
Datasheet
Networking Division (ND)

Features:
• Small package: 9 x 9 mm
• PCIe v2.1 (2.5 GT/s) x1, with Switching Voltage Regulator (iSVR)
• Integrated Non-Volatile Memory (iNVM)
• Platform Power Efficiency

— IEEE 802.3az Energy Efficient Ethernet (EEE)
— Proxy: ECMA-393 and Windows* logo for proxy offload

• Advanced Features:
— 0 to 70 °C commercial temperature
— Jumbo frames
— Interrupt moderation, VLAN support, IP checksum offload
— RSS and MSI-X to lower CPU utilization in multi-core systems
— Advanced cable diagnostics, auto MDI-X
— ECC – error correcting memory in packet buffers
— Four Software Definable Pins (SDPs)

2

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.
The products and services described may contain defects or errors which may cause deviations from published specifications.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
* Other names and brands may be claimed as the property of others.
© 2015 Intel Corporation.

www.intel.com/design/literature.htm

Revision History—Ethernet Controller I211

3

Revision History

Rev Date Notes

• Removed all references to IEEE Std 1149.6-2003, IEEE Standard for Boundary-Scan Testing of
Advanced Digital Networks, IEEE, 2003.

• Section reference changed in section 6.1.
• Updated section 8.22.3.37 (Misc Test - Page 6, Register 26).
• Removed sections 8.22.3.38 through 8.22.3.43).
• Revised section 11.4 (Oscillator Support).
• Added section 11.5.5 (Designing the I211 as a 10/100 Mb/s Only Device).
• Updated section 11.5.6.4 (Differential Pair Trace Routing for 10/100/1000 Designs).

2.5 January 2014

• Replaced figure 2-2.
• Revised section 3.2 (iNVM).
• Revised section 3.2.2 (iNVM Structures).
• Revised section 3.5.7.5.5.1 (Internal PHY Back-to-Back SPD).
• Revised table 8-6 (Register Summary; PQMPRC[0 - 3]).
• Revised table 10-11 (Specification for External Clock Oscillator).

2.4 July 2013 • Revised Revision History.

2.3 June 2013

• Revised section 7.1.2.10 (Receive-Side Scaling (RSS).
• Revised section 7.8.3.1 (Capture Timestamp Mechanism).
• Revised section 8.18.17 (Flexible Host Filter Table Registers - FHFT (0x9000 + 4*n

[n=0...255]; RW); updated note.
• Revised section 8.22.3.23 (MAC Specific Control Register 1 - Page 2, Register 16; bits 9:8)

2.2 April 2013

• Updated title page (Platform Power Efficiency description).
• Revised Figure 2.1 and Table 2-1 (changed RSVD7_PU to RSVD7_PD).
• Revised iNVM description (section 3.2).
• Added line loopback information (section 3.5.5.3).
• Revised Acquiring Ownership Over a Shared Resource description (section 4.6.1).
• Revised Releasing Ownership Over a Shared Resource description (section 4.6.2).
• Revised Dr Disable Mode description (section 5.2.4.1).
• Revised Device Rev ID (section 6.2.17).
• Added PXE VLAN Flash settings (Sections 6.8.6.5 through 6.3.3.1).
• Updated Software Semaphore - SWSM (0x5B50; R/W); section 8.6.1.
• Revised Specification for XTAL1 (In); table 10.10.
• Revised Third-Party Magnetics Manufacturers table (section 11.5.3).
• Added Power Delivery Solutions (section 11.6.1).

2.1 November 2012

• Revised table 11.1 - Absolute Maximum Ratings
• Revised section 11.5.3 - Third-Party Magnetics Manufacturers.
• Revised table 12.16 - Absolute Maximum Case Temperature.
• Revised table 12.17 - Thermal Simulation Results for Various Environmental Conditions.

2.0 November 2012

The following sections were revised:
• 1.0 Introduction.
• 3.0 Interconnects.
• 6.0 Flash Map.
• 7.0 Inline Functions.
• 8.0 Programming Interface.
• 9.0 PCIe Programming Interface.
• 11.0 Electrical/Mechanical Specification.
• 12.0 Design Considerations.
• 14.0 Diagnostics
• Added new section 13.0 - Thermal Considerations.

1.9 October 2012 • Initial Release (Intel Public).

Ethernet Controller I211 —Revision History

4

Note: This page intentionally left blank.

Introduction—Ethernet Controller I211

5

1.0 Introduction

The Intel® Ethernet Controller I211 (I211) controller is a single port, compact, low power component
that supports GbE designs. The I211 offers a fully-integrated GbE Media Access Control (MAC), Physical
Layer (PHY) port and supports PCI Express* [PCIe v2.1 (2.5GT/s)].

The I211 enables 1000BASE-T implementations using an integrated PHY. It can be used for server
system configurations such as rack mounted or pedestal servers, in an add-on NIC or LAN on
Motherboard (LOM) design. Another possible system configuration is for blade servers as a LOM or
mezzanine card. It can also be used in embedded applications such as switch add-on cards and network
appliances.

1.1 Scope
This document provides the external architecture (including device operation, pin descriptions, register
definitions, etc.) for the I211.

This document is a reference for software device driver developers, board designers, test engineers,
and others who may need specific technical or programming information.

1.2 Terminology and Acronyms

Table 1-1. Glossary

Definition Meaning

1000BASE-BX 1000BASE-BX is the PICMG 3.1 electrical specification for transmitting
1 Gb/s Ethernet or 1 Gb/s fibre channel encoded data over the backplane.

1000BASE-CX 1000BASE-X over specialty shielded 150  balanced copper jumper cable assemblies as
specified in IEEE 802.3 Clause 39.

1000BASE-T 1000BASE-T is the specification for 1 Gb/s Ethernet over category 5e twisted pair cables as
defined in IEEE 802.3 clause 40.

AEN Asynchronous Event Notification

b/w Bandwidth.

BIOS Basic Input/Output System.

BT Bit Time.

CRC Cyclic redundancy check

DCA Direct Cache Access.

DDOFF Dynamic Device Off

DFT Design for Testability.

DQ Descriptor Queue.

DW Double word (4 bytes).

Ethernet Controller I211 —Introduction

6

EEE Energy Efficient Ethernet - IEEE802.3az standard

EEPROM Electrically Erasable Programmable Memory. A non-volatile memory located on the LAN
controller that is directly accessible from the host.

EOP End of Packet.

FC Flow Control.

FCS Frame Check Sequence.

Host Interface RAM on the LAN controller that is shared between the firmware and the host. RAM is used to
pass commands from the host to firmware and responses from the firmware to the host.

HPC High - Performance Computing.

IPC Inter Processor Communication.

IPG Inter Packet Gap.

IPMI Intelligent Platform Management Interface specification

LAN (auxiliary Power-Up) The event of connecting the LAN controller to a power source (occurs even before system
power-up).

LLDP Link Layer Discovery Protocol defined in IEEE802.1AB used by IEEE802.3az (EEE) for system
wake time negotiation.

LOM LAN on Motherboard.

LPI Low Power Idle - Low power state of Ethernet link as defined in IEEE802.3az.

LSO Large Send Offload.

LTR Latency Tolerance Reporting (PCIe protocol)

iSVR Integrated Switching Voltage Regulator

MAC Media Access Control.

MIFS/MIPG Minimum Inter Frame Spacing/Minimum Inter Packet Gap.

MMW Maximum Memory Window.

MSS
Maximum Segment Size.
Largest amount of data, in a packet (without headers) that can be transmitted. Specified in
Bytes.

MPS Maximum Payload Size in PCIe specification.

MTU
Maximum Transmit Unit.
Largest packet size (headers and data) that can be transmitted. Specified in Bytes.

NC Network Controller.

NIC Network Interface Controller.

OBFF Optimized Buffer Flush/Fill (PCIe protocol).

TPH TLP Process Hints (PCIe protocol).

PCS Physical Coding Sub layer.

PHY Physical Layer Device.

PMA Physical Medium Attachment.

PMD Physical Medium Dependent.

SA Source Address.

SDP Software Defined Pins.

SFD Start Frame Delimiter.

SVR Switching Voltage Regulator

TLP Transaction Layer Packet in the PCI Express specification.

TSO Transmit Segmentation offload - A mode in which a large TCP/UDP I/O is handled to the
device and the device segments it to L2 packets according to the requested MSS.

VLAN Virtual LAN

Table 1-1. Glossary (Continued)

Definition Meaning

Introduction—Ethernet Controller I211

7

1.2.1 External Specification and Documents

The I211 implements features from the following specifications.

1.2.1.1 Network Interface Documents
1. IEEE standard 802.3, 2006 Edition (Ethernet). Incorporates various IEEE Standards previously

published separately. Institute of Electrical and Electronic Engineers (IEEE).
2. IEEE standard 1149.1, 2001 Edition (JTAG). Institute of Electrical and Electronics Engineers (IEEE)
3. IEEE standard 802.1Q for VLAN
4. PICMG3.1 Ethernet/Fibre Channel Over PICMG 3.0 Draft Specification, January 14, 2003, Version

D1.0
5. Serial-GMII Specification, Cisco Systems document ENG-46158, Revision 1.7
6. INF-8074i Specification for SFP (Small Form factor Pluggable) Transceiver (ftp://ftp.seagate.com/

sff)
7. IEEE Std 802.3ap-2007
8. IEEE 1588TM Standard for a Precision Clock Synchronization Protocol for Networked Measurement

and Control Systems, November 8 2002
9. IEEE 802.1AS Timing and Synchronization for Time- Sensitive Applications in Bridged Local Area

Networks Draft 2.0, February 22, 2008
10. IEEE 802.1BF Ethernet Support for the IEEE P802.1AS Time Synchronization Protocol Task Force
11. IEEE 802.3az Energy Efficient Ethernet Draft 1.4, May 2009
12. 802.1Qav - Forwarding and Queuing Enhancements for Time-Sensitive Streams

1.2.1.2 Host Interface Documents
1. PCI-Express 2.1 Base specification
2. PCI Specification, version 3.0
3. PCI Bus Power Management Interface Specification, Rev. 1.2, March 2004
4. Advanced Configuration and Power Interface Specification, Rev 2.0b, October 2002

1.2.1.3 Networking Protocol Documents
1. IPv4 specification (RFC 791)
2. IPv6 specification (RFC 2460)
3. TCP/UDP specification (RFC 793/768)
4. SCTP specification (RFC 2960)
5. ARP specification (RFC 826)
6. Neighbor Discovery for IPv6 (RFC 2461)
7. EUI-64 specification, http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

1.2.1.4 Proxy Documents
1. proxZZZy™ for sleeping hosts, February 2010 (ECMA-393)
2. mDNS Offload - Draft 1.0, May 2010

Ethernet Controller I211 —Introduction

8

1.3 Product Overview
The I211’s internal 1000BASE-T PHY can be used to implement a single port NIC or LOM design.

The I211 targets server system configurations such as rack mounted or pedestal servers, where the
I211 can be used as add-on NIC or LOM design. Another system configuration is blade servers, where it
can be used on Mezzanine card or LOM. The I211 can also be used in embedded applications such as
switch add-on cards and network appliances.

1.4 External Interface

1.4.1 PCIe Interface

The PCIe v2.1 (2.5GT/s) Interface is used by the I211 as a host interface. The interface only supports
the PCIe v2.1 (2.5GT/s) rate and is configured to x1. The maximum aggregated raw bandwidth for a
typical PCIe v2.1 (2.5GT/s) configuration is 4 Gb/s in each direction. Refer to Section 2.3.1 for a full pin
description. The timing characteristics of this interface are defined in the PCI Express Card
Electromechanical Specification rev 2.0 and in the PCIe v2.1 (2.5GT/s) specification.

1.4.2 Network Interfaces

 One independent interface is used to connect the I211 port to external devices. The following protocol
is supported:

• MDI (copper) support for standard IEEE 802.3 Ethernet interface for 1000BASE-T, 100BASE-TX, and
10BASE-T applications (802.3, 802.3u, and 802.3ab)

Refer to Section 2.3.4 for full pin description, Section 10.6.3, and Section 10.6.3 for timing
characteristics of this interface.

1.4.3 Internal Non-Volatile Memory (iNVM)

The I211 stores product configuration information in an Internal Non-Volatile Memory (iNVM) and
operates as a One Time Programmable (OTP) device. The I211 does not support an external EEPROM.

1.4.4 Software-Definable Pins (SDP) Interface (General-Purpose I/O)

The I211 has four software-defined pins (SDP pins) that can be used for IEEE1588 auxiliary device
connections, enable/disable of the device, and for other miscellaneous hardware or software-control
purposes. These pins can be individually configurable to act as either standard inputs, General-Purpose
Interrupt (GPI) inputs or output pins(refer to Section 6.2.19, Section 8.2.1 and Section 8.2.3), as well
as the default value of all pins configured as outputs. Information on SDP usage can be found in
Section 3.3 and Section 7.8.3.3. Refer to Section 2.3.5 for pin description of this interface.

1.4.5 LED Interface

The I211 implements three output drivers intended for driving external LED circuits. Each of the three
LED outputs can be individually configured to select the particular event, state, or activity, which is
indicated on that output. In addition, each LED can be individually configured for output polarity as well
as for blinking versus a non-blinking (steady-state) indication.

Introduction—Ethernet Controller I211

9

The configuration for LED outputs is specified via the LEDCTL register. Furthermore, the hardware-
default configuration for all LED outputs can be specified via fields (refer to Section 6.2.16 and
Section 6.2.18), thereby supporting LED displays configurable to a particular OEM preference.

Refer to Section 2.3.4 for full pin description of this interface.

Refer to Section 7.5 for more detailed description of LED behavior.

1.5 Features
Table 1-2 to Table 1-9 list the I210 and I211 features and compares them to other products.

Table 1-2. I211 Features

Feature I210 I211 I350 82574

Number of ports 1 1 4 1

Serial Flash interface Y N Y Y

Integrated NVM (iNVM) Y Y N N

4-wire SPI EEPROM interface N N Y Y

Configurable LED operation for software or OEM custom-tailoring of
LED displays Y Y Y Y

Protected space for private configuration Y N Y Y

Device disable capability Y Y Y Y

Package size (mm x mm) 9x9 9x9 17x17/25x25 9x9

Embedded thermal sensor N N Y N

Embedded thermal diode N N Y N

Watchdog timer Y Y Y Y

Boundary-Scan IEEE 1149.1 Y Y Y Y

Boundary-Scan IEEE 1149.6 N N Y N

Industrial temp (special SKU) Y N N Y

Table 1-3. Network Features

Feature I210 I211 I350 82574

Half duplex at 10/100 Mb/s operation and full duplex operation
at all supported speeds Y Y Y Y

10/100/1000 copper PHY integrated on-chip 1 port 1 port 4 ports 1 port

Jumbo frames supported Y Y Y Y

Size of jumbo frames supported 9.5 KB 9.5 KB 9.5 KB 9018B

Flow control support: send/receive PAUSE frames and receive
FIFO thresholds Y Y Y Y

Statistics for management and RMON Y Y Y Y

802.1q VLAN support Y Y Y Y

802.3az EEE support Y Y Y N

MDI flip N N Y N

SerDes interface for external PHY connection or system
interconnect Y N 4 ports N

Ethernet Controller I211 —Introduction

10

1000BASE-KX interface for blade server backplane connections Y N Y N

802.3ap Backplane Auto-negotiation N N N N

SGMII interface for external 1000BASE-T PHY connection 1 port N 4 ports N

Fiber/copper auto-sense N N 4 ports N/A

SerDes support of non-auto-negotiation partner Y N Y N

SerDes signal detect Y N Y N

External PHY control I/F
MDC/MDIO 2-wire I/F

Y N Shared or
per function N

Table 1-4. Host Interface Features

Feature I210 I211 I350 82574

PCIe revision 2.1 2.1 2.1 (5 Gb/s
or 2.5 Gb/s) 1.1

PCIe physical layer Gen 1 Gen 1 Gen 2 Gen 1

Bus width x1 x1 x1, x2, x4 x1

64-bit address support for systems using more than
4 GB of physical memory Y Y Y Y

Outstanding requests for Tx buffers per port 6 6
24 per port
and for all

ports
4

Outstanding requests for Tx descriptors per port 1 1
4 per port
and for all

ports
2

Outstanding requests for Rx descriptors per port 1 1
4 per port
and for all

ports
2

Credits for posted writes 4 4 4 4

Max payload size supported 512 B 512 B 512 B 512 B

Max request size supported 2 KB 2 KB 2 KB 2 KB

Link layer retry buffer size 3.2 KB 3.2 KB 3.2 KB 2 KB

Vital Product Data (VPD) Y N Y Y

VPD size 1024B N/A 256B 256B

End to End CRC (ECRC) Y Y Y N

OBFF (Optimized Buffer Flush/Fill) Y N N N

Latency Tolerance Reporting (LTR) Y N Y N

TPH Y Y Y N

CSR access via Configuration space Y Y Y N

Access Control Services (ACS) N N Y N

Audio Video Bridging (AVB) support Y N N N

Table 1-3. Network Features (Continued)

Feature I210 I211 I350 82574

Introduction—Ethernet Controller I211

11

Table 1-5. LAN Functions Features

Feature I210 I211 I350 82574

Programmable host memory receive buffers Y Y Y Y

Descriptor ring management hardware for transmit and
receive Y Y Y Y

ACPI register set and power down functionality supporting D0
and D3 states Y Y Y Y

Software controlled global reset bit (resets everything except
the configuration registers) Y Y Y Y

Software Definable Pins (SDPs) - per port 4 4 4 N

Four SDP pins can be configured as general purpose interrupts Y Y Y N

Wake up Y Y Y Y

Flexible wake-up filters 8 8 8 6

Flexible filters for queue assignment in normal operation 8 8 8 N

IPv6 wake-up filters Y Y Y Y

Default configuration by the iNVM for all LEDs for pre-driver
functionality 3 LEDs 3 LEDs 4 LEDs 3 LEDs

LAN function disable capability Y Y Y Y

Programmable memory transmit buffers Y Y Y Y

Double VLAN Y Y Y N

IEEE 1588 Y Y Y Y

Per-packet timestamp Y Y Y N

Tx rate limiting per queue Y N N N

Table 1-6. LAN Performance Features

Feature I210 I211 I350 82574

TCP segmentation offload
Up to 256 KB

Y Y Y Y

iSCSI TCP segmentation offload (CRC) N N N N

IPv6 support for IP/TCP and IP/UDP receive checksum
offload Y Y Y Y

Fragmented UDP checksum offload for packet reassembly Y Y Y Y

Message Signaled Interrupts (MSI) Y Y Y Y

Message Signaled Interrupts (MSI-X) number of vectors 5 5 25 5

Packet interrupt coalescing timers (packet timers) and
absolute-delay interrupt timers for both transmit and receive
operation

Y Y Y Y

Interrupt throttling control to limit maximum interrupt rate
and improve CPU utilization Y Y Y Y

Rx packet split header Y Y Y Y

Receive Side Scaling (RSS) number of queues per port Up to 4 Up to 2 Up to 8 Up to 2

Total number of Rx queues per port 4 2 8 2

Total number of TX queues per port 4 2 8 2

Ethernet Controller I211 —Introduction

12

RX header replication
Low latency interrupt
DCA support
TCP timer interrupts
No snoop
Relax ordering

Yes to all Yes to all Yes to all

Only No
snoop and

Relax
ordering

TSO interleaving for reduced latency Y Y Y N

Receive Side Coalescing (RSC) N N N N

SCTP receive and transmit checksum offload Y Y Y N

UDP TSO Y Y Y Y

IPSec offload N N N N

Table 1-7. Virtualization Related Features

Feature I210 I211 I350 82574

Support for Virtual Machines Device queues (VMDq) per port N N
8 pools
(single
queue)

N

L2 MAC address filters (unicast and multicast) 16 16 32 16

L2 VLAN filters Per port Per port Per pool Per port

PCI-SIG SR-IOV N N 8 VF N

Multicast/broadcast packet replication N N Y N

VM to VM packet forwarding (packet loopback) N N Y N

RSS replication N N N N

Traffic shaping N N N N

MAC and VLAN anti-spoofing N N Y N

Malicious driver detection N N Y N

Per-pool statistics Y Y Y N/A

Per-pool off loads Y Y Y N/A

Per-pool jumbo support Y Y Y N/A

Mirroring rules N N 4 N

External switch VEPA support N N Y N

External switch NIV (VNTAG) support N N N N

Promiscuous modes VLAN, unicast
multicast

VLAN, unicast
multicast

VLAN,
unicast

multicast

unicast
multicast

Table 1-8. Manageability Features

Feature I210 I211 I350 82574

Advanced pass-through-compatible management packet
transmit/receive support Y N Y Y

Managed ports on SMBus interface to external MC 1 N 4 1

Auto-ARP reply over SMBus Y N Y Y

Table 1-6. LAN Performance Features (Continued)

Feature I210 I211 I350 82574

Introduction—Ethernet Controller I211

13

1.6 I210 and I211 Options
Table 1-10 lists the main differences between features supported by the I210 and I211.

NC-SI Interface to an external MC Y N Y Y

Standard DMTF NC-SI protocol support Y N Y Y

DMTF MCTP protocol over SMBus Y N Y N

NC-SI hardware arbitration Y N Y N

DMTF MCTP protocol over PCIe Y N N N

Manageability L2 address filters 2 N 2 1

Manageability VLAN L2 filters 8 N 8 4

Manageability EtherType filters 4 N 4 N

Manageability Flex L4 port filters 8 N 8 4

Manageability Flex TCO filters 1 N 1 2

Manageability L3 address filters (IPv4) 4 N 4 1

Manageability L3 address filters (IPv6) 4 N 4 1

Proxying1
1 ARP Offload
2 NS Offloads
MLD support

mDNS

1 ARP Offload
2 NS Offloads
MLD support

1 ARP Offload
per PF

2 NS Offloads
per PF

N

1. Proxying support requires a dedicated firmware code be loaded to the device via the host interface (see Section 3.2.6).

Table 1-9. Power Management Features

Feature I210 I211 I350 82574

Magic packet wake-up enable with unique MAC address Y Y Y Y

ACPI register set and power down functionality supporting D0
and D3 states Y Y Y Y

Full wake-up support (APM and ACPI 2.0) Y Y Y Y

Smart power down at S0 no link and Sx no link Y Y Y Y

LAN disable functionality (equivalent to Static device off
functionality in the I210/I211) Y1

1. Feature not functional if enabled together with dynamic device off.

Y1 Y Y

PCIe function disable Y Y Y Y

Dynamic device off Y2

2. Feature not functional if enabled together with static device off (such as LAN disable).

Y2 Y Y

EEE Y Y Y N

DMA coalescing Y N Y N

OBFF/PE_WAKE_N Y N N N

Table 1-10. I210 9x9 QFN and I211 9x9 QFN Package Feature

Feature I210 I211

Table 1-8. Manageability Features (Continued)

Feature I210 I211 I350 82574

Ethernet Controller I211 —Introduction

14

1.7 Overview of Changes Compared to the I350
The following section describes the modifications designed in the I211 compared to the I350.

1.7.1 Network Interface

1.7.1.1 Energy Efficient Ethernet (IEEE802.3AZ)

The I211 supports negotiation and link transition to a Low Power Idle (LPI) state as defined in the
IEEE802.3az (EEE) standard. Energy Efficient Ethernet (EEE) is supported only in the internal copper
PHY mode and for the following technologies:

• 1000BASE-T
• 100BASE-TX

EEE enables reduction of the I211 power consumption as a function of link utilization.

1.7.1.2 Tx Timestamp

The I211 supports three types of transmit timestamps:

1. Reporting back of the timestamp in the transmit descriptor.
2. Inserting the timestamp in the packet sent.
3. Recording the timestamp of selected packet in a register (legacy behavior).

Transmit timestamp is described in Section 7.0, Inline Functions.

1.7.2 Virtualization

SR-IOV and VMDq is not supported in hardware by the I211. The I211 can still be used in virtualized
systems where the VM switching is done in software.

1.7.2.1 Number of Exact Match Filters

The number of RAH/RAL registers is 16.

SerDes/SGMII port Yes (for SerDes I210 SKU only) Not supported.

Manageability Yes Not supported

Integrated SVR and LVR control Supported Supported

82574 pinout compatibility Footprint compatibility only Not supported

82583V pinout compatibility Not supported Footprint compatibility only

Table 1-10. I210 9x9 QFN and I211 9x9 QFN Package Feature

Introduction—Ethernet Controller I211

15

1.7.3 Host Interface

1.7.3.1 MSI-X Support

The number of MSI-X vectors supported by the I211 changed to 5. For further information, refer to
Section 7.3.

1.7.4 BOM Cost Reduction

1.7.4.1 On-chip 0.9V SVR Control

The I211 includes a fully integrated on-chip Switching Voltage Regulator (SVR) that can be used to
generate a 0.9V power supply without the need for a higher cost on-board 0.9V voltage regulator (refer
to Section 3.4).

1.8 Device Data Flows

1.8.1 Transmit Data Flow

Table 1-11 lists a high level description of all data/control transformation steps needed for sending
Ethernet packets to the line.

Table 1-11. Transmit Data Flow

Step Description

1 The host creates a descriptor ring and configures one of the I211's transmit queues with the address location,
length, head and tail pointers of the ring (one of 2 available Tx queues).

2 The host is requested by the TCP/IP stack to transmit a packet, it gets the packet data within one or more data
buffers.

3
The host initializes descriptor(s) that point to the data buffer(s) and have additional control parameters that
describe the needed hardware functionality. The host places that descriptor in the correct location at the
appropriate Tx ring.

4 The host updates the appropriate queue tail pointer (TDT)

5 The I211's DMA senses a change of a specific TDT and as a result sends a PCIe request to fetch the descriptor(s)
from host memory.

6 The descriptor(s) content is received in a PCIe read completion and is written to the appropriate location in the
descriptor queue internal cache.

7 The DMA fetches the next descriptor from the internal cache and processes its content. As a result, the DMA sends
PCIe requests to fetch the packet data from system memory.

8
The packet data is received from PCIe completions and passes through the transmit DMA that performs all
programmed data manipulations (various CPU off loading tasks as checksum off load, TSO off load, etc.) on the
packet data on the fly.

9 While the packet is passing through the DMA, it is stored into the transmit FIFO. After the entire packet is stored in
the transmit FIFO, it is forwarded to the transmit switch module.

11 The MAC appends the L2 CRC to the packet and sends the packet to the line using a pre-configured interface.

12 When all the PCIe completions for a given packet are done, the DMA updates the appropriate descriptor(s).

13 After enough descriptors are gathered for write back or the interrupt moderation timer expires, the descriptors are
written back to host memory using PCIe posted writes. Alternatively, the head pointer can only be written back.

14 After the interrupt moderation timer expires, an interrupt is generated to notify the host device driver that the
specific packet has been read to the I211 and the driver can release the buffers.

Ethernet Controller I211 —Introduction

16

1.8.2 Receive Data Flow

Table 1-12 lists a high level description of all data/control transformation steps needed for receiving
Ethernet packets.

Table 1-12. Receive Data Flow

Step Description

1 The host creates a descriptor ring and configures one of the I211's receive queues with the address location,
length, head, and tail pointers of the ring (one of 2 available Rx queues).

2 The host initializes descriptors that point to empty data buffers. The host places these descriptors in the correct
location at the appropriate Rx ring.

3 The host updates the appropriate queue tail pointer (RDT).

4 The I211's DMA senses a change of a specific RDT and as a result sends a PCIe request to fetch the descriptors
from host memory.

5 The descriptors content is received in a PCIe read completion and is written to the appropriate location in the
descriptor queue internal cache.

6 A packet enters the Rx MAC. The Rx MAC checks the CRC of the packet.

7 The MAC forwards the packet to an Rx filter.

8 If the packet matches the pre-programmed criteria of the Rx filtering, it is forwarded to the Rx FIFO. VLAN and
CRC are optionally stripped from the packet and L3/L4 checksum are checked and the destination queue is fixed.

9 The receive DMA fetches the next descriptor from the internal cache of the appropriate queue to be used for the
next received packet.

10
After the entire packet is placed into the Rx FIFO, the receive DMA posts the packet data to the location indicated
by the descriptor through the PCIe interface. If the packet size is greater than the buffer size, more descriptors are
fetched and their buffers are used for the received packet.

11 When the packet is placed into host memory, the receive DMA updates all the descriptor(s) that were used by
packet data.

12
After enough descriptors are gathered for write back or the interrupt moderation timer expires or the packet
requires immediate forwarding, the receive DMA writes back the descriptor content along with status bits that
indicate the packet information including what off loads were done on that packet.

13 After the interrupt moderation timer completes or an immediate packet is received, the I211 initiates an interrupt
to the host to indicate that a new received packet is already in host memory.

14 Host reads the packet data and sends it to the TCP/IP stack for further processing. The host releases the
associated buffers and descriptors once they are no longer in use.

Pin Interface—Ethernet Controller I211

17

2.0 Pin Interface

2.1 Pin Assignments
The I211 supports a 64-pin, 9 x 9 QFN package with an Exposed Pad* (e-Pad*). Note that the e-Pad is
ground.

Figure 2-1. I211 64-Pin, 9 x 9 QFN Package With e-Pad

R
SET

V
D
D
1
p
5

X
TA

L1

X
TA

L2

R
SV

D
4
4

R
SV

D
4
3

V
D
D
0
p
9

V
D
D
3
p
3

C
TO

P

V
D
D
1
p
5
_
O
U
T

V
D
D
0
p
9
_
O
U
T

C
B
O
T

R
SV

D
3
6
_
P
U

R
SV

D
3
5
_
P
U

R
SV

D
3
4
_
P
U

LED
2

48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

MDI_MINUS[3] 49 32 VDD0p9

MDI_PLUS[3] 50 31 LED0

VDD3p3 51 30 LED1

MDI_MINUS[2] 52 29 JTAG_TDI

MDI_PLUS[2] 53 28 DEV_OFF_N

MDI_MINUS[1] 54 27 VDD3p3

MDI_PLUS[1] 55 26 PECLKp

VDD1p5 56 25 PECLKn

MDI_MINUS[0] 57 24 PE_Rp

MDI_PLUS[0] 58 23 PE_Rn

VDD0p9 59 22 NC

SDP3 60 21 PE_Tp

SDP1 [PCIe_DIS] 61 20 PE_Tn

SDP2 62 19 JTAG_CLK

SDP0 63 18 JTAG_TMS

VDD3p3 64 17 PE_RST_N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LA
N
_
P
W
R
_
G
O
O
D

R
SV

D
2
_P

D

R
SV

D
3
_P

D

JTA
G
_
TD

O

R
SV

D
5
_P

U

R
SV

D
6
_P

U

R
SV

D
8
_P

U

R
SV

D
9
_P

U

V
D
D
3
p
3

V
D
D
0
p
9

R
SV

D
1
2
_P
U

R
SV

D
1
3
_P
U

R
SV

D
1
4
_P
U

R
SV

D
1
5
_P
U

P
E_W

A
K
E_N

I211
64-Pin QFN
9 mm x 9mm
0.5 mm Pin
Pitch
With e-PAD

R
SV

D
7
_
P
D

Ethernet Controller I211 —Pin Interface

18

2.2 Pull-Up/Pull-Down Resistors
Table 2-1 lists internal and external pull-up/pull-down resistors and their functionality in different
device states.

• As stated in the name and function table columns, the internal Pull-Up/Pull-Down (PU/PD) resistor
values are 30 K ± 50%.

• Only relevant (digital) pins are listed; analog or bias and power pins have specific considerations
listed in Chapter 10.0.

Note: Refer to Section 11.0 for a list of board design schematic checklists, layout checklists, and
reference design schematics for more details.

The device states are defined as follows:

• Power-up = while 3.3V is stable, yet 1.0V isn’t
• Active = normal mode (not power up or disable)
• Disable = device off or dynamic device off – refer to Section 4.4

Pin Interface—Ethernet Controller I211

19

Table 2-1. Pull-Up Resistors

Signal Name Power Up1

1. Power up - LAN_PWR_GOOD = 0b.

Active Disable2

2. Refer to Section 5.2.6 for a description of the disable state.

External

PU Comments PU Comments PU Comments

LAN_PWR_GOOD N N N Y

PE_WAKE_N N N N Y

PE_RST_N N N N PU3

3. 10 KΩ to 100 KΩ pull up can be used.

RSVD12_PU Y Y Y PD/PU4

4. When pulled up, iNVM security features are enabled.

RSVD36_PU Y Y Y PU

RSVD34_PU Y Y Y PU

RSVD35_PU Y Y Y PU

RSVD2_PD Y HiZ Y Y PD

RSVD3_PD Y HiZ Y Y PD

RSVD5_PU Y HiZ Y Y PU

RSVD6_PU Y HiZ Y Y PU

RSVD7_PD Y HiZ Y Y PD

RSVD8_PU Y HiZ Y Y PU

RSVD9_PU Y HiZ Y Y PU

RSVD44 N N N Stable high
output N

RSVD43 N HiZ N N N

SDP0 Y Y Until iNVM auto-
load completes Y

Might keep
state by iNVM
control

N

SDP1 [PCIe_DIS] Y Y Until iNVM auto-
load completes Y

Might keep
state by iNVM
control

N

SDP2 Y Y Until iNVM auto-
load completes Y

Might keep
state by iNVM
control

N

SDP3 Y Y Until iNVM auto-
load completes Y

Might keep
state by iNVM
control

N

DEV_OFF_N Y N N PU optional.

LED0 Y N N HiZ

LED1 Y N N HiZ

LED2 Y N N HiZ

JTAG_CLK N N N Y

JTAG_TDI N N N Y5

5. The pin should be pulled up even when no clock device is connected to it.

JTAG_TDO N N N

JTAG_TMS N N N Y

Ethernet Controller I211 —Pin Interface

20

2.3 Signal Type Definition

2.3.1 PCIe

In Input is a standard input-only signal.

Out (O) Totem pole output is a standard active driver.

T/s Tri-State is a bi-directional, tri-state input/output pin.

S/t/s

Sustained tri-state is an active low tri-state signal owned and driven by one and only one agent
at a time. The agent that drives an s/t/s pin low must drive it high for at least one clock before
letting it float. A new agent cannot start driving an s/t/s signal any sooner than one clock after
the previous owner tri-states it.

O/d Open drain enables multiple devices to share as a wire-OR.

A-in Analog input signals.

A-out Analog output signals.

B Input bias.

NCSI_in NCSI input signal.

NCSI-out NCSI output signal.

Table 2-2. PCIe

 Symbol Reserved Lead # Type Op
Mode Name and Function

PECLKp
PECLKn

26
25 A-in Input

PCIe Differential Reference Clock In
This pin receives a 100 MHz differential clock input. This clock
is used as the reference clock for the PCIe Tx/Rx circuitry and
by the PCIe core PLL to generate a 125 MHz clock and
250 MHz clock for the PCIe core logic.

PE_Tp
PE_Tn

21
20 A-out Output

PCIe Serial Data Output
Serial differential output link in the PCIe interface running at
2.5 Gb/s. This output carries both data and an embedded
2.5 GHz clock that is recovered along with data at the
receiving end.

PE_Rp
PE_Rn

24
23 A-in Input

PCIe Serial Data Input
Serial differential input link in the PCIe interface running at
2.5 Gb/s. The embedded clock present in this input is
recovered along with the data.

PE_WAKE_N 16 T/s Bi-dir

Wake
The I211 drives this signal to zero when it detects a wake-up
event and either:
• The PME_en bit in PMCSR is 1b or
• The APME bit of the Wake Up Control (WUC) register is

1b.

PE_RST_N 17 In Input
Power and Clock Good Indication
The PE_RST_N signal indicates that both PCIe power and
clock are available.

Pin Interface—Ethernet Controller I211

21

2.3.2 Testability

2.3.3 LEDs

Table 2-4 lists the functionality of each LED output pin. The default activity of each LED can be modified
in the iNVM. The LED functionality is reflected and can be further modified in the configuration registers
(LEDCTL).

2.3.4 PHY Pins

Note: The I211 has built in termination resistors. As a result, external termination resistors should
not be used.

Table 2-3. Testability

 Symbol Reserved Lead # Type Op
Mode Name and Function

JTAG_TDI 29 In Input
JTAG TDI Input
Note: The JTAG_TDI port pin includes an internal pull-up
resistor.

JTAG_CLK 19 In Input
JTAG Clock Input
Note: The JTAG_TCK port pin includes an internal pull-down
resistor.

JTAG_TMS 18 In Input

JTAG Test Mode Select input controls the transitions of the
test interface state machine.
Note: The JTAG_TMS port pin includes an internal pull-up
resistor. Also note that the internal pull-up is disconnected
during startup.

JTAG_TDO 4 O/D JTAG TDO

Table 2-4. LEDs

 Symbol Reserved Lead # Type Op
Mode Name and Function

LED0 31 Out Output Programmable LED number 0.

LED1 30 Out Output Programmable LED number 1.

LED2 33 Out Output Programmable LED number 2.

Ethernet Controller I211 —Pin Interface

22

Table 2-5. PHY Pins

 Symbol Lead # Type Op
Mode Name and Function

MDI_PLUS[0] 58 A Bi-dir

In BASE-T:
Media Dependent Interface[0]:
1000BASE-T:
In MDI configuration, MDI[0]+ corresponds to BI_DA+ and in MDI-X
configuration MDI[0]+ corresponds to BI_DB+.
100BASE-TX:
In MDI configuration, MDI[0]+ is used for the transmit pair and in MDIX
configuration MDI[0]+ is used for the receive pair.
10BASE-T:
In MDI configuration, MDI[0]+ is used for the transmit pair and in MDI-X
configuration MDI[0]+ is used for the receive pair.

MDI_MINUS[0] 57 A Bi-dir

In BASE-T:
Media Dependent Interface[0]:
1000BASE-T:
In MDI configuration, MDI[0]- corresponds to BI_DA- and in MDI-X
configuration MDI[0]- corresponds to BI_DB-.
100BASE-TX:
In MDI configuration, MDI[0]- is used for the transmit pair and in MDIX
configuration MDI[0]- is used for the receive pair.
10BASE-T:
In MDI configuration, MDI[0]- is used for the transmit pair and in MDI-X
configuration MDI[0]- is used for the receive pair.

MDI_PLUS[1] 55 A Bi-dir

In BASE-T:
Media Dependent Interface[1]:
1000BASE-T:
In MDI configuration, MDI[1]+ corresponds to BI_DB+ and in MDI-X
configuration MDI[1]+ corresponds to BI_DA+.
100BASE-TX:
In MDI configuration, MDI[1]+ is used for the receive pair and in MDI-X
configuration MDI[1]+ is used for the transmit pair.
10BASE-T:
In MDI configuration, MDI[1]+ is used for the receive pair and in MDI-X
configuration MDI[1]+ is used for the transmit pair.

MDI_MINUS[1] 54 A Bi-dir

In BASE-T:
Media Dependent Interface[1]:
1000BASE-T:
In MDI configuration, MDI[1]- corresponds to BI_DB- and in MDI-X
configuration MDI[1]- corresponds to BI_DA-.
100BASE-TX:
In MDI configuration, MDI[1]- is used for the receive pair and in MDI-X
configuration MDI[1]- is used for the transmit pair.
10BASE-T:
In MDI configuration, MDI[1]- is used for the receive pair and in MDI-X
configuration MDI[1]- is used for the transmit pair.

MDI_PLUS[2]
MDI_MINUS[2]
MDI_PLUS[3]
MDI_MINUS[3]

53
52
50
49

A Bi-dir

In BASE-T:
Media Dependent Interface[3:2]:
1000BASE-T:
In MDI and in MDI-X configuration, MDI[2]+/- corresponds to BI_DC+/- and
MDI[3]+/- corresponds to BI_DD+/-.
100BASE-TX: Unused.
10BASE-T: Unused.

Pin Interface—Ethernet Controller I211

23

2.3.5 Miscellaneous Pins

2.3.6 Power Supplies and Support Pins

2.3.6.1 Power Support

XTAL1
XTAL2

46
45

A-In
A-Out

Input/
Output

XTAL In/Out
These pins can be driven by an external 25 MHz crystal or driven by an external
MOS level 25 MHz oscillator. Used to drive the PHY.

RSET 48 A Bias
PHY Termination
This pin should be connected through a 4.99 K ±1% resister to ground.

Table 2-6. Miscellaneous Pins

 Symbol Reserved Lead # Type Op
Mode Name and Function

DEV_OFF_N 28 In Input

This is a 3.3V input signal. Asserting DEV_OFF_N puts
the I211 in device disable mode. Note that this pin is
asynchronous.
Functionality of this input can be changed by iNVM
bits settings - see Section 2-9 for more details.

SDP0 63 T/s Input/
Output Software defined pin 0.

SDP1
[PCIe_DIS]SDP1 61 T/s Input/

Output
Software defined pin 1. See Table 2-2 for PCIe
function disable settings.

SDP2 62 T/s Input/
Output Software defined pin 2.

SDP3 60 T/s Input/
Output Software defined pin 3.

LAN_PWR_GOOD 1 In Input

LAN Power Good: A 3.3V input signal. A transition
from low to high initializes the device into operation.
If the internal Power-on-Reset (POR) circuit is used to
trigger device power-up, this signal should be
connected to VDDO.

NC 22 Voltage Input Optional pin used to connect an external power supply
to the PCIe block in order to replace the internal LDO.

Table 2-7. Power Support

 Symbol Reserved Lead # Type /
Voltage Name and Function

CBOT 37
A-in
A-Out

Capacitor bottom connection.

CTOP 40
A-In
capacitor
A-Out

Capacitor top connection.

Table 2-5. PHY Pins

 Symbol Lead # Type Op
Mode Name and Function

Ethernet Controller I211 —Pin Interface

24

Note: These pins must be connected together by a 39 nF capacitor (refer to capacitor part #
GRM155R61A393KA01).

2.3.6.2 Power Supply

2.4 Strapping Options

Note: nvm_aux_pwr_en and nvm_alt_aux_pwr_en bits are read as 0b from NVM, AUX_PWR mode
is enabled.

Table 2-8. Power Supply

Lead # Type /
Voltage Name and Function

VDD0p9 11, 32, 42, 59 0.9V 0.9V digital power supply.

VDD3p3 10, 27, 41,
51, 64 3.3V

3.3V power supply (for I/O).
Pin 51: In BASE-T, 3.3V analog power supply to GPHY.

VDD1p5 47, 56 1.5V
Pin 47: 1.5V power supply to the crystal oscillator and
bandgap.
Pin 56: In BASE-T, 1.5V analog power to GPHY.

VDD0p9_OUT 38 0.9V 0.9V power supply output of the switching cap regulator.

VDD1p5_OUT 39 1.5V 1.5V power supply output of the switching cap regulator.

GND e-Pad Ground The e-Pad metal connection on the bottom of the package.
Should be connected to ground.

Table 2-9. Strapping Options

Function Latch Event Pad PU Comments

D
EV

_O
FF_N

S
D

P3

S
D

P1 [PC
Ie_D

IS
]

Internal PU

DEV_OFF_N N/A 0 X X Device off mode when the pin is pulled low.

AUX_PWR (option 1) N/A 1 X X AUX power mode when the pin is pulled high.

AUX_PWR (option 2) N/A X 1 X AUX power mode when the pin is pulled high.

ARC_JTAG LAN_PWR_GOOD X X X PU (until LPG) JTAG mode when the pin is pulled low.

PCIE_DIS_N N/A X X 0 Active low, valid on iNVM load complete.
Strap logic that requires a dedicated SDP.

Pin Interface—Ethernet Controller I211

25

2.5 Package
The I211 supports a 64-pin, 9 x 9 QFN package with e-Pad. Figure 2-2 shows the package schematics.

Figure 2-2. I211 QFN 9 x 9 mm Package

Die Pad Size Option
Symbol

 Dimension
 in inch

 Dimension
 in mm

Ethernet Controller I211 —Pin Interface

26

Note: This page intentionally left blank.

Interconnects—Ethernet Controller I211

27

3.0 Interconnects

3.1 PCIe

3.1.1 PCIe Overview

PCIe is a third generation I/O architecture that enables cost competitive next generation I/O solutions
providing industry leading price/performance and features. It is an industry-driven specification.

PCIe defines a basic set of requirements that encases the majority of the targeted application classes.
Higher-end applications' requirements, such as enterprise class servers and high-end communication
platforms, are encased by a set of advanced extensions that compliment the baseline requirements.

To guarantee headroom for future applications of PCIe, a software-managed mechanism for introducing
new, enhanced, capabilities in the platform is provided. Figure 3-1 shows PCIe architecture.

Figure 3-1. PCIe Stack Structure

2.5+ 2.5+ GbGb /s/s

PCI.sys CompliantPCI.sys Compliant

Configurable widths 1 .. 32Configurable widths 1 .. 32

Preserve Driver ModelPreserve Driver Model

Config/OS

S/W

Protocol

Link

Common Base ProtocolCommon Base Protocol

Advanced Advanced XtensionsXtensions

Physical
(electrical
mechanical)

Point to point, serial, differential,Point to point, serial, differential,
hothot --plug, interplug, inter --op op formfactorsformfactors

Ethernet Controller I211 —Interconnects

28

PCIe's physical layer consists of a differential transmit pair and a differential receive pair. Full-duplex
data on these two point-to-point connections is self-c such that no dedicated clock signals are required.
The bandwidth of this interface increases linearly with frequency.

The packet is the fundamental unit of information exchange and the protocol includes a message space
to replace the various side-band signals found on many buses today. This movement of hard-wired
signals from the physical layer to messages within the transaction layer enables easy and linear
physical layer width expansion for increased bandwidth.

The common base protocol uses split transactions and several mechanisms are included to eliminate
wait states and to optimize the reordering of transactions to further improve system performance.

3.1.1.1 Architecture, Transaction and Link Layer Properties
• Split transaction, packet-based protocol
• Common flat address space for load/store access (such as PCI addressing model)

— Memory address space of 32-bits to allow compact packet header (must be used to access
addresses below 4 GB)

— Memory address space of 64-bit using extended packet header
• Transaction layer mechanisms:

— PCI-X style relaxed ordering
— Optimizations for no-snoop transactions

• Credit-based flow control
• Packet sizes/formats:

— Maximum upstream (write) payload size of 512 bytes
— Maximum downstream (read) payload size of 512 bytes

• Reset/initialization:
— Frequency/width/profile negotiation performed by hardware

• Data integrity support
— Using CRC-32 for transaction layer packets

• Link layer retry for recovery following error detection
— Using CRC-16 for link layer messages

• No retry following error detection
— 8b/10b encoding with running disparity

• Software configuration mechanism:
— Uses PCI configuration and bus enumeration model
— PCIe-specific configuration registers mapped via PCI extended capability mechanism

• Baseline messaging:
— In-band messaging of formerly side-band legacy signals (such as interrupts, etc.)
— System-level power management supported via messages

• Power management:
— Full support for PCI-PM
— Wake capability from D3cold state
— Compliant with ACPI, PCI-PM software model

Interconnects—Ethernet Controller I211

29

— Active state power management
• Support for PCIe v2.1 (2.5GT/s)

— Support for completion time out
— Support for additional registers in the PCIe capability structure.

3.1.1.2 Physical Interface Properties
• Point to point interconnect

— Full-duplex; no arbitration
• Signaling technology:

— Low Voltage Differential (LVD)
— Embedded clock signaling using 8b/10b encoding scheme

• Serial frequency of operation: 2.5 Gb/s.
• Interface width of x1.
• DFT and DFM support for high volume manufacturing

3.1.1.3 Advanced Extensions

PCIe defines a set of optional features to enhance platform capabilities for specific usage modes. The
I211 supports the following optional features:

• Extended error reporting - messaging support to communicate multiple types/severity of errors.
• Device serial number.
• Completion timeout control.
• TLP Processing Hints (TPH) - provides hints on a per transaction basis to facilitate optimized

processing of transactions that target memory space.

3.1.2 General Functionality

3.1.2.1 Native/Legacy

All the I211 PCI functions are native PCIe functions.

3.1.2.2 Transactions

The I211 does not support requests as target or master.

3.1.3 Host Interface

3.1.3.1 Tag IDs

PCIe device numbers identify logical devices within the physical device (the I211 is a physical device).
The I211 implements a single logical device with one PCI function. The device number is captured from
the type 0 configuration write transaction.

Ethernet Controller I211 —Interconnects

30

The PCIe function interfaces with the PCIe unit through one or more clients. A client ID identifies the
client and is included in the Tag field of the PCIe packet header. Completions always carry the tag value
included in the request to enable routing of the completion to the appropriate client.

Tag IDs are allocated differently for read and write. Messages are sent with a tag of 0x0.

3.1.3.1.1 TAG ID Allocation for Read Transactions

Table 3-1 lists the Tag ID allocation for read accesses. The tag ID is interpreted by hardware in order to
forward the read data to the required device.

3.1.3.1.2 TAG ID Allocation for Write Transactions

Request tag allocation depends on these system parameters:

• DCA supported/not supported in the system (DCA_CTRL.DCA_DIS - refer to Section 8.12.4 for
details)

• TPH enabled in the system.
• DCA enabled/disabled for each type of traffic (TXCTL.TX Descriptor DCA EN, RXCTL.RX Descriptor

DCA EN, RXCTL.RX Header DCA EN, RXCTL.Rx Payload DCA EN).
• TPH enabled or disabled for the specific type of traffic carried by the TLP (TXCTL.TX Descriptor TPH

EN, RXCTL.RX Descriptor TPH EN, RXCTL.RX Header TPH EN, RXCTL.Rx Payload TPH EN).
• System type: Legacy DCA vs. DCA 1.0 (DCA_CTRL.DCA_MODE - refer to Section 8.12.4 for

details).
• CPU ID (RXCTL.CPUID or TXCTL.CPUID).

See the case studies below for information on different implementations

3.1.3.1.2.1 Case 1 - DCA Disabled in the System

Table 3-2 lists the write requests tags. Unlike read, the values are for debug only, allowing tracing of
requests through the system.

Table 3-1. IDs in Read Transactions

Tag ID Description Comment

0x0 Data request 0

0x1 Data request 1

0x2 Data request 2

0x3 Data request 3

0x4 Data request 4

0x5 Data request 5

0x6-017 Not used

0x18 Descriptor Tx

0x19-0x1B Not used

0x1C Descriptor Rx

0x1D-0x1F Not used

Interconnects—Ethernet Controller I211

31

3.1.3.1.2.2 Case 2 - DCA Enabled in the System, but Disabled for the Request

• Legacy DCA platforms - If DCA is disabled for the request, the tags allocation is identical to the case
where DCA is disabled in the system. Refer to Table 3-2.

• DCA 1.0 platforms - All write requests have a tag value of 0x00.

Note: When in DCA 1.0 mode, messages and MSI/MSI-X write requests are sent with the no-hint
tag.

3.1.3.1.2.3 Case 3 - DCA Enabled in the System, DCA Enabled for the Request

• Legacy DCA platforms: the request tag is constructed as follows:
— Bit[0] – DCA Enable
— Bits[3:1] - The CPU ID field taken from the CPUID[2:0] bits of the RXCTL or TXCTL registers
— Bits[7:4] - Reserved

• DCA 1.0 platforms: the request tag (all 8 bits) is taken from the CPUID field of the RXCTL or TXCTL
registers

3.1.3.1.2.4 Case 4 - TPH Enabled in the System, TPH Enabled for the Request

• The request tag (all 8 bits) is taken from the CPUID field of the adequate register or context as
listed in Table 7-58.

3.1.3.2 Completion Timeout Mechanism

In any split transaction protocol, there is a risk associated with the failure of a requester to receive an
expected completion. To enable requesters to attempt recovery from this situation in a standard
manner, the completion timeout mechanism is defined.

The completion timeout mechanism is activated for each request that requires one or more completions
when the request is transmitted. The I211 provides a programmable range for the completion timeout,
as well as the ability to disable the completion timeout altogether. The completion timeout is
programmed through an extension of the PCIe capability structure (refer to Section 9.4.5.12).

The I211’s reaction in case of a completion timeout is listed in Table 3-12.

The I211 controls the following aspects of completion timeout:

Table 3-2. IDs in Write Transactions (DCA Disabled Mode)

Tag ID Description

0x0 - 0x1 Reserved

0x2 Tx descriptors write-back / Tx head write-back

0x3 Reserved

0x4 Rx descriptors write-back

0x5 Reserved

0x6 Write data

0x7 - 0x1D Reserved

0x1E MSI and MSI-X

0x1F Reserved

Ethernet Controller I211 —Interconnects

32

• Disabling or enabling completion timeout.
• Disabling or enabling re-send of a request on completion timeout.
• A programmable range of re-sends on completion timeout, if re-send enabled.
• A programmable range of timeout values.
• Programming the behavior of completion timeout is listed in Table 3-3.

Completion Timeout Enable - Programmed through the PCI Device Control 2 configuration register. The
default is: Completion Timeout Enabled.

Resend Request Enable - The Completion Timeout Resend iNVM bit (loaded to the
Completion_Timeout_Resend bit in the PCIe Control (GCR) register enables resending the request
(applies only when completion timeout is enabled). The default is to resend a request that timed out.

Number of re-sends on timeout - Programmed through the Number of resends field in the GCR register.
The default value of resends is 3.

3.1.3.2.1 Completion Timeout Period

Programmed through the PCI Device Control 2 configuration register (refer to Section 9.4.5.12). The
I211 supports all ranges defined by PCIe v2.1 (2.5GT/s).

A memory read request for which there are multiple completions are considered completed only when
all completions have been received by the requester. If some, but not all, requested data is returned
before the completion timeout timer expires, the requestor is permitted to keep or to discard the data
that was returned prior to timer expiration.

Note: The completion timeout value must be programmed correctly in PCIe configuration space (in
the Device Control 2 register); the value must be set above the expected maximum latency
for completions in the system in which the I211 is installed. This ensures that the I211
receives the completions for the requests it sends out, avoiding a completion timeout
scenario. It is expected that the system BIOS sets this value appropriately for the system.

3.1.4 Transaction Layer

The upper layer of the PCIe architecture is the transaction layer. The transaction layer connects to the
I211 core using an implementation specific protocol. Through this core-to-transaction-layer protocol,
the application-specific parts of the I211 interact with the PCIe subsystem and transmit and receive
requests to or from the remote PCIe agent, respectively.

Table 3-3. Completion Timeout Programming

Capability Programming capability

Completion Timeout Enabling Controlled through PCI Device Control 2 configuration register.

Resend Request Enable Loaded from the iNVM into the GCR register.

Number of Re-sends on Timeout Controlled through GCR register.

Completion Timeout Period Controlled through PCI Device Control 2 configuration register.

Interconnects—Ethernet Controller I211

33

3.1.4.1 Transaction Types Accepted by the I211

Flow control types:

• PH - Posted request headers
• PD - Posted request data payload
• NPH - Non-posted request headers
• NPD - Non-posted request data payload
• CPLH - Completion headers
• CPLD - Completion data payload

3.1.4.1.1 Configuration Request Retry Status

PCIe supports devices requiring a lengthy self-initialization sequence to complete before they are able
to service configuration requests. This is the case for the I211 where initialization is long due to the
iNVM read operation following reset.

If the read of the PCIe section in the iNVM was not completed and the I211 receives a configuration
request, the I211 responds with a configuration request retry completion status to terminate the
request. This effectively stalls the configuration request until the subsystem completes a local
initialization and is ready to communicate with the host.

3.1.4.1.2 Partial Memory Read and Write Requests

The I211 has limited support of read and write requests when only part of the byte enable bits are set
as described later in this section.

Partial writes to the MSI-X table are supported. All other partial writes are ignored and silently dropped.

Zero-length writes have no internal impact (nothing written, no effect such as clear-by-write). The
transaction is treated as a successful operation (no error event).

Partial reads with at least one byte enabled are answered as a full read. Any side effect of the full read
(such as clear by read) is applicable to partial reads also.

Zero-length reads generate a completion, but the register is not accessed and undefined data is
returned.

Table 3-4. Transaction Types Accepted by the Transaction Layer

Transaction Type FC Type Tx Later
Reaction

Hardware Should Keep Data
From Original Packet

Configuration Read Request NPH CPLH + CPLD Requester ID, TAG, Attribute

Configuration Write Request NPH + NPD CPLH Requester ID, TAG, Attribute

Memory Read Request NPH CPLH + CPLD Requester ID, TAG, Attribute

Memory Write Request PH + PD - -

I/O Read Request NPH CPLH + CPLD Requester ID, TAG, Attribute

I/O Write Request NPH + NPD CPLH Requester ID, TAG, Attribute

Read Completions CPLH + CPLD - -

Message PH+ PD - -

Ethernet Controller I211 —Interconnects

34

3.1.4.2 Transaction Types Initiated by the I211

3.1.4.2.1 Data Alignment

Requests must never specify an address/length combination that causes a memory space access to
cross a 4 KB boundary. The I211 breaks requests into 4 KB-aligned requests (if needed). This does not
pose any requirement on software. However, if software allocates a buffer across a 4 KB boundary,
hardware issues multiple requests for the buffer. Software should consider limiting buffer sizes and
base addresses to comply with a 4 KB boundary in cases where it improves performance.

The general rules for packet alignment are as follows:

1. The length of a single request should not exceed the PCIe limit of MAX_PAYLOAD_SIZE for write
and MAX_READ_REQ for read.

2. The length of a single request does not exceed the I211’s internal limitation.
3. A single request should not span across different memory pages as noted by the 4 KB boundary

previously mentioned.

Note: The rules apply to all the I211 requests (read/write, snoop and no snoop).

If a request can be sent as a single PCIe packet and still meet rules 1-3, then it is not broken at a
cache-line boundary (as defined in the PCIe Cache Line Size configuration word), but rather, sent as a
single packet (motivation is that the chipset might break the request along cache-line boundaries, but
the I211 should still benefit from better PCIe use). However, if rules 1-3 require that the request is
broken into two or more packets, then the request is broken at a cache-line boundary.

3.1.4.2.2 Multiple Tx Data Read Requests (MULR)

The I211 supports 6 pipelined requests for transmit data on the port. In general, the 6 requests might
belong to the same packet or to consecutive packets to be transmitted on the LAN port. However, the
following restriction applies: all requests for a packet are issued before a request is issued for a
consecutive packet.

Read requests can be issued from any of the supported queues, as long as the restriction is met.
Pipelined requests might belong to the same queue or to separate queues. However, as previously
noted, all requests for a certain packet are issued (from same queue) before a request is issued for a
different packet (potentially from a different queue).

Table 3-5. Transaction Types Initiated by the Transaction Layer

Transaction type Payload Size FC Type From Client

Configuration Read Request Completion Dword CPLH + CPLD Configuration space

Configuration Write Request Completion - CPLH Configuration space

I/O Read Request Completion Dword CPLH + CPLD CSR

I/O Write Request Completion - CPLH CSR

Read Request Completion Dword/Qword CPLH + CPLD CSR

Memory Read Request - NPH DMA

Memory Write Request <= MAX_PAYLOAD_SIZE1

1. MAX_PAYLOAD_SIZE supported is loaded from iNVM (128 bytes, 256 bytes or 512 bytes). Effective MAX_PAYLOAD_SIZE is defined
according to configuration space register.

PH + PD DMA

Message 64 bytes PH INT / PM / Error Unit / LTR

Interconnects—Ethernet Controller I211

35

The PCIe specification does not ensure that completions for separate requests return in-order. Read
completions for concurrent requests are not required to return in the order issued. The I211 handles
completions that arrive in any order. Once all completions arrive for a given request, the I211 might
issue the next pending read data request.

• The I211 incorporates a re-order buffer to support re-ordering of completions for all requests. Each
request/completion can be up to 2 KB long. The maximum size of a read request is defined as the
minimum {2 KB, Max_Read_Request_Size}.

In addition to the 6 pipeline requests for transmit data, the I211 can issue up to one read request to
fetch transmit descriptors and one read requests to fetch receive descriptors. The requests for transmit
data, transmit descriptors, and receive descriptors are independently issued. Each descriptor read
request can fetch up to 16 descriptors for reception and 24 descriptors for transmission.

3.1.4.3 Messages

3.1.4.3.1 Message Handling by the I211 (as a Receiver)

Message packets are special packets that carry a message code.

The upstream device transmits special messages to the I211 by using this mechanism.

The transaction layer decodes the message code and responds to the message accordingly.

Table 3-6. Supported Message in the I211 (as a Receiver)

Message
Code [7:0] Routing r2r1r0 Message I211 Response

0x00 011b Unlock Silently drop

0x14 100b PM_Active_State_NAK Accepted

0x19 011b PME_Turn_Off Accepted

0x40
0x41
0x43
0x44
0x45
0x47
0x48

100b Ignored messages (used to be hot-plug messages) Silently drop

0x50 100b Slot power limit support (has one Dword data) Silently drop

0x7E

000b
010b
011b
100b

Vendor_defined type 0 Drop and handle as an
Unsupported Request

0x7F 100b Vendor_defined type 1 Silently drop

0x7F
000b
010b
011b

Vendor_defined type 1
(see Section 3.1.4.4)

Silently drop

Ethernet Controller I211 —Interconnects

36

3.1.4.3.2 Message Handling by I211 (as a Transmitter)

The transaction layer is also responsible for transmitting specific messages to report internal/external
events (such as interrupts and PMEs).

3.1.4.4 Ordering Rules

The I211 meets the PCIe ordering rules (PCI-X rules) by following the PCI simple device model:

• Deadlock avoidance - Master and target accesses are independent. The response to a target access
does not depend on the status of a master request to the bus. If master requests are blocked, such
as due to no credits, target completions might still proceed (if credits are available).

• Descriptor/data ordering - The I211 does not proceed with some internal actions until respective
data writes have ended on the PCIe link:
— The I211 does not update an internal header pointer until the descriptors that the header

pointer relates to are written to the PCIe link.
— The I211 does not issue a descriptor write until the data that the descriptor relates to is written

to the PCIe link.

The I211 might issue the following master read request from each of the following clients:

• One Rx Descriptor Read
• One Tx Descriptor Read
• Tx Data Read (up to 6)

Completing separate read requests are not guaranteed to return in order. Completions for a single read
request are guaranteed to return in address order.

Table 3-7. Supported Message in the I211 (as a Transmitter)

Message code
[7:0] Routing r2r1r0 Message

0x20 100 Assert INT A

0x21 100 Not used

0x22 100 Not used

0x23 100 Not used

0x24 100 Deassert INT A

0x25 100 Not used

0x26 100 Not used

0x27 100 Not used

0x30 000 ERR_COR

0x31 000 ERR_NONFATAL

0x33 000 ERR_FATAL

0x18 000 PM_PME

0x1B 101 PME_TO_ACK

0x10 100 Reserved

0x7F 000, 010, 011, Reserved

Interconnects—Ethernet Controller I211

37

3.1.4.4.1 Out of Order Completion Handling

In a split transaction protocol, when using multiple read requests in a multi processor environment,
there is a risk that completions arrive from the host memory out of order and interleaved. In this case,
the I211 sorts the request completions and transfers them to the Ethernet in the correct order.

3.1.4.5 Transaction Definition and Attributes

3.1.4.5.1 Max Payload Size

The I211 policy to determine Max Payload Size (MPS) is as follows:

• Master requests initiated by the I211 (including completions) limits MPS to the value defined for the
function issuing the request.

• Target write accesses to the I211 are accepted only with a size of one Dword or two Dwords. Write
accesses in the range of (three Dwords, MPS, etc.) are flagged as UR. Write accesses above MPS
are flagged as malformed.

Refer to Section 2.2.2 - TLPs with Data Payloads - Rules of the PCIe base specification.

3.1.4.5.2 Relaxed Ordering

The I211 takes advantage of the relaxed ordering rules in PCIe. By setting the relaxed ordering bit in
the packet header, the I211 enables the system to optimize performance in the following cases:

• Relaxed ordering for descriptor and data reads: When the I211 emits a read transaction, its split
completion has no ordering relationship with the writes from the CPUs (same direction). It should
be allowed to bypass the writes from the CPUs.

• Relaxed ordering for receiving data writes: When the I211 issues receive DMA data writes, it also
enables them to bypass each other in the path to system memory because software does not
process this data until their associated descriptor writes complete.

• The I211 cannot relax ordering for descriptor writes, MSI/MSI-X writes or PCIe messages.

Relaxed ordering can be used in conjunction with the no-snoop attribute to enable the memory
controller to advance non-snoop writes ahead of earlier snooped writes.

Relaxed ordering is enabled in the I211 by clearing the RO_DIS bit in the CTRL_EXT register. Actual
setting of relaxed ordering is done for LAN traffic by the host through the DCA registers.

3.1.4.5.3 Snoop Not Required

The I211 sets the Snoop Not Required attribute bit for master data writes. System logic might provide
a separate path into system memory for non-coherent traffic. The non-coherent path to system
memory provides higher, more uniform, bandwidth for write requests.

Note: The Snoop Not Required attribute does not alter transaction ordering. Therefore, to achieve
maximum benefit from Snoop Not Required transactions, it is advisable to set the relaxed
ordering attribute as well (assuming that system logic supports both attributes). In fact,
some chipsets require that relaxed ordering is set for no-snoop to take effect.

Global no-snoop support is enabled in the I211 by clearing the NS_DIS bit in the CTRL_EXT register.
Actual setting of no snoop is done for LAN traffic by the host through the DCA registers.

Ethernet Controller I211 —Interconnects

38

3.1.4.5.4 No Snoop and Relaxed Ordering for LAN Traffic

Software might configure non-snoop and relax order attributes for each queue and each type of
transaction by setting the respective bits in the RXCTRL and TXCTRL registers.

Table 3-8 lists software configuration for the No-Snoop and Relaxed Ordering bits for LAN traffic when
I/OAT 2 is enabled.

3.1.4.5.4.1 No-Snoop Option for Payload

Under certain conditions, which occur when I/OAT is enabled, software knows that it is safe to transfer
(DMA) a new packet into a certain buffer without snooping on the front-side bus. This scenario typically
occurs when software is posting a receive buffer to hardware that the CPU has not accessed since the
last time it was owned by hardware. This might happen if the data was transferred to an application
buffer by the I/OAT DMA engine.

In this case, software should be able to set a bit in the receive descriptor indicating that the I211
should perform a no-snoop DMA transfer when it eventually writes a packet to this buffer.

When a non-snoop transaction is activated, the TLP header has a non-snoop attribute in the
Transaction Descriptor field.

This is triggered by the NSE bit in the receive descriptor. Refer to Section 7.1.4.2.

3.1.4.5.5 TLP Processing Hint (TPH)

The TPH bit can be set to provide information to the root complex about the cache in which the data
should be stored or from which the data should be read as described in Section 7.7.2.

TPH is enabled via the TPH Requester Enable field in the TPH control register of the configuration space
(refer to Section 9.5.3.3). Setting of the TPH bit for different type of traffic is listed in Table 7-58.

Table 3-8. LAN Traffic Attributes

Transaction No-Snoop Relaxed Ordering Comments

Rx Descriptor Read N Y

Rx Descriptor Write-Back N N Relaxed ordering must never be used
for this traffic.

Rx Data Write Y Y Refer to Note 1 and
Section 3.1.4.5.4.1

Rx Replicated Header N Y

Tx Descriptor Read N Y

Tx Descriptor Write-Back N Y

Tx TSO Header Read N Y

Tx Data Read N Y

Note:
1. Rx payload no-snoop is also conditioned by the NSE bit in the receive descriptor. Refer to Section 3.1.4.5.4.1.

Interconnects—Ethernet Controller I211

39

3.1.4.6 Flow Control

3.1.4.6.1 I211 Flow Control Rules

The I211 implements only the default Virtual Channel (VC0). A single set of credits is maintained for
VC0.

Rules for FC updates:

• The I211 maintains four credits for NPD at any given time. It increments the credit by one after the
credit is consumed and sends an UpdateFC packet as soon as possible. UpdateFC packets are
scheduled immediately after a resource is available.

• The I211 provides four credits for PH (such as for four concurrent target writes) and four credits for
NPH (such as for four concurrent target reads). UpdateFC packets are scheduled immediately after
a resource becomes available.

• The I211 follows the PCIe recommendations for frequency of UpdateFC FCPs.

3.1.4.6.2 Upstream Flow Control Tracking

The I211 issues a master transaction only when the required FC credits are available. Credits are
tracked for posted, non-posted, and completions (the later to operate with a switch).

3.1.4.6.3 Flow Control Update Frequency

In any case, UpdateFC packets are scheduled immediately after a resource becomes available.

When the link is in the L0 or L0s link state, Update FCPs for each enabled type of non-infinite FC credit
must be scheduled for transmission at least once every 30 µs (-0%/+50%), except when the Extended
Sync bit of the Control Link register is set, in which case the limit is 120 µs (-0%/+50%).

3.1.4.6.4 Flow Control Timeout Mechanism

The I211 implements the optional FC update timeout mechanism.

The mechanism is activated when the link is in L0 or L0s Link state. It uses a timer with a limit of
200 µs (-0%/+50%), where the timer is reset by the receipt of any Init or Update FCP. Alternately, the
timer can be reset by the receipt of any DLLP.

Table 3-9. Allocation of FC Credits

Credit Type Operations Number Of Credits

Posted Request Header (PH)
Target Write (one unit)
Message (one unit)

Four units

Posted Request Data (PD)
Target Write (Length/16 bytes=1)
Message (one unit)

MAX_PAYLOAD_SIZE/16

Non-Posted Request Header (NPH)
Target Read (one unit)
Configuration Read (one unit)
Configuration Write (one unit)

Four units

Non-Posted Request Data (NPD) Configuration Write (one unit) Four units

Completion Header (CPLH) Read Completion (N/A) Infinite (accepted immediately)

Completion Data (CPLD) Read Completion (N/A) Infinite (accepted immediately)

Ethernet Controller I211 —Interconnects

40

After timer expiration, the mechanism instructs the PHY to re-establish the link (via the LTSSM
recovery state).

3.1.4.7 Error Forwarding

If a TLP is received with an error-forwarding trailer (poisoned TLP received), the transaction can either
be resent or dropped and not delivered to its destination, depending on the GCR.Completion Timeout
resend enable bit and the GCR.Number of resends field. If the re-sends were unsuccessful or if re-send
is disabled, the I211 does not initiate any additional master requests for that PCI function until it
detects an internal reset or a software reset for the LAN. Software is able to access device registers
after such a fault.

System logic is expected to trigger a system-level interrupt to inform the operating system of the
problem. The operating system can then stop the process associated with the transaction, re-allocate
memory instead of the faulty area, etc.

3.1.5 Data Link Layer

3.1.5.1 ACK/NAK Scheme

The I211 sends an ACK/NAK immediately in the following cases:

1. NAK needs to be sent
2. ACK for duplicate packet
3. ACK/NAK before low power state entry

In all other cases, the I211 schedules an ACK transmission according to time-outs specified in the PCIe
specification (depends on link speed, link width, and max_payload_size).

3.1.5.2 Supported DLLPs

The following DLLPs are supported by the I211 as a receiver:

Table 3-10. DLLPs Received by the I211

DLLP type Remarks

ACK

NAK

PM_Request_ACK

InitFC1-P Virtual Channel 0 only

InitFC1-NP Virtual Channel 0 only

InitFC1-Cpl Virtual Channel 0 only

InitFC2-P Virtual Channel 0 only

InitFC2-NP Virtual Channel 0 only

InitFC2-Cpl Virtual Channel 0 only

UpdateFC-P Virtual Channel 0 only

UpdateFC-NP Virtual Channel 0 only

UpdateFC-Cpl Virtual Channel 0 only

Interconnects—Ethernet Controller I211

41

The following DLLPs are supported by the I211 as a transmitter:

Note: UpdateFC-Cpl is not sent because of the infinite FC-Cpl allocation.

3.1.5.3 Transmit EDB Nullifying

If re-train is necessary, there is a need to guarantee that no abrupt termination of the Tx packet
happens. For this reason, early termination of the transmitted packet is possible. This is done by
appending an End Bad Symbol (EDB) to the packet.

3.1.6 Physical Layer

3.1.6.1 Link Speed
• The I211 supports only 2.5GT/s link speeds.

The I211 does not initiate a hardware autonomous speed change and as a result the Hardware
Autonomous Speed Disable bit in the PCIe Link Control 2 register is hardwired to 0b.

The I211 supports entering compliance mode at the speed indicated in the Target Link Speed field in
the PCIe Link Control 2 register. Compliance mode functionality is controlled via the Enter Compliance
bit in the PCIe Link Control 2 register.

3.1.6.2 Link Width

The I211 supports a maximum link width of x1.

During link configuration, the platform and the I211 negotiate on a common link width. The link width
must be x1.

Table 3-11. DLLPs Initiated by the I211

DLLP type Remarks

ACK

NAK

PM_Enter_L1

PM_Enter_L23

PM_Active_State_Request_L1

InitFC1-P Virtual Channel 0 only

InitFC1-NP Virtual Channel 0 only

InitFC1-Cpl Virtual Channel 0 only

InitFC2-P Virtual Channel 0 only

InitFC2-NP Virtual Channel 0 only

InitFC2-Cpl Virtual Channel 0 only

UpdateFC-P Virtual Channel 0 only

UpdateFC-NP Virtual Channel 0 only

Ethernet Controller I211 —Interconnects

42

3.1.6.3 Polarity Inversion

If polarity inversion is detected, the receiver must invert the received data.

During the training sequence, the receiver looks at Symbols 6-15 of TS1 and TS2 as the indicator of
lane polarity inversion (D+ and D- are swapped). If lane polarity inversion occurs, the TS1 Symbols 6-
15 received are D21.5 as opposed to the expected D10.2. Similarly, if lane polarity inversion occurs,
Symbols 6-15 of the TS2 ordered set are D26.5 as opposed to the expected D5.2. This provides clear
indication of lane polarity inversion.

3.1.6.4 L0s Exit latency

The number of FTS sequences (N_FTS) sent during L1 exit, can be loaded from the iNVM.

3.1.6.5 Reset

The PCIe PHY can supply a core reset to the I211. The reset can be caused by three sources:

1. Upstream move to hot reset - Inband Mechanism (LTSSM).
2. Recovery failure (LTSSM returns to detect).
3. Upstream component moves to disable.

3.1.6.6 Scrambler Disable

The scrambler/de-scrambler functionality in the I211 can be disabled by either one of the two
connected devices according to the PCIe specification.

3.1.7 Error Events and Error Reporting

3.1.7.1 Mechanism in General

PCIe defines two error reporting paradigms: the baseline capability and the Advanced Error Reporting
(AER) capability. The baseline error reporting capabilities are required of all PCIe devices and define the
minimum error reporting requirements. The AER capability is defined for more robust error reporting
and is implemented with a specific PCIe capability structure.

Both mechanisms are supported by the I211.

Also, the SERR# Enable and the Parity Error bits from the Legacy Command register take part in the
error reporting and logging mechanism.

3.1.7.2 Error Events

Table 3-12 lists the error events identified by the I211 and the response in terms of logging, reporting,
and actions taken. Consult the PCIe specification for the effect on the PCI Status register.

Interconnects—Ethernet Controller I211

43

Table 3-12. Response and Reporting of PCIe Error Events

Error Name Error Events Default Severity Action

PHY errors

Receiver error
8b/10b decode errors
Packet framing error

Correctable.
Send ERR_CORR

TLP to initiate NAK and drop data.
DLLP to drop.

Data link errors

Bad TLP
• Bad CRC
• Not legal EDB
• Wrong sequence number

Correctable.
Send ERR_CORR

TLP to initiate NAK and drop data.

Bad DLLP • Bad CRC
Correctable.
Send ERR_CORR

DLLP to drop.

Replay timer timeout • REPLAY_TIMER expiration
Correctable.
Send ERR_CORR

Follow LL rules.

REPLAY NUM rollover • REPLAY NUM rollover
Correctable.
Send ERR_CORR

Follow LL rules.

Data link layer
protocol error

• Violations of Flow Control
Initialization Protocol

• Reception of NACK/ACK with no
corresponding TLP

Uncorrectable.
Send ERR_FATAL

Follow LL rules.

TLP errors

Poisoned TLP
received

• TLP with error forwarding
Uncorrectable.
ERR_NONFATAL
Log header

A poisoned completion is ignored and the
request can be retried after timeout. If
enabled, the error is reported.

Unsupported
Request (UR)

• Wrong config access
• MRdLk
• Configuration request type 1
• Unsupported vendor Defined

type 0 message
• Not valid MSG code
• Not supported TLP type
• Wrong function number
• Received TLP outside address

range

Uncorrectable.
ERR_NONFATAL
Log header

Send completion with UR.

Completion timeout • Completion timeout timer
expired

Uncorrectable.
ERR_NONFATAL

Error is non-fatal (default case):
• Send error message if advisory
• Retry the request once and send

advisory error message on each
failure

• If fails, send uncorrectable error
message

Error is defined as fatal:
• Send uncorrectable error message

Completer abort • Received target access with
data size > 64-bit

Uncorrectable.
ERR_NONFATAL
Log header

Send completion with CA.

Unexpected
completion

• Received completion without a
request for it (tag, ID, etc.)

Uncorrectable.
ERR_NONFATAL
Log header

Discard TLP.

Receiver overflow • Received TLP beyond allocated
credits

Uncorrectable.
ERR_FATAL

Receiver behavior is undefined.

Flow control protocol
error

• Minimum initial flow control
advertisements

• Flow control update for infinite
credit advertisement

Uncorrectable.
ERR_FATAL

Receiver behavior is undefined. The I211
doesn’t report violations of flow control
initialization protocol

Ethernet Controller I211 —Interconnects

44

3.1.7.3 Error Forwarding (TLP Poisoning)

If a TLP is received with an error-forwarding trailer, the transaction can be re-sent a number of times as
programmed in the GCR register. If transaction still fails the packet is dropped and is not delivered to
its destination. The I211 then reacts as listed in Table 3-12.

The I211 does not initiate any additional master requests for that PCI function until it detects an
internal software reset for the LAN port. Software is able to access device registers after such a fault.

System logic is expected to trigger a system-level interrupt to inform the operating system of the
problem. Operating systems can then stop the process associated with the transaction, re-allocate
memory instead of the faulty area, etc.

3.1.7.4 ECRC

The I211 supports End to End CRC (ECRC) as defined in the PCIe specification. The following
functionality is provided:

• Inserting an ECRC in all transmitted TLPs:
— The I211 indicates support for inserting ECRC in the ECRC Generation Capable bit of the PCIe

configuration registers. This bit is loaded from the ECRC Generation iNVM bit.
— Inserting an ECRC is enabled by the ECRC Generation Enable bit of the PCIe configuration

registers.
• ECRC is checked on all incoming TLPs. A packet received with an ECRC error is dropped. Note that

for completions, a completion timeout occurs later (if enabled), which would result in re-issuing the
request.
— The I211 indicates support for ECRC checking in the ECRC Check Capable bit of the PCIe

configuration registers. This bit is loaded from the ECRC Check iNVM bit.
— ECRC checking is enabled by the ECRC Check Enable bit of the PCIe configuration registers.

• ECRC errors are reported.

Malformed TLP (MP)

• Data payload exceed
Max_Payload_Size

• Received TLP data size does not
match length field

• TD field value does not
correspond with the observed
size

• Power management messages
that doesn’t use TC0.

• Usage of unsupported VC.

Uncorrectable.
ERR_FATAL
Log header

Drop the packet and free FC credits.

Completion with
unsuccessful
completion status

No action (already done
by originator of
completion).

Free FC credits.

Byte count integrity in
completion process.

When byte count isn’t compatible
with the length field and the actual
expected completion length. For
example, length field is 10 (in
Dword), actual length is 40, but the
byte count field that indicates how
many bytes are still expected is
smaller than 40, which is not
reasonable.

No action

The I211 doesn't check for this error and
accepts these packets.
This might cause a completion timeout
condition.

Table 3-12. Response and Reporting of PCIe Error Events (Continued)

Error Name Error Events Default Severity Action

Interconnects—Ethernet Controller I211

45

3.1.7.5 Partial Read and Write Requests

3.1.7.5.1 Partial Memory Accesses

The I211 has limited support of read/write requests with only part of the byte enable bits set:

• Partial writes with at least one byte enabled should not be used. If used, the results are
unexpected, either the byte enable request is honored or the entire Dword is written.

• Zero-length writes has no internal impact (nothing written, no effect such as clear-by-write). The
transaction is treated as a successful operation (no error event).

• Partial reads with at least one byte enabled are handled as a full read. Any side effect of the full
read (such as clear by read) is also applicable to partial reads.

• Zero-length reads generate a completion, but the register is not accessed and undefined data is
returned.

The I211 does not generate an error indication in response to any of the above events.

3.1.7.5.2 Partial I/O Accesses

• Partial access on address
— A write access is discarded
— A read access returns 0xFFFF

• Partial access on data, where the address access was correct
— A write access is discarded
— A read access performs the read

3.1.7.6 Error Pollution

Error pollution can occur if error conditions for a given transaction are not isolated on the error's first
occurrence. If the physical layer detects and reports a receiver error, to avoid having this error
propagate and cause subsequent errors at upper layers, the same packet is not signaled at the data
link or transaction layers.

Similarly, when the data link layer detects an error, subsequent errors that occur for the same packet
are not signaled at the transaction layer.

3.1.7.7 Completion with Unsuccessful Completion Status

A completion with unsuccessful completion status is dropped and not delivered to its destination. An
interrupt is generated to indicate unsuccessful completion.

3.1.7.8 Error Reporting Changes

The Rev. 1.1 specification defines two changes to advanced error reporting. A new Role-Based Error
Reporting bit in the Device Capabilities register is set to 1b to indicate that these changes are
supported by the I211. These changes are:

1. Setting the SERR# Enable bit in the PCI Command register also enables UR reporting (in the same
manner that the SERR# Enable bit enables reporting of correctable and uncorrectable errors). In
other words, the SERR# Enable bit overrides the UR Error Reporting Enable bit in the PCIe Device
Control register.

Ethernet Controller I211 —Interconnects

46

2. Changes in the response to some uncorrectable non-fatal errors, detected in non-posted requests
to the I211. These are called advisory non-fatal error cases. For each of the errors that follow, the
following behavior is defined:
a. The Advisory Non-Fatal Error Status bit is set in the Correctable Error Status register to indicate

the occurrence of the advisory error and the Advisory Non-Fatal Error Mask corresponding bit in
the Correctable Error Mask register is checked to determine whether to proceed further with
logging and signaling.

b. If the Advisory Non-Fatal Error Mask bit is clear, logging proceeds by setting the corresponding
bit in the Uncorrectable Error Status register, based upon the specific uncorrectable error that's
being reported as an advisory error. If the corresponding uncorrectable error bit in the
Uncorrectable Error Mask register is clear, the First Error Pointer and Header Log registers are
updated to log the error, assuming they are not still occupied by a previously unserviced error.

c. An ERR_COR message is sent if the Correctable Error Reporting Enable bit is set in the Device
Control register. An ERROR_NONFATAL message is not sent for this error.

The following uncorrectable non-fatal errors are considered as advisory non-fatal Errors:

• A completion with an Unsupported Request or Completer Abort (UR/CA) status that signals an
uncorrectable error for a non-posted request. If the severity of the UR/CA error is non-fatal, the
completer must handle this case as an advisory non-fatal error.

• When the requester of a non-posted request times out while waiting for the associated completion,
the requester is permitted to attempt to recover from the error by issuing a separate subsequent
request, or to signal the error without attempting recovery. The requester is permitted to attempt
recovery zero, one, or multiple (finite) times, but must signal the error (if enabled) with an
uncorrectable error message if no further recovery attempts are made. If the severity of the
completion timeout is non-fatal and the requester elects to attempt recovery by issuing a new
request, the requester must first handle the current error case as an advisory non-fatal error.

• Reception of a poisoned TLP. Refer to Section 3.1.7.3.
• When a receiver receives an unexpected completion and the severity of the unexpected completion

error is non-fatal, the receiver must handle this case as an advisory non-fatal error.

3.1.7.9 Completion with Unsupported Request (UR) or Completer Abort (CA)

A DMA master transaction ending with an Unsupported Request (UR) completion or a Completer Abort
(CA) completion causes all PCIe master transactions to stop, PICAUSE.ABR bit is set and an interrupt is
generated if the appropriate Mask bits are set. To enable PCIe master transactions after receiving an
UR or CA completion, software should issue a Device Reset (CTRL.DEV_RST) and re-initialize the
function.

Note: Asserting CTRL.DEV_RST flushes any pending transactions on the PCIe and reset’s the port.

3.1.8 PCIe Power Management

Described in Section 5.4.1 - Power Management.

3.1.9 PCIe Programming Interface

Described in Chapter 9.0 - PCIe Programming Interface

Interconnects—Ethernet Controller I211

47

3.2 iNVM
The I211incorporates an on-die internal NVM (iNVM) memory (size 2 Kb) that enables designers to
internally program the I211 with a subset of the default values that are normally associated with an
external NVM. iNVM is similar to One Time Programmable (OTP) memory except that it allows for a
limited number of modifications and corrections after initial programming. The iNVM has a capacity of
64 words, or 32 two-word CSR entries. A word, once used, cannot be rewritten. The initial
programming will take a number of these, and each new entry takes additional words until the capacity
is reached. For example, programming the MAC address consumes three auto-load word structures.
Note that the I211 does not support Manageability, VPD, and iSCSI boot. PXE support requires that the
code be integrated with the BIOS in the I211.

The last two words of the iNVM (62-63) are used for manufacturing identification information. Word 61
is written with version information when the iNVM is programmed using Intel tools. The contents of
these words do not affect the operation of the device.

This section describes the iNVM structure for the I211.

3.2.1 iNVM Contents

The iNVM memory is used there to store and program the default values that are otherwise
programmed via auto-load from the external Flash memory. The list of programmable values includes
the following (amongst others):

• MAC address - words 0x00, 0x01, 0x02
— Serial ID (for PCIe) is a derivative of MAC address.

• iNVM image revision - word 0x05
• Subsystem ID and Subsystem Vendor ID - words 0x0B, 0x0C

— Needed only for NIC and for other vendors than Intel.
• Device ID - word 0x0D

— Device ID: Use a separate device ID for the I211 running with a programmed iNVM (0x1539).
• Board Configuration (LEDs, SDPs, etc.) - words 0x1C, 0x1F, 0x20, 0x24
• LAN power consumption - word 0x22
• PHY/PCIe analog parameters. This information is loaded in the iNVM as it is determined based on

the silicon’s process state.
— Other critical PCIe settings that are loaded only at power-up.

• Hardware init, workaround/bypass
— Initialization Control word 1 - word 0x0A to:

• set GPAR_EN bit to 1b (enable global parity check)
• optionally set iNVM to 1b (see note in Section 3.2.2.1)

— Initialization Control Word 2 to set TX_LPI_EN bit - word 0x0F
— Device Off Enable bit to 1b - word 0x1E

• PHY disconnect until the software device driver is up and running or WoL setup - words 0x24, 0x29
— PHY disconnect is achieved by setting the Go Link Disconnect field (bit 5) in the PHPM register

• FLBAR_Size set to 0 - word 0x28

Not Supported in iNVM:

• Manageability and manageability parameters

Ethernet Controller I211 —Interconnects

48

• Pointers
• VPD
• Legacy Option ROM - PXE (PXE driver can reside in BIOS Flash), iSCSI boot (requires external

Flash), etc.

3.2.2 iNVM Structures

The iNVM contains the following three structures:

1. Word auto-load (2 words)
2. CSR auto-load (4 words)
3. PHY register auto-load (2 words)

Each structure starts with a type field. When a non-null unknown type is encountered, the 32-bits are
skipped by hardware as they might contain an item that is relevant to firmware or software.

When invalidating a structure, all its Type field bits should be set to 1b. That way, each time the device
iNVM parser encounters a 111b type it can skip 32-bit words until the next non 111b type is detected.

Table 3-13 lists the different iNVM structure types:

Table 3-14 lists the iNVM value load condition as a function of the reset types. the reset type value
should be the same as specified in the reset type value of the auto-load table.

Table 3-13. iNVM Structure Types

Type Description

000b Un-initialized iNVM Dword, stop iNVM parsing.

001b Word auto-load

010b CSR auto-load

011b PHY register auto-load

100b Reserved - do not use this value

111b Invalidated iNVM structure, skip the Dword (16-bits)

Other Reserved for future use, skip the Dword (16-bits)

Table 3-14. iNVM Structure Reset Types (for Auto-load)

Reset Type Description

00b Load on Power-up (LAN_PWR_GOOD) reset

10b Load on PCIe reset and power-up reset

01b Reserved

11b Load on software reset, PCIe reset, and power-up reset

Interconnects—Ethernet Controller I211

49

3.2.2.1 Word Auto-load Structure
MSB[15] ..LSB[0]

Figure 3-2. Word Auto-load Structure

3.2.2.1.1 iNVM Programmed Word Structures (Type 001b)

Note: In order to secure the iNVM memory (such as avoiding any further write to it after
manufacturing), a word auto-load structure must be present in iNVM for setting the iNVM bit
to 1b in word address 0x0A.

3.2.2.2 CSR Auto-load Structure

The CSR auto-load structure is defined as follows:

Table 3-15. iNVM Values

Word Address Word Data (16 bits)

0x00 Ethernet Address Low

0x01 Ethernet Address Mid

0x02 Ethernet Address High

0x0A Initialization Control Word 1 (Word 0x0A) - Section 6.2.2

0x0E Vendor ID (Word 0x0E) - Section 6.2.6

0x0F Initialization Control Word 2 (Offset 0x0F) - Section 6.2.7

0x1B PCIe Control 1 (Word 0x1B) - Section 6.2.15

0x1C LED1 Configuration Defaults (Word 0x1C) - Section 6.2.16

0x1E Device Rev ID (Word 0x1E) - Section 6.2.17

0x1F LED0,2 Configuration Defaults (Word 0x1F) - Section 6.2.18

0x20 Software Defined Pins Control (Word 0x20) - Section 6.2.19

0x21 Functions Control (Word 0x21) - Section 6.2.20

0x22 LAN Power Consumption (Word 0x22) - Section 6.2.21

0x24 Initialization Control 3 (Word 0x24) - Section 6.2.22

0x29 PCIe Control 3 (Word 0x29) - Section 6.2.24

0x28 PCIe Control 2 (Word 0x28) - Section 6.2.23

0x2E Watchdog Configuration (Word 0x2E) - Section 6.2.25

Type
3b=3'b001

Reset Type
2b

Word Address[6:0]
7b

Word Data[15:0]
16b

RSV
4b=4'b0

Ethernet Controller I211 —Interconnects

50

MSB[15] ..LSB[0]

Figure 3-3. CSR Auto-load Structure

3.2.2.3 PHY Register Auto-load Structure
MSB[15] ..LSB[0]

Figure 3-4. PHY Register Auto-load Structure

3.2.3 iNVM Programming Flows

iNVM can be programmed at several occasions and via different means:

1. At the chip manufacturing site (by Intel), via a special pin. It sets the critical PCIe settings required
by the I211 to show up correctly on the PCIe bus with a default device ID.

2. At customer premises (by OEMs), via an Intel provided software tool, which uses a special register
set. This tool enables customers to make some customization to the LEDs, device ID, ASPM, etc.
and it sets the per-controller settings.
For security reasons, the I211 has a lock-out mechanism after the iNVM is programmed at this
stage, to prevent any tampering/retry of the iNVM programming. It is activated by writing a special
iNVM word auto-load structure, iNVM word address 0xA, bit 15 set to 1b. The lock-out is active as
long as the SECURITY-EN strapping option is enabled.

3. By disabling the SECURITY_EN strapping option, the iNVM lines left blank become writable again
like in step 2. This can be useful for fixing iNVM values that were programmed wrongly, or, if boards
are resold to a third party who wants to further customize the iNVM. For example, the third party
might want a different MAC address or device ID to identify the device with their company's custom
software. At the end of this iNVM write cycle, the SECURITY_EN strapping option must be re-
enabled.

Type
3b=3'b010

Reset Type
2b

RSV
11b=11'b0

CSR Address in DWord[15:0] (bit 15 is reserved)
16b

CSR Data[15:0]
16b

CSR Data[31:16]
16b

Type
3b=3'b011

Reset Type
2b=2'b11

MDIC REGADD [4:0]
5b

MDIC DATA[15:0]
16b

RSV
6b=6'b0

Interconnects—Ethernet Controller I211

51

3.2.3.1 iNVM Programming Flow via Registers

Writing the iNVM via this flow must be done when the system is idle, with no Rx/Tx traffic running and
with PCIEMISC.DMA Idle Indication bit set to 1b. The iNVM memory is organized in 32 lines of 64 bits
each, for a total of 2 Kb.

1. To be sure the PHY clock used by iNVM programming logic gets stabilized, wait (at least) 15 s after
EEMNGCTL.CFG_DONE bit is read as 1b.
a. Skip this step on devices that have no attached Flash parts with a valid contents

2. To avoid mistakenly writing the iNVM, write the iNVM_PROTECT.CODE register field with
0xABACADA (ALLOW_WRITE bit is set to 1b).

3. Read the iNVM memory line to be programmed, use iNVM_DATA[2n] and iNVM_DATA[2n+1]
register (n=0,...,31), respectively for the lower and higher Dwords of the iNVM line to be
programmed.

4. Write the desired value in iNVM_DATA[2n].
5. Wait 320 s, which is the time required for a complete burning of the 32-bit fuses or poll

iNVM_PROTECT.BUSY until it is cleared.
6. Write the desired value in iNVM_DATA[2n+1].
7. Wait 320 s, which is the time required for a complete burning of the 32-bit fuses.
8. Read the iNVM line programmed via iNVM_DATA[2n] and iNVM_DATA[2n+1] registers read.

a. If not all the bits were properly written, repeat steps 4 to 8 until all bits are properly written.
9. Optionally, lock the line programmed by setting iNVM_LOCK[n].LOCK register bit to 1b.

a. Wait 10 s for the lock to take effect.
b. Read the iNVM_LOCK[n].LOCK register bit to check it is read as 1b.
c. If it is not read as 1b, repeat step 9 until it reads as 1b.

10. Program a new line if needed by repeating step 3.
11. When the iNVM programming sequence completes, write to the iNVM_PROTECT register with

0x00000000.

Note: Reading the iNVM can be done directly by read access to the iNVM_DATA[0-63] registers.
Locking a programmed line at step 8 avoids any possibility in the future to invalidate the line
by writing the Type field with 111b.
In case no Flash part with a valid contents is attached, the new OTP settings will take effect
either after a power-up cycle or if mirroring the whole OTP contents into the shadow RAM and
initiating a PCIe reset. The later option does not concern items that load only at power-up
(refer to Table 3-18).

3.2.4 Hardware Load of iNVM Values into Internal Structures

After every reset, hardware goes over the iNVM, reading and parsing its structures. If a structure is
valid and its reset type matches the initiated reset, hardware loads the word or CSR from the iNVM
structure into its internal hardware structures.

If an iNVM structure type is read as 111b, hardware skips that Dword, and any following Dword starting
with that type field.

If a type field is read as 000b, hardware stops parsing the iNVM and concludes.

In a 2 Kb iNVM, there is room for programming up to 64 words or 32 CSRs. For example, programming
the MAC address consumes three auto-load word structures.

Ethernet Controller I211 —Interconnects

52

Once an iNVM structure is written, there is no way to modify its value other than invalidating its type
field (type=111b). iNVM structures can be constructed to rewrite or replace previous iNVM structures, if
such a change is required. For instance, assuming PCI configuration and various workarounds require 5
CSR structures and 5 word auto-load ones, then 68 iNVM words remain un-programmed, which leaves
enough room for additional word and CSR rewrites, if needed.

Note: In the I211, software should not use the shadow RAM for reading and storing iNVM values. It
might lead to unpredictable behavior.

3.2.5 Software Load of Default Values into Internal Structures

On every reset event of the I211, software is able to re-load new default values into the internal
hardware structures as if the settings were auto-loaded by hardware. This ability is referred to as auto-
load bus write by software. It is aimed to avoid wasting iNVM lines with settings that can be handled by
software.

The following flow is used by software:

1. Write the iNVM word address and data to be loaded in the device via EEARBC register write. Refer
to Table 6-1 iNVM words that are used by hardware.

2. Wait until the EEARBC.DONE bit is set by hardware.
3. Load new iNVM words into the hardware structures by repeating steps 1 and 2 as needed.

Note: Software uses the autoload bus write mechanism because writing into registers is not always
possible to set internal hardware structures.

3.2.6 I211 Init Flow

Once the init flow detects no Flash device is present, a POR or a firmware reset event, the ROM-based
firmware code jumps to this flow from step 2 of the flow.

1. If this is the first time this flow is entered after POR, then ROM-firmware parses the iNVM structure
to handle PHY register auto-load structures (if there are such in iNVM).

2. ROM-firmware parses the iNVM structure to detect the presence of a word auto-load structure for
iNVM word 0x0A:
a. If the structure is found and HI_DISABLE bit is set to 1b, then exit this flow.

3. ROM-firmware sets the HICR.Memory Base Enable bit to 1b, and HICR.Enable to 1b. This has the
effect of enabling the host interface.

4. ROM-firmware sets FWSM.FW_Mode field to 100b (host interface only), the FWSM.FW_Val_Bit to
1b, and issues an ICR.MNG interrupt to the host for notifying it that the device is ready for the
proxy code load.

5. ROM-firmware polls the HICR.C bit until it is set to 1b by the host. This is the indication used by the
host to notify firmware that the proxy code was loaded.

6. When the software device driver is up, it detects it is a the I211 SKU (device ID read as 0x1539)
and it waits until FWSM.FW_Mode is read as 100b (host interface only) and the FWSM.FW_Val_Bit
is read as 1b.

7. The software device driver resets the port by setting CTRL.RST and waits for EEC.AUTO_RD to be
read as 1b.

8. The software device driver resets the firmware by setting HICR.FWRE to 1b first, and then by
setting HICR.FWR to 1b, which has the effect of re-entering the ROM-firmware into step 1.

9. Each time the system exits from a sleep state, or once the software device driver gets the interrupt
issued by firmware at step 2, the software device driver checks whether the FWSM.FW_Mode is

Interconnects—Ethernet Controller I211

53

read as 100b (host interface only) and the FWSM.FW_Val_Bit is read as 1b. This is the method used
by firmware to request re-load of the proxy code.

10. If a proxy code has to be loaded, then the software device driver sets its current internal RAM base
address to 0x10000. Otherwise, the software device driver exits the flow.

11. The software device driver copies its current internal RAM base address into the HIBBA register.
12. The software device driver writes consecutive locations from address 0x8800 up to 0x8BFF with the

next 1 KB of the proxy code, in Dwords (32-bit) chunks ordered in little endian.
13. The software device driver increments its current internal RAM base address by 1 KB.
14. The software device driver repeats steps 10 to 12 until the entire proxy code is written (or until the

50 KB limit is reached).
15. The software device driver sets the HICR.C bit to notify the ROM-firmware that the proxy code load

completed.
16. ROM-firmware starts the proxy code execution from internal RAM address 0x10000.
17. Once RAM-firmware completes it’s init sequence and is ready to receive commands from host, it

sets FWSM.FW_Mode to 001b (the I211 mode) and the FW_Val_Bit to 1b, and it clears the HICR.C
bit to notify the host that the host interface is ready to receive commands.

Note: Once loaded, the firmware runs the proxy code even when the system is in a sleep state. It is
the software device driver’s responsibility to reset the firmware prior to entering Sx.
However, if the system powers up in S3 state or if a firmware reset event occurs while the
system was in S3, no proxy offload is performed until the system resumes S0 and the proxy
code is re-loaded into the device.

After PHY reset events, ROM-firmware (as well as RAM-firmware) is responsible to parse the PHY
register auto-load structures of the iNVM (refer to Section 3.2.2.3) and to perform the required MDIO
accesses accordingly.

3.3 Configurable I/O Pins

3.3.1 General-Purpose I/O (Software-Definable Pins)

The I211 has four software-defined pins (SDP pins) that can be used for miscellaneous hardware or
software-controllable purposes. These pins can each be individually configurable to act as either input
or output pins. The default direction of each of the four pins is configurable via the iNVM as well as the
default value of any pins configured as outputs. To avoid signal contention, all four pins are set as input
pins until after the iNVM configuration has been loaded.

In addition to all four pins being individually configurable as inputs or outputs, they can be configured
for use as General-Purpose Interrupt (GPI) inputs. To act as GPI pins, the desired pins must be
configured as inputs. A separate GPI interrupt-detection enable is then used to enable rising-edge
detection of the input pin (rising-edge detection occurs by comparing values sampled at the internal
clock rate as opposed to an edge-detection circuit). When detected, a corresponding GPI interrupt is
indicated in the Interrupt Cause register.

The use, direction, and values of SDP pins are controlled and accessed using fields in the Device Control
(CTRL) register and Extended Device Control (CTRL_EXT) register.

The SDPs can be used for special purpose mechanisms such as a watchdog indication (refer to
Section 3.3.2), IEEE 1588 support (refer to Section 7.8) .

Ethernet Controller I211 —Interconnects

54

3.3.2 Software Watchdog

In some situations it might be useful to give an indication to external devices that the I211 hardware or
the software device driver is not functional. For example, in a pass-through NIC, the I211 might be
bypassed if it is not functional. In order to provide this functionality, a watchdog mechanism is used.
This mechanism can be enabled by default, according to iNVM configuration.

Once the host driver is up and it determines that hardware is functional, it might reset the watchdog
timer to indicate that the I211 is functional. The software device driver should then re-arm the timer
periodically. If the timer is not re-armed after pre-programmed timeout, an interrupt is sent to
firmware and a pre-programmed SDP0 pin is asserted. Additionally the ICR.Software WD bit can be set
to give an interrupt to the software device driver when the timeout is reached.

The SDP0 pin on which the watchdog timeout is indicated, is defined via the CTRL.SDP0_WDE bit. In
this mode, the CTRL.SDP0_IODIR should be set to output. The CTRL.SDP0_DATA bit indicates the
polarity of the indication. Setting the CTRL.SDP0_WDE bit causes the watchdog timeout indication to be
routed to this SDP0 pin.

The register controlling the watchdog timeout feature is the WDSTP register. This register enables
defining a time-out period and the activation of this mode. Default watchdog timeout activation and
timeout period can be set in the iNVM.

The timer is re-armed by setting the WDSWSTS.Dev_functional bit.

If software needs to trigger the watchdog immediately because it suspects hardware is stuck, it can set
the WDSWSTS.Force_WD bit. It can also supply firmware the cause for the watchdog, by placing
additional information in the WDSWSTS.Stuck Reason field.

Note: The watchdog circuitry has no logic to detect if hardware is not functional. If the hardware is
not functional, the watchdog might expire due to software not being able to access the
hardware, thus indicating there is potential hardware problem.

3.3.2.1 Watchdog Re-arm

After a watchdog indication was received, in order to re-arm the mechanism the following flow should
be used:

1. Clear WD_enable bit in the WDSTP register.
2. Clear SDP0_WDE bit in CTRL register.
3. Set SDP0_WDE bit in CTRL register.
4. Set WD_enable bit in the WDSTP register.

3.3.3 LEDs

The I211 provides three LEDs on the port that can be used to indicate different statuses of the traffic.
The default setup of the LEDs is done via iNVM word offsets 0x1C and 0x1F. This setup is reflected in
the LEDCTL register. Each software device driver can change its setup individually. For each of the
LEDs, the following parameters can be defined:

• Mode: Defines which information is reflected by this LED. The encoding is described in the LEDCTL
register.

• Polarity: Defines the polarity of the LED.
• Blink mode: Determines whether or not the LED should blink or be stable.

Interconnects—Ethernet Controller I211

55

In addition, the blink rate of all LEDs can be defined. The possible rates are 200 ms or 83 ms for each
phase. There is one rate for all the LEDs.

3.4 Voltage Regulator
To reduce Bill of Material (BOM) cost, the I211 supports generating the 1.5V and 0.9V power supplies
from the 3.3V supply using an on-chip Switching Capacitor Voltage Regulator (SVR) control circuit,
which requires only an external capacitor component.

Refer to Section 10.6.4 for more details.

3.5 Network Interfaces

3.5.1 Overview

The I211 MAC provides a complete CSMA/CD function supporting IEEE 802.3 (10 Mb/s), 802.3u (100
Mb/s), 802.3z and 802.3ab (1000 Mb/s) implementations. The I211 performs all of the functions
required for transmission, reception, and collision handling called out in the standards.

The I211 is designed to support an internal copper PHY.

• Internal copper PHY.

The internal copper PHY supports 10/100/1000BASE-T signaling and is capable of performing intelligent
power-management based on both the system power-state and LAN energy-detection (detection of
unplugged cables). Power management includes the ability to shut-down to an extremely low
(powered-down) state when not needed, as well as the ability to auto-negotiate to lower-speed 10/100
Mb/s operation when the system is in low power-states.

3.5.2 MAC Functionality

3.5.2.1 Internal GMII/MII Interface

The I211’s MAC and PHY/PCS communicate through an internal GMII/MII interface that can be
configured for either 1000 Mb/s operation (GMII) or 10/100 Mb/s (MII) mode of operation. For proper
network operation, both the MAC and PHY must be properly configured (either explicitly via software or
via hardware auto-negotiation) to identical speed and duplex settings.

All MAC configuration is performed using Device Control registers mapped into system memory or I/O
space; an internal MDIO/MDC interface, accessible via software, is used to configure the internal PHY.
In addition an external MDIO/MDC interface is available to configure external PHY’s that are connected
to the I211 via the SGMII interface.

3.5.2.2 MDIO/MDC PHY Management Interface

The I211 implements an IEEE 802.3 MII Management Interface, also known as the Management Data
Input/Output (MDIO) or MDIO interface, between the MAC and a PHY. This interface provides the MAC
and software the ability to monitor and control the state of the PHY. The MDIO interface defines a
physical connection, a special protocol that runs across the connection, and an internal set of
addressable registers. The interface consists of a data line (MDIO) and clock line (MDC), which are
accessible by software via the MAC register space.

Ethernet Controller I211 —Interconnects

56

• Management Data Clock (MDC): This signal is used by the PHY as a clock timing reference for
information transfer on the MDIO signal. The MDC is not required to be a continuous signal and can
be frozen when no management data is transferred. The MDC signal has a maximum operating
frequency of 2.5 MHz.

• MDIO: This bi-directional signal between the MAC and PHY is used to transfer control and status
information to and from the PHY (to read and write the PHY management registers).

Software can use MDIO accesses to read or write registers of the internal PHY, by accessing the I211's
MDIC register (refer to Section 8.2.4). MDIO configuration setup (internal PHY, PHY Address and
Shared MDIO) is defined in the MDICNFG register (refer to Section 8.2.5).

As the MDC/MDIO command can be targeted to the internal PHY, the MDICNFG.destination bit is used
to define the target of the transaction. Following reset, the value of the MDICNFG.destination bit is
loaded from the External MDIO bit in the Initialization Control 3 iNVM word. When the
MDICNFG.destination is clear, the MDIO access is always to the internal PHY and the PHY address is
ignored.

3.5.2.2.1 MDIC and MDICNFG Register Usage

For a MDIO read cycle, the sequence of events is as follows:

1. If default MDICNFG register values loaded from iNVM need to be updated. The processor performs
a PCIe write access to the MDICNFG register to define the:
— Destination = Internal PHY.

2. The processor performs a PCIe write cycle to the MDIC register with:
— Ready = 0b
— Interrupt Enable set to 1b or 0b
— Opcode = 10b (read)
— REGADD = Register address of the specific register to be accessed (0 through 31).

3. The MAC applies the following sequence on the MDIO signal to the PHY:

<PREAMBLE><01><10><PHYADD><REGADD><Z> where Z stands for the MAC tri-stating the
MDIO signal.

4. The PHY returns the following sequence on the MDIO signal<0><DATA><IDLE>.
5. The MAC discards the leading bit and places the following 16 data bits in the MII register.
6. The I211 asserts an interrupt indicating MDIO Done if the Interrupt Enable bit was set.
7. The I211 sets the Ready bit in the MDIC register indicating the read completed.
8. The processor might read the data from the MDIC register and issue a new MDIO command.

For a MDIO write cycle, the sequence of events is as follows:

1. If default MDICNFG register values loaded from iNVM need to be updated. The processor performs
a PCIe write cycle to the MDICNFG register to define the:
— Destination = Internal PHY.

2. The processor performs a PCIe write cycle to the MDIC register with:
— Ready = 0b.
— Interrupt Enable set to 1b or 0b.
— Opcode = 01b (write).
— REGADD = Register address of the specific register to be accessed (0 through 31).

Interconnects—Ethernet Controller I211

57

— Data = Specific data for desired control of the PHY.
3. The MAC applies the following sequence on the MDIO signal to the PHY:

<PREAMBLE><01><01><PHYADD><REGADD><10><DATA><IDLE>
4. The I211 asserts an interrupt indicating MDIO Done if the Interrupt Enable bit was set.
5. The I211 sets the Ready bit in the MDIC register to indicate that the write operation completed.
6. The CPU might issue a new MDIO command.

Note: A MDIO read or write might take as long as 64 s from the processor write to the Ready bit
assertion.

If an invalid opcode is written by software, the MAC does not execute any accesses to the PHY
registers.

If the PHY does not generate a 0b as the second bit of the turn-around cycle for reads, the MAC aborts
the access, sets the E (error) bit, writes 0xFFFF to the data field to indicate an error condition, and sets
the Ready bit.

Note: After a PHY reset, access through the MDIC register should not be attempted for 300 s.

3.5.2.3 Duplex Operation with Copper PHY

The I211 supports half-duplex and full-duplex 10/100 Mb/s MII mode through an internal copper
PHYinterface.

Configuring the I211 duplex operation can either be forced or determined via the auto-negotiation
process. Refer to Section 3.5.3.1 for details on link configuration setup and resolution.

3.5.2.3.1 Full Duplex

All aspects of the IEEE 802.3, 802.3u, 802.3z, and 802.3ab specifications are supported in full-duplex
operation. Full-duplex operation is enabled by several mechanisms, depending on the speed
configuration of the I211 and the specific capabilities of the link partner used in the application. During
full-duplex operation, the I211 can transmit and receive packets simultaneously across the link
interface.

In full-duplex, transmission and reception are delineated independently by the GMII/MII control
signals. Transmission starts TX_EN is asserted, which indicates there is valid data on the TX_DATA bus
driven from the MAC to the PHY/PCS. Reception is signaled by the PHY/PCS by the asserting the RX_DV
signal, which indicates valid receive data on the RX_DATA lines to the MAC.

3.5.2.3.2 Half Duplex

In half-duplex operation, the MAC attempts to avoid contention with other traffic on the link by
monitoring the CRS signal provided by the PHY and deferring to passing traffic. When the CRS signal is
de-asserted or after a sufficient Inter-Packet Gap (IPG) has elapsed after a transmission, frame
transmission begins. The MAC signals the PHY/PCS with TX_EN at the start of transmission.

In the case of a collision, the PHY detects the collision and asserts the COL signal to the MAC. Frame
transmission stops within four link clock times and then the I211 sends a JAM sequence onto the link.
After the end of a collided transmission, the I211 backs off and attempts to re-transmit per the
standard CSMA/CD method.

Ethernet Controller I211 —Interconnects

58

Note: The re-transmissions are done from the data stored internally in the I211 MAC transmit
packet buffer (no re-access to the data in host memory is performed).

The MAC behavior is different if a regular collision or a late collision is detected. If a regular collision is
detected, the MAC always tries to re-transmit until the number of excessive collisions is reached. In
case of late collision, the MAC retransmission is configurable. In addition, statistics are gathered on late
collisions.

In the case of a successful transmission, the I211 is ready to transmit any other frame(s) queued in the
MAC's transmit FIFO, after the minimum inter-frame spacing (IFS) of the link has elapsed.

During transmit, the PHY is expected to signal a carrier-sense (assert the CRS signal) back to the MAC
before one slot time has elapsed. The transmission completes successfully even if the PHY fails to
indicate CRS within the slot time window. If this situation occurs, the PHY can either be configured
incorrectly or be in a link down situation. Such an event is counted in the transmit without CRS statistic
register (refer to Section 8.16.12).

When operating in half duplex mode, the elasticity FIFO in the PHY should be programmed to its
minimum size by setting the Copper Transmit FIFO Depth field to 00b (depth of 16 bits). See
Section 8.22.3.23).

3.5.3 Auto-Negotiation and Link Setup Features

The method for configuring the link between two link partners is highly dependent on the mode of
operation as well as the functionality provided by the specific physical layer device (PHY). In internal
PHY mode, the PCS and IEEE802.3 clause 28 and clause 40 auto-negotiation functions are maintained
within the PHY.

Configuring the link can be accomplished by several methods ranging from software forcing link
settings, software-controlled negotiation, MAC-controlled auto-negotiation, to auto-negotiation initiated
by a PHY. The following sections describe processes of bringing the link up including configuration of the
I211 and the transceiver, as well as the various methods of determining duplex and speed
configuration.

The process of determining link configuration differs slightly based on the specific link mode (internal
PHY) being used.

When operating in internal PHY mode, the PHY performs auto-negotiation per 802.3ab clause 40 and
extensions to clause 28. Link resolution is obtained by the MAC from the PHY after the link has been
established. The MAC accomplishes this via the MDIO interface, via specific signals from the internal
PHY to the MAC, or by MAC auto-detection functions.

Note: In internal PHY connections, energy detect source is always internal and value of
CONNSW.ENRGSRC bit should be 0b. The CTRL.ILOS bit also inverts the internal link-up input
that provides link status indication and thus should be set to 0b for proper operation.

3.5.3.1 Copper PHY Link Configuration

When operating with the internal PHY, link configuration is generally determined by PHY auto-
negotiation. The software device driver must intervene in cases where a successful link is not
negotiated or the designer desires to manually configure the link. The following sections discuss the
methods of link configuration for copper PHY operation.

3.5.3.1.1 PHY Auto-Negotiation (Speed, Duplex, Flow Control)

Interconnects—Ethernet Controller I211

59

When using a copper PHY, the PHY performs the auto-negotiation function. The actual operational
details of this operation are described in the IEEE P802.3ab draft standard and are not included here.

Auto-negotiation provides a method for two link partners to exchange information in a systematic
manner in order to establish a link configuration providing the highest common level of functionality
supported by both partners. Once configured, the link partners exchange configuration information to
resolve link settings such as:

• Speed: - 10/100/1000 Mb/s
• Duplex: - Full or half
• Flow control operation

PHY specific information required for establishing the link is also exchanged.

Note: If flow control is enabled in the I211, the settings for the desired flow control behavior must
be set by software in the PHY registers and auto-negotiation restarted. After auto-negotiation
completes, the software device driver must read the PHY registers to determine the resolved
flow control behavior of the link and reflect these in the MAC register settings (CTRL.TFCE
and CTRL.RFCE).
Once PHY auto-negotiation completes, the PHY asserts a link indication (LINK) to the MAC.
Software must have set the Set Link Up bit in the Device Control register (CTRL.SLU) before
the MAC recognizes the LINK indication from the PHY and can consider the link to be up.

3.5.3.1.2 MAC Speed Resolution

For proper link operation, both the MAC and PHY must be configured for the same speed of link
operation. The speed of the link can be determined and set by several methods with the I211. These
include:

• Software-forced configuration of the MAC speed setting based on PHY indications, which might be
determined as follows:
— Software reads of PHY registers directly to determine the PHY's auto-negotiated speed
— Software reads the PHY's internal PHY-to-MAC speed indication (SPD_IND) using the MAC

STATUS.SPEED register
• Software asks the MAC to attempt to auto-detect the PHY speed from the PHY-to-MAC RX_CLK,

then programs the MAC speed accordingly
• MAC automatically detects and sets the link speed of the MAC based on PHY indications by using

the PHY's internal PHY-to-MAC speed indication (SPD_IND)

Aspects of these methods are discussed in the sections that follow.

3.5.3.1.2.1 Forcing MAC Speed

There might be circumstances when the software device driver must forcibly set the link speed of the
MAC. This can occur when the link is manually configured. To force the MAC speed, the software device
driver must set the CTRL.FRCSPD (force-speed) bit to 1b and then write the speed bits in the Device
Control register (CTRL.SPEED) to the desired speed setting. Refer to Section 8.2.1 for details.

Note: Forcing the MAC speed using CTRL.FRCSPD overrides all other mechanisms for configuring
the MAC speed and can yield non-functional links if the MAC and PHY are not operating at the
same speed/configuration.

Ethernet Controller I211 —Interconnects

60

When forcing the I211 to a specific speed configuration, the software device driver must also ensure
the PHY is configured to a speed setting consistent with MAC speed settings. This implies that software
must access the PHY registers to either force the PHY speed or to read the PHY status register bits that
indicate link speed of the PHY.

Note: Forcing speed settings by CTRL.SPEED can also be accomplished by setting the
CTRL_EXT.SPD_BYPS bit. This bit bypasses the MAC's internal clock switching logic and
enables the software device driver complete control of when the speed setting takes place.
The CTRL.FRCSPD bit uses the MAC's internal clock switching logic, which does delay the
effect of the speed change.

3.5.3.1.2.2 Using Internal PHY Direct Link-Speed Indication

The I211’s internal PHY provides a direct internal indication of its speed to the MAC (SPD_IND). When
using the internal PHY, the most direct method for determining the PHY link speed and either manually
or automatically configuring the MAC speed is based on these direct speed indications.

For MAC speed to be set/determined from these direct internal indications from the PHY, the MAC must
be configured such that CTRL.ASDE and CTRL.FRCSPD are both 0b (both auto-speed detection and
forced-speed override disabled). After configuring the Device Control register, MAC speed is re-
configured automatically each time the PHY indicates a new link-up event to the MAC.

When MAC speed is neither forced nor auto-sensed by the MAC, the current MAC speed setting and the
speed indicated by the PHY is reflected in the Device Status register bits STATUS.SPEED.

3.5.3.1.3 MAC Full-/Half- Duplex Resolution

The duplex configuration of the link is also resolved by the PHY during the auto-negotiation process.
The I211’s internal PHY provides an internal indication to the MAC of the resolved duplex configuration
using an internal full-duplex indication (FDX).

When using the internal PHY, this internal duplex indication is normally sampled by the MAC each time
the PHY indicates the establishment of a good link (LINK indication). The PHY's indicated duplex
configuration is applied in the MAC and reflected in the MAC Device Status register (STATUS.FD).

Software can override the duplex setting of the MAC via the CTRL.FD bit when the CTRL.FRCDPLX
(force duplex) bit is set. If CTRL.FRCDPLX is 0b, the CTRL.FD bit is ignored and the PHY's internal
duplex indication is applied.

3.5.3.1.4 Using PHY Registers

The software device driver might be required under some circumstances to read from, or write to, the
MII management registers in the PHY. These accesses are performed via the MDIC register (refer to
Section 8.2.4). The MII registers enable the software device driver to have direct control over the PHY's
operation, which can include:

• Resetting the PHY
• Setting preferred link configuration for advertisement during the auto-negotiation process
• Restarting the auto-negotiation process
• Reading auto-negotiation status from the PHY
• Forcing the PHY to a specific link configuration

The set of PHY management registers required for all PHY devices can be found in the IEEE P802.3ab
standard.

Interconnects—Ethernet Controller I211

61

3.5.3.1.5 Comments Regarding Forcing Link

Forcing link in GMII/MII mode (internal PHY) requires the software device driver to configure both the
MAC and PHY in a consistent manner with respect to each other as well as the link partner. After
initialization, the software device driver configures the desired modes in the MAC, then accesses the
PHY registers to set the PHY to the same configuration.

Before enabling the link, the speed and duplex settings of the MAC can be forced by software using the
CTRL.FRCSPD, CTRL.FRCDPX, CTRL.SPEED, and CTRL.FD bits. After the PHY and MAC have both been
configured, the software device driver should write a 1b to the CTRL.SLU bit.

3.5.3.2 Loss of Signal/Link Status Indication

For all modes of operation, a LOS/LINK signal provides an indication of physical link status to the MAC.
In internal PHY mode, this signal from the PHY indicates whether the link is up or down; typically
indicated after successful auto-negotiation. Assuming that the MAC has been configured with
CTRL.SLU=1b, the MAC status bit STATUS.LU, when read, generally reflects whether the PHY has link
(except under forced-link setup where even the PHY link indication might have been forced).

When the link indication from the PHY is de-asserted, the MAC considers this to be a transition to a link-
down situation (such as cable unplugged, loss of link partner, etc.). If the Link Status Change (LSC)
interrupt is enabled, the MAC generates an interrupt to be serviced by the software device driver.

3.5.4 Ethernet Flow Control (FC)

The I211 supports flow control as defined in 802.3x as well as the specific operation of asymmetrical
flow control defined by 802.3z.

Flow control is implemented as a means of reducing the possibility of receive packet buffer overflows,
which result in the dropping of received packets, and allows for local controlling of network congestion
levels. This can be accomplished by sending an indication to a transmitting station of a nearly full
receive buffer condition at a receiving station.

The implementation of asymmetric flow control allows for one link partner to send flow control packets
while being allowed to ignore their reception. For example, not required to respond to PAUSE frames.

The following registers are defined for the implementation of flow control:

• CTRL.RFCE field is used to enable reception of legacy flow control packets and reaction to them
• CTRL.TFCE field is used to enable transmission of legacy flow control packets
• Flow Control Address Low, High (FCAL/H) - 6-byte flow control multicast address
• Flow Control Type (FCT) 16-bit field to indicate flow control type
• Flow Control bits in Device Control (CTRL) register - Enables flow control modes
• Discard PAUSE Frames (DPF) and Pass MAC Control Frames (PMCF) in RCTL - controls the

forwarding of control packets to the host
• Flow Control Receive Threshold High (FCRTH0) - A 13-bit high watermark indicating receive buffer

fullness. A single watermark is used in link FC mode.
• DMA Coalescing Receive Threshold High (FCRTC) - A 13-bit high watermark indicating receive

buffer fullness when in DMA coalescing and Tx buffer is empty. The value in this register can be
higher than value placed in the FCRTH0 register since the watermark needs to be set to allow for
only receiving a maximum sized Rx packet before XOFF flow control takes effect and reception is
stopped (refer to Table 3-19 for information on flow control threshold calculation).

Ethernet Controller I211 —Interconnects

62

• Flow Control Receive Threshold Low (FCRTL0) - A 13-bit low watermark indicating receive buffer
emptiness. A single watermark is used in link FC mode.

• Flow Control Transmit Timer Value (FCTTV) - a set of 16-bit timer values to include in transmitted
PAUSE frame. A single timer is used in Link FC mode

• Flow Control Refresh Threshold Value (FCRTV) - 16-bit PAUSE refresh threshold value
• RXPBSIZE.Rxpbsize field is used to control the size of the receive packet buffer

3.5.4.1 MAC Control Frames and Receiving Flow Control Packets

3.5.4.1.1 Structure of 802.3X FC Packets

Three comparisons are used to determine the validity of a flow control frame:

1. A match on the 6-byte multicast address for MAC control frames or to the station address of the
I211 (Receive Address Register 0).

2. A match on the type field.
3. A comparison of the MAC Control Op-Code field.

The 802.3x standard defines the MAC control frame multicast address as 01-80-C2-00-00-01.

The Type field in the FC packet is compared against an IEEE reserved value of 0x8808.

The final check for a valid PAUSE frame is the MAC control op-code. At this time only the PAUSE control
frame op-code is defined. It has a value of 0x0001.

Frame-based flow control differentiates XOFF from XON based on the value of the PAUSE timer field.
Non-zero values constitute XOFF frames while a value of zero constitutes an XON frame. Values in the
Timer field are in units of pause quantum (slot time). A pause quantum lasts 64 byte times, which is
converted in absolute time duration according to the line speed.

Note: XON frame signals the cancellation of the pause from initiated by an XOFF frame - pause for
zero pause quantum.

Table 3-16 lists the structure of a 802.3X FC packet.

3.5.4.1.2 Operation and Rules

The I211 operates in Link FC.

• Link FC is enabled by the RFCE bit in the CTRL register.

Note: Link flow control capability is negotiated between link partners via the auto negotiation
process. It is the software device driver responsibility to reconfigure the link flow control

Table 3-16. 802.3X Packet Format
DA 01_80_C2_00_00_01 (6 bytes)

SA Port MAC address (6 bytes)

Type 0x8808 (2 bytes)

Op-code 0x0001 (2 bytes)

Time XXXX (2 bytes)

Pad 42 bytes

CRC 4 bytes

Interconnects—Ethernet Controller I211

63

configuration after the capabilities to be used where negotiated as it might modify the value
of these bits based on the resolved capability between the local device and the link partner.

Once the receiver has validated receiving an XOFF, or PAUSE frame, the I211 performs the following:

• Increments the appropriate statistics register(s)
• Sets the Flow_Control State bit in the FCSTS0 register.
• Initializes the pause timer based on the packet's PAUSE timer field (overwriting any current timer’s

value)
• Disables packet transmission or schedules the disabling of transmission after the current packet

completes.

Resumption of transmission might occur under the following conditions:

• Expiration of the PAUSE timer
• Receiving an XON frame (a frame with its PAUSE timer set to 0b)

Both conditions clear the relevant Flow_Control State bit in the relevant FCSTS0 register and
transmission can resume. Hardware records the number of received XON frames.

3.5.4.1.3 Timing Considerations

When operating at 1 Gb/s line speed, the I211 must not begin to transmit a (new) frame more than two
pause-quantum-bit times after receiving a valid link XOFF frame, as measured at the wires. A pause
quantum is 512-bit times.

When operating in full duplex at 10 Mb/s or at 100 Mb/s line speeds, the I211 must not begin to
transmit a (new) frame more than 576-bit times after receiving a valid link XOFF frame, as measured at
the wire.

3.5.4.2 PAUSE and MAC Control Frames Forwarding

Two bits in the Receive Control register, control forwarding of PAUSE and MAC control frames to the
host. These bits are Discard PAUSE Frames (DPF) and Pass MAC Control Frames (PMCF):

• The DPF bit controls forwarding of PAUSE packets to the host.
• The PMCF bit controls forwarding of non-PAUSE packets to the host.

Note: When flow control reception is disabled (CTRL.RFCE = 0b), legacy flow control packets are not
recognized and are parsed as regular packets.

Table 3-17 lists the behavior of the DPF bit.

Table 3-18 defines the behavior of the PMCF bit.

Table 3-17. Forwarding of PAUSE Packet to Host (DPF Bit)

RFCE DPF Are FC Packets Forwarded to Host?

0 X Yes if pass the L2 filters (refer to Section 7.1.1.1).1

1. The flow control multicast address is not part of the L2 filtering unless explicitly required.

1 0 Yes.

1 1 No.

Ethernet Controller I211 —Interconnects

64

3.5.4.3 Transmission of PAUSE Frames

The I211 generates PAUSE packets to ensure there is enough space in its receive packet buffers to
avoid packet drop. The I211 monitors the fullness of its receive packet buffers and compares it with the
contents of a programmable threshold. When the threshold is reached, the I211 sends a PAUSE frame.
The I211 supports the sending of link Flow Control (FC).

Note: Similar to receiving link flow control packets previously mentioned, link XOFF packets can be
transmitted only if this configuration has been negotiated between the link partners via the
auto-negotiation process or some higher level protocol. The setting of this bit by the software
device driver indicates the desired configuration.
The transmission of flow control frames should only be enabled in full-duplex mode per the
IEEE 802.3 standard. Software should ensure that the transmission of flow control packets is
disabled when the I211 is operating in half-duplex mode.

3.5.4.3.1 Operation and Rules

Transmission of link PAUSE frames is enabled by software writing a 1b to the TFCE bit in the Device
Control register.

The I211 sends a PAUSE frame when Rx packet buffer is full above the high threshold defined in the
Flow Control Receive Threshold High (FCRT0.RTH) register field. When the threshold is reached, the
I211 sends a PAUSE frame with its pause time field equal to FCTTV. The threshold should be large
enough to overcome the worst case latency from the time that crossing the threshold is sensed until
packets are not received from the link partner. The Flow Control Receive Threshold High value should
be calculated as follows:

Flow Control Receive Threshold High = Internal Rx Buffer Size - (Threshold Cross to XOFF Transmission
+ Round-trip Latency + XOFF Reception to Link Partner response)

Parameter values to be used for calculating the FCRT0.RTH value are listed in Table 3-19.

Table 3-18. Transfer of Non-PAUSE Control Packets to Host (PMCF Bit)

RFCE PMCF Are Non-FC MAC Control Packets Forwarded to Host?

0 X Yes if pass the L2 filters (refer to Section 7.1.1.1).

1 1 Yes.

1 0 No.

Interconnects—Ethernet Controller I211

65

Table 3-19. Flow Control Receive Threshold High (FCRTH0.RTH) Value Calculation

Note: When DMA Coalescing is enabled (DMACR.DMAC_EN = 1b),the value placed in the
FCRTC.RTH_Coal field should be equal or lower than:

FCRTC.RTH_Coal = FCRTH0.RTH + Max packet size * 1.25

The FCRTC.RTH_Coal is used as the high watermark to generate XOFF flow control packets when the
internal Tx buffer is empty and the I211 is executing DMA coalescing. In this case, no delay to
transmission of flow control packet exists so its possible to increase level of watermark before issuing a
XOFF flow control frame.

After transmitting a PAUSE frame, the I211 activates an internal shadow counter that reflects the link
partner pause timeout counter. When the counter reaches the value indicated in the FCRTV register,
then, if the PAUSE condition is still valid (meaning that the buffer fullness is still above the high
watermark), a XOFF message is sent again.

Once the receive buffer fullness reaches the low water mark, the I211 sends a XON message (a PAUSE
frame with a timer value of zero). Software enables this capability with the XONE field of FCRTL.

The I211 sends an additional PAUSE frame if it has previously sent one and the packet buffer overflows.
This is intended to minimize the amount of packets dropped if the first PAUSE frame did not reach its
target.

3.5.4.3.2 Software Initiated PAUSE Frame Transmission

The I211 has the added capability to transmit an XOFF frame via software. This is accomplished by
software writing a 1b to the SWXOFF bit of the Transmit Control register. Once this bit is set, hardware
initiates the transmission of a PAUSE frame in a manner similar to that automatically generated by
hardware.

The SWXOFF bit is self-clearing after the PAUSE frame has been transmitted.

Note: The Flow Control Refresh Threshold mechanism does not work in the case of software-
initiated flow control. Therefore, it is the software’s responsibility to re-generate PAUSE
frames before expiration of the pause counter at the other partner's end.

The state of the CTRL.TFCE bit or the negotiated flow control configuration does not affect software
generated PAUSE frame transmission.

Note: Software sends an XON frame by programming a 0b in the PAUSE timer field of the FCTTV
register. Software generating an XON packet is not allowed while the hardware flow control
mechanism is active, as both use the FCTTV registers for different purposes.
XOFF transmission is not supported in 802.3x for half-duplex links. Software should not
initiate an XOFF or XON transmission if the I211 is configured for half-duplex operation.

Latency Parameter Affected by Parameter Value

Internal Rx Buffer Size Internal Tx buffer size. 60 KB - Internal Tx Buffer
Size.

Threshold Cross to XOFF
Transmission Max packet size. Max packet size * 1.25.

XOFF Reception to Link Partner
response Max packet size. Max packet size.

Round trip latency The latencies on the wire and the LAN devices at both
sides of the wire.

320-byte (for 1000Base-T
operation).

Ethernet Controller I211 —Interconnects

66

When flow control is disabled, pause packets (XON, XOFF, and other FC) are not detected as
flow control packets and can be counted in a variety of counters (such as multicast).

3.5.4.4 IPG Control and Pacing

The I211 supports the following modes of controlling IPG duration:

• Fixed IPG - the IPG is extended by a fixed duration

3.5.4.4.1 Fixed IPG Extension

The I211 allows controlling of the IPG duration. The IPGT configuration field enables an extension of
IPG in 4-byte increments. One possible use of this capability is to enable inserting bytes into the
transmit packet after it has been transmitted by the I211 without violating the minimum IPG
requirements. For example, a security device connected in series to the I211 might add security
headers to transmit packets before the packets are transmitted on the network.

3.5.5 Loopback Support

3.5.5.1 General

The I211 supports the following types of internal loopback in the LAN interface:

• MAC Loopback (Point 1)
• PHY Loopback (Point 2)

By setting the device to loopback mode, packets that are transmitted towards the line are looped back
to the host. The I211 is fully functional in these modes, just not transmitting data over the lines.
Figure 3-5 shows the points of loopback.

Figure 3-5. I211 Loopback Modes

In addition, The I211’s copper PHY support a far end loopback mode, where incoming traffic is reflected
at the PHy level onto the transmit wires. This mode is entered by setting bit 14 in PHY register Page 2,
Register 21.

MAC
Packet Buffer

and DMA

Internal
PHY

1GbT

GMII

1

2

PCIe

Interconnects—Ethernet Controller I211

67

3.5.5.2 MAC Loopback

In MAC loopback, the PHY blocks are not functional and data is looped back before these blocks.

3.5.5.2.1 Setting the I211 to MAC loopback Mode

The following procedure should be used to put the I211 in MAC loopback mode:

• Set RCTL.LBM to 01b (bits 7:6)
• Set CTRL.SLU (bit 6, should be set by default)
• Set CTRL.FRCSPD and FRCDPLX (bits 11 and 12)
• Set the CTRL.FD bit and program the CTRL.SPEED field to 10b (1 GbE).
• Set EEER.EEE_FRC_AN to 1b to enable checking EEE operation in MAC loopback mode.

Filter configuration and other Tx/Rx processes are the same as in normal mode.

3.5.5.3 Internal PHY Loopback

All designs that are operating in copper mode are involved in the loopback.

3.5.5.3.1 Setting the I211 to Internal PHY loopback Mode

The following procedure should be used to place the I211 in PHY loopback mode on the LAN port:

• Set Link mode to Internal PHY: CTRL_EXT.LINK_MODE = 00b.
• In the PHY control register (PHYREG 0,0 - Address 0 in the PHY):

— Set duplex mode (bit 8)
— Clear auto-negotiation enable bit (bit 12)
— Set speed using bits 6 and 13. Register values should be:

• For 10 Mb/s 0x4100
• For 100 Mb/s 0x6100
• For 1000 Mb/s 0x4140

— Use bits 2:0 in PHYREG 2,21 to control the link speed in MDI loopback
— reset the PHY – in PHYREG 0,0 Set Copper Reset bit (bit 15)
— In PHYREG 0,0 Set loopback bit (bit 14)

•

3.5.6 Energy Efficient Ethernet (EEE)

Energy Efficient Ethernet (EEE) Low Power Idle (LPI) mode defined in IEEE802.3az optionally enables
power saving by switching off part of the I211 functionality when no data needs to be transmitted or/
and received. The decision as to whether or not the I211 transmit path should enter LPI mode or exit
LPL mode is done according to transmit needs. Information as to whether or not a link partner has
entered LPI mode is detected by the I211 and is used for power saving in the receive circuitry.

When no data needs to be transmitted, a request to enter transmit LPI is issued on the internal xxMII
Tx interface causing the PHY to transmit sleep symbols for a pre-defined period of time followed by a
quite period. During LPI, the PHY periodically transmits refresh symbols that are used by the link
partner to update adaptive filters and timing circuits in order to maintain link integrity. This quiet-

Ethernet Controller I211 —Interconnects

68

refresh cycle continues until transmitting normal inter-frame encoding on the internal xxMII interface.
The PHY communicates to the link partner the move to active link state by sending wake symbols for a
pre-defined period of time. The PHY then enters a normal operating state where data or idle symbols
are transmitted.

In the receive direction, entering LPI mode is triggered by receiving sleep symbols from the link
partner. This signals that the link partner is about to enter LPI mode. After sending the sleep symbols,
the link partner ceases transmission. When a link partner enters LPI, the PHY indicates assert low
power idle on the internal xxMII RX interface and the I211’s receiver disables certain functionality to
reduce power consumption.

Figure 3-6 shows and Table 3-20 lists the general principles of EEE LPI operation on the Ethernet Link.

3.5.6.1 Conditions to Enter EEE Tx LPI

In the transmit direction when the network interface is internal copper PHY (CTRL_EXT.LINK_MODE =
00b), entry into to EEE LPI mode of operation is triggered when one of the following conditions exist:

1. No transmission is pending, management does not need to transmit, the internal transmit buffer is
empty, and EEER.TX_LPI_EN is set to 1b.

2. If the EEER.TX_LPI_EN and EEER.LPI_FC bits are set to 1b and a XOFF flow control packet is
received from the link partner, the I211 moves the link into the Tx LPI state for the pause duration
even if a transmission is pending.

3. When EEER.Force_TLPI is set (even if EEER.TX_LPI_EN is cleared).

Figure 3-6. Energy Efficient Ethernet Operation

Table 3-20. Energy Efficient Ethernet Parameters

Parameter Description

Sleep Time (Ts) Duration PHY sends sleep symbols before going quiet.

Quiet Duration (Tq) Duration PHY remains quiet before it must wake for refresh period.

Refresh Duration (Tr) Duration PHY sends refresh symbols for timing recovery and coefficient synchronization.

PHY Wake Time (Tw_PHY) Minimum duration PHY takes to resume to an active state after decision to wake.

Receive System Wake Time
(Tw_System_rx)

Wait period where no data is expected to be received to give the local receiving system time to
wake up.

Transmit System Wake Time
(Tw_System_tx) Wait period where no data is transmitted to give the remote receiving system time to wake up.

ID
LE

Tq Tr Tw_PHYTs

Quiet Quiet Quiet

D
ata/
Idle

R
efresh

R
efresh

W
ake

S
leep

Low-PowerActive Active

Tw_System

D
ata/

ID
LE

ID
LE

Tq Tr Tw_PHYTs

Quiet Quiet Quiet

D
ata/
Idle

R
efresh

R
efresh

W
ake

S
leep

Low-PowerActive Active

Tw_System

D
ata/

ID
LE

Interconnects—Ethernet Controller I211

69

— If EEER.Force_TLPI is set in mid-packet, the I211 completes packet transmission and then
moves Tx to LPI.

— Setting the EEER.Force_TLPI bit to 1b only stops transmission of packets from the host. The
I211 moves the link out of Tx LPI to transmit packets from management even when
EEER.Force_TLPI is set to 1b.

4. When a function enters D3 state and there’s no management Tx traffic, internal transmit buffers
are empty and EEER.TX_LPI_EN is set to 1b.

When one of the previous conditions to enter a Tx LPI state is detected, assert low power idle is
transmitted on the internal xxMII interface and the I211 PHY transmits sleep symbols on the network
interface to communicate to the link partner entry into Tx LPI link state. After sleep symbols
transmission, behavior of the PHY differs according to link speed (100BASE-TX or 1000BASE-T):

1. While in 100BASE-TX mode, the PHY enters low power operation in an asymmetric manner. After
sleep symbol transmissions, the PHY immediately enters a low power quiet state.

2. While in 1000BASE-T mode, the PHY entry into a quiet state is symmetric. Only after the PHY
transmits sleep symbols and receives sleep symbols from the remote PHY does the PHY enter the
quiet state.

After entering a quiet link state, the PHY periodically transitions between quiet link state, where link is
idle, to sending refresh symbols until a request to transition the link back to normal (active) mode is
transmitted on the internal xxMII TX interface (see Figure 3-6).

Note: MAC entry into Tx LPI state is always asymmetric (in both 100BASE-TX and 1000BASE-T PHY
operating modes).

3.5.6.2 Exit of TX LPI to Active Link State

The I211 exits Tx LPI link state and transition link into active link state when none of the conditions
defined in Section 3.5.6.1 exist. To transition into active link state, the I211 transmits:

1. Normal inter-frame encoding on the internal xxMII TX interface for a pre-defined link rate
dependant period time of Tw_sys_tx-min. As a result, PHY transmits wake symbols for a Tw_phy
duration followed by idle symbols.

2. If the Tw_System_tx duration defined in the EEER.Tw_system field is longer than Tw_sys_tx-min,
the I211 continues transmitting the inter-frame encoding on the internal xxMII interface until the
time defined in the EEER.Tw_system field has expired, before transmitting the actual data. During
this period the PHY continues transmitting idle symbols.

Note: When moving out of Tx LPI to transmit a 802.3x flow control frame the I211 waits only the
Tw_sys_tx-min duration before transmitting the flow control frame. It should be noted that
even in this scenario, actual data is transmitted only after the Tw_System_tx time defined in
the EEER.Tw_system field has expired.

3.5.6.3 EEE Auto-Negotiation

Auto-negotiation provides the capability to negotiate EEE capabilities with the link partner using the
next page mechanism defined in IEEE802.3 Annex 28C. IEEE802.3 auto-negotiation is performed at
power up, on command from software, upon detection of a PHY error or following link re-connection.

During the link establishment process, both link partners indicate their EEE capabilities via the
IEEE802.3 auto-negotiation process. If EEE is supported by both link partners for the negotiated PHY
type then the EEE function can be used independently in either direction.

Ethernet Controller I211 —Interconnects

70

When operating in internal PHY mode (CTRL_EXT.LINK_MODE = 00b), the I211 supports EEE auto-
negotiation. EEE capabilities advertised during auto-negotiation can be modified via the EEE
advertisement field in the internal PHY (refer to Section 8.22.3.15) or via the EEER.EEE_1G_AN and
EEER.EEE_100M_AN bits.

3.5.6.4 EEE Link Level (LLDP) Capabilities Discovery

When operating in internal PHY mode (CTRL_EXT.LINK_MODE = 00b), the I211 supports LLDP
negotiation via software, using the EEE IEEE802.1AB Link Layer Discovery Protocol (LLDP) Type,
Length, Value (TLV) fields defined in IEEE802.3az clause 78 and clause 79. LLDP negotiation enables
negotiation of increased system wake time (Transmit Tw and Receive Tw) to enable improving system
energy efficiency.

After software negotiates a new system wake time via EEE LLDP negotiation, software should update
the:

1. EEER.Tw_system field with the negotiated Transmit Tw time value, to increase the duration where
idle symbols are transmitted following move out of EEE Tx LPI state before actual data can be
transmitted.
— Value placed in EEER.Tw_system field does not affect transmission of flow control packets.

Depending on the technology (100BASE-TX or 1000BASE-T) flow control packet transmission is
delayed following move out of EEE TX LPI state only by the minimum Tw_sys_tx time as defined
in IEEE802.3az clause 78.5.

2. The LTRMAXV register with a value:

LTRMINV =< LTRMAXV <= LTRMINV + negotiated Receive Tw Time.

3. Set EEER.TX_LPI_EN bit to 1b (if bit was cleared), to enable entry into EEE LPI on Tx path.

Note: Set EEER.RX_LPI_EN bit to 1b (if bit was cleared), to enable detection of link partner entering
EEE LPI state on Rx path.If link is disconnected or auto-negotiation is re-initiated, then the
LTRC.EEEMS_EN bit is cleared by hardware. The bit should be set to 1b by software following
re-execution of an EEE LLDP negotiation.

Interconnects—Ethernet Controller I211

71

Figure 3-7 shows the format of the EEE TLV, meaning of the various TLV parameters can be found in
IEEE802.3az clause 78 and clause 79.

3.5.6.5 Programming the I211 for EEE Operation

To activate EEE support when operating in internal PHY mode (CTRL_EXT.LINK_MODE = 00b), software
should program the following fields to enable EEE on the LAN port:

1. IPCNFG register (refer to Section 8.22.1) if default EEE advertised auto-negotiation values need to
be modified.

2. Set the EEER.TX_LPI_EN and EEER.RX_LPI_EN bits (refer to Section 8.20.1) to 1b to enable EEE
LPI support on Tx and Rx paths, respectively, if the result of auto-negotiation at the specified link
speed enables entry to LPI.

3. Set the EEER.LPI_FC bit (refer to Section 8.20.1) if required to enable a move into the EEE Tx LPI
state for the pause duration when a link partner sends a XOFF flow control packet even if internal
transmit buffer is not empty and transmit descriptors are available.

4. Update EEER.Tw_system field (refer to Section 8.20.1) with the new negotiated transmit Tw time
after completing EEE LLDP negotiation.

Notes:
5. The I211 waits for at least 1 second following auto-negotiation (due to reset, link disconnect, or link

speed change) and link-up indication (STATUS.LU set to 1b, refer to Section 8.2.2) before enabling
link entry into EEE Tx LPI state to comply with the IEEE802.3az specification.

3.5.6.5.1 PHY Programming for EEE Operation with Cables > 130m

Figure 3-7. EEE LLDP TLV

Ethernet Controller I211 —Interconnects

72

When working with cables long by 130 meters and beyond, it is recommended that the following PHY
register settings be applied by host to improve EEE interoperability with third part vendors:

1. Reg 22 = 0x00FF
2. Reg 17 = 0x0048
3. Reg16 = 0X215D
4. Reg 17 = 0x0027
5. Reg16 = 0X2150
6. Reg 17 = 0xDC0C
7. Reg16 = 0X2159
8. Reg 17 = 0xA42B
9. Reg16 = 0X2151
10. Reg 17 = 0x3024
11. Reg16 = 0X215C
12. Reg 22 = 0x00FC
13. Reg 24 = 0x888E
14. Reg 25 = 0x888E
15. Reg 1 = 0x20B0

These settings can be applied before the link is up when EEE is enabled.

3.5.6.6 EEE Statistics

The I211 supports reporting the number of EEE LPI Tx and Rx events via the RLPIC and TLPIC registers.

3.5.7 Integrated Copper PHY Functionality

The register set used to control the PHY functionality (PHYREG) is described in Section 8.22.3. the
registers can be programmed using the MDIC register (refer to Section 8.2.4).

3.5.7.1 Determining Link State

The PHY and its link partner determine the type of link established through one of three methods:

• Auto-negotiation
• Parallel detection
• Forced operation

Auto-negotiation is the only method allowed by the 802.3ab standard for establishing a 1000BASE-T
link, although forced operation could be used for test purposes. For 10/100 links, any of the three
methods can be used. The following sections discuss each in greater detail.

Figure 3-8 provides an overview of link establishment. First the PHY checks if auto-negotiation is
enabled. By default, the PHY supports auto-negotiation, see PHY Register 0, bit 12. If not, the PHY
forces operation as directed. If auto-negotiation is enabled, the PHY begins transmitting Fast Link
Pulses (FLPs) and receiving FLPs from its link partner. If FLPs are received by the PHY, auto-negotiation
proceeds. It also can receive 100BASE-TX MLT3 and 10BASE-T Normal Link Pulses (NLPs). If either
MLT3 or NLPs are received, it aborts FLP transmission and immediately brings up the corresponding
half-duplex link.

Interconnects—Ethernet Controller I211

73

3.5.7.1.1 False Link

The PHY does not falsely establish link with a partner operating at a different speed. For example, the
PHY does not establish a 1 Gb/s or 10 Mb/s link with a 100 Mb/s link partner.

When the PHY is first powered on, reset, or encounters a link down state; it must determine the line
speed and operating conditions to use for the network link.

The PHY first checks the MDIO registers (initialized via the hardware control interface or written by
software) for operating instructions. Using these mechanisms, designers can command the PHY to do
one of the following:

• Force twisted-pair link operation to:
— 1000T, full duplex
— 1000T, half duplex

Figure 3-8. Overview of Link Establishment

Speed?
0.13

A/N Enabled
?

Start

Auto-Negotiate/Parallel Detection

Send NLP

Send FLP

Power-Up, Reset,

Link Failure

Forced Operation N Y

0 1

10M

Detect 10 Mbps
?

N Y

Link
Down

Link
Up

Send IDLES

100M

Detect IDLES
?

N Y

Take
Down

Link

Bring
Link

Up

Bit 0.8 sets Duplex

Detect
FLP

100M
Half-Duplex

Link

N Y

Parallel

Detect

Detect
NLP

Auto
Negotiate

Detect
IDLES

Y

10M
Half-Duplex

Link

Y

N

Bit 0.8 sets Duplex

N

Ethernet Controller I211 —Interconnects

74

— 100TX, full duplex
— 100TX, half duplex
— 10BASE-T, full duplex
— 10BASE-T, half duplex

• Allow auto-negotiation/parallel-detection.

In the first six cases (forced operation), the PHY immediately begins operating the network interface as
commanded. In the last case, the PHY begins the auto-negotiation/parallel-detection process.

3.5.7.1.2 Forced Operation

Forced operation can be used to establish 10 Mb/s and 100 Mb/s links, and 1000 Mb/s links for test
purposes. In this method, auto-negotiation is disabled completely and the link state of the PHY is
determined by MII Register 0.

In forced operation, the designer sets the link speed (10, 100, or 1000 MB/s) and duplex state (full or
half). For GbE (1000 MB/s) links, designers must explicitly designate one side as the master and the
other as the slave.

Note: The paradox (per the standard): If one side of the link is forced to full-duplex operation and
the other side has auto-negotiation enabled, the auto-negotiating partner parallel-detects to
a half-duplex link while the forced side operates as directed in full-duplex mode. The result is
spurious, unexpected collisions on the side configured to auto-negotiate.

Table 3-21 lists link establishment procedures.

3.5.7.1.3 Auto Negotiation

The PHY supports the IEEE 802.3u auto-negotiation scheme with next page capability. Next page
exchange uses Register 7 to send information and Register 8 to receive them. Next page exchange can
only occur if both ends of the link advertise their ability to exchange next pages.

3.5.7.1.4 Parallel Detection

Parallel detection can only be used to establish 10 and 100 Mb/s links. It occurs when the PHY tries to
negotiate (transmit FLPs to its link partner), but instead of sensing FLPs from the link partner, it senses
100BASE-TX MLT3 code or 10BASE-T Normal Link Pulses (NLPs) instead. In this case, the PHY
immediately stops auto-negotiation (terminates transmission of FLPs) and immediately brings up
whatever link corresponds to what it has sensed (MLT3 or NLPs). If the PHY senses both technologies,
the parallel detection fault is detected and the PHY continues sending FLPs.

Table 3-21. Determining Duplex State Via Parallel Detection

Configuration Result

Both sides set for auto-negotiate Link is established via auto-negotiation.

Both sides set for forced operation No problem as long as duplex settings match.

One side set for auto-negotiation and the other for forced, half-
duplex Link is established via parallel detect.

One side set for auto-negotiation and the other for forced full-
duplex

Link is established; however, sides disagree, resulting in
transmission problems (Forced side is full-duplex, auto-
negotiation side is half-duplex.).

Interconnects—Ethernet Controller I211

75

With parallel detection, it is impossible to determine the true duplex state of the link partner and the
IEEE standard requires the PHY to assume a half-duplex link. Parallel detection also does not allow
exchange of flow-control ability (PAUSE and ASM_DIR) or the master/slave relationship required by
1000BASE-T. This is why parallel detection cannot be used to establish GbE links.

3.5.7.1.5 Auto Cross-Over

Twisted pair Ethernet PHY's must be correctly configured for MDI or MDI-X operation to inter operate.
This has historically been accomplished using special patch cables, magnetics pinouts or Printed Circuit
Board (PCB) wiring. The PHY supports the automatic MDI/MDI-X configuration originally developed for
1000Base-T and standardized in IEEE 802.3u section 40. Manual (non-automatic) configuration is still
possible.

For 1000BASE-T links, pair identification is determined automatically in accordance with the standard.

For 10/100/1000 Mb/s links and during auto-negotiation, pair usage is determined by bits 4 and 5 in
PHYREG 0,21. The PHY activates an automatic cross-over detection function if enabled via bit 0 in
IPCNFG (also see bits 5 and 6 in PHYREG 0,16). When in this mode, the PHY automatically detects
which application is being used and configures itself accordingly.

The automatic MDI/MDI-X state machine facilitates switching the MDI_PLUS[0] and MDI_MINUS[0]
signals with the MDI_PLUS[1] and MDI_MINUS[1] signals, respectively, prior to the auto-negotiation
mode of operation so that FLPs can be transmitted and received in compliance with Clause 28 auto-
negotiation specifications. An algorithm that controls the switching function determines the correct
polarization of the cross-over circuit. This algorithm uses an 11-Bit Linear Feedback Shift Register
(LFSR) to create a pseudo-random sequence that each end of the link uses to determine its proposed
configuration. After making the selection to either MDI or MDI-X, the node waits for a specified amount
of time while evaluating its receive channel to determine whether the other end of the link is sending
link pulses or PHY-dependent data. If link pulses or PHY-dependent data are detected, it remains in that
configuration. If link pulses or PHY-dependent data are not detected, it increments its LFSR and makes
a decision to switch based on the value of the next bit. The state machine does not move from one
state to another while link pulses are being transmitted.

3.5.7.1.6 10/100 MB/s Mismatch Resolution

Figure 3-9. Cross-Over Function

 MDIX (Switch)MDI (DTE/NIC)

RX
TX 1

2
 3
 6

Phy

CROSS(1:0) = 00 CROSS(1:0) = 01

A
B

R
J
4
5

-

RX

TX
1
2
 3
 6

A

B

R
J
4
5

Flat Cable

RX

TX

TX

RX

 7
D

5
 7
 8 DRX

TX

TX

RXC C
4

8

5
4

RX

TX

RX
TX

Ethernet Controller I211 —Interconnects

76

It is a common occurrence that a link partner (such as a switch) is configured for forced full-duplex
(FDX) 10/100 Mb/s operation. The normal auto-negotiation sequence would result in the other end
settling for half-duplex (HDX) 10/100 Mb/s operation. The mechanism described in this section resolves
the mismatch automatically and transitions the I211 into FDX mode, enabling it to operate with a
partner configured for FDX operation.

The I211 enables the system software device driver to detect the mismatch event previously described
and sets its duplex mode to the appropriate value without a need to go through another auto-
negotiation sequence or breaking link. Once software detects a possible mismatch, it might instruct the
I211 to change its duplex setting to either HDX or FDX mode. Software sets the Duplex_manual_set bit
to indicate that duplex setting should be changed to the value indicated by the Duplex Mode bit in PHY
Register 0. Any change in the value of the Duplex Mode bit in PHY Register 0 while the
Duplex_manual_set bit is set to 1b would also cause a change in the device duplex setting.

The Duplex_manual_set bit is cleared on all PHY resets, following auto-negotiation, and when the link
goes down. Software might track the change in duplex through the PHY Duplex Mode bit in Register 17
or a MAC indication.

3.5.7.1.7 Link Criteria

Once the link state is determined-via auto-negotiation, parallel detection or forced operation, the PHY
and its link partner bring up the link.

3.5.7.1.7.1 1000BASE-T

For 1000BASE-T links, the PHY and its link partner enter a training phase. They exchange idle symbols
and use the information gained to set their adaptive filter coefficients. These coefficients are used to
equalize the incoming signal, as well as eliminate signal impairments such as echo and cross talk.

Either side indicates completion of the training phase to its link partner by changing the encoding of the
idle symbols it transmits. When both sides so indicate, the link is up. Each side continues sending idle
symbols each time it has no data to transmit. The link is maintained as long as valid idle, data, or
carrier extension symbols are received.

3.5.7.1.7.2 100BASE-TX

For 100BASE-TX links, the PHY and its link partner immediately begin transmitting idle symbols. Each
side continues sending idle symbols each time it has no data to transmit. The link is maintained as long
as valid idle symbols or data is received.

In 100 Mb/s mode, the PHY establishes a link each time the scrambler becomes locked and remains
locked for approximately 50 ms. Link remains up unless the descrambler receives less than 12
consecutive idle symbols in any 2 ms period. This provides for a very robust operation, essentially
filtering out any small noise hits that might otherwise disrupt the link.

3.5.7.1.7.3 10BASE-T

For 10BASE-T links, the PHY and its link partner begin exchanging Normal Link Pulses (NLPs). The PHY
transmits an NLP every 16 ms and expects to receive one every 10 to 20 ms. The link is maintained as
long as normal link pulses are received.

In 10 Mb/s mode, the PHY establishes link based on the link state machine found in 802.3, clause 14.

Note: 100 Mb/s idle patterns do not bring up a 10 Mb/s link.

Interconnects—Ethernet Controller I211

77

3.5.7.2 SmartSpeed

SmartSpeed is an enhancement to auto-negotiation that enables the PHY to react intelligently to
network conditions that prohibit establishment of a 1000BASE-T link, such as cable problems. Such
problems might allow auto-negotiation to complete, but then inhibit completion of the training phase.
Normally, if a 1000BASE-T link fails, the PHY returns to the auto-negotiation state with the same speed
settings indefinitely. With SmartSpeed enabled by setting the Downshift Enable field (bit 11 - refer to
Section 8.22.3.15), after a configurable number of failed attempts, as configured in the Downshift
counter field (bits 14:12 - refer to Section 8.22.3.15) the PHY automatically downgrades the highest
ability it advertises to the next lower speed: from 1000 to 100 to 10 Mb/s. Once a link is established,
and if it is later broken, the PHY automatically upgrades the capabilities advertised to the original
setting. This enables the PHY to automatically recover once the cable plant is repaired.

3.5.7.2.1 Using SmartSpeed

When SmartSpeed downgrades the PHY advertised capabilities, it sets bit Downshift Status (bit 5 -
refer to Section 8.22.3.16). When link is established, its speed is indicated in the Speed field (bits
15:14 - refer to Section 8.22.3.16). SmartSpeed automatically resets the highest-level auto-
negotiation abilities advertised, if link is established and then lost.

Note: SmartSpeed and Master-Slave (M/S) fault - When SmartSpeed is enabled, the M/S number of
Attempts Before Downshift (ABD) is programmed to be less than 7, resolution is not given
seven attempts to try to resolve M/S status (see IEEE 802.3 clause 40.5.2).
Time To Link (TTL) with Smart Speed - in most cases, any attempt duration is approximately
2.5 seconds, in other cases it could take more than 2.5 seconds depending on configuration
and other factors.

3.5.7.3 Flow Control

Flow control is a function that is described in Clause 31 of the IEEE 802.3 standard. It enables
congested nodes to pause traffic. Flow control is essentially a MAC-to-MAC function. MACs indicate their
ability to implement flow control during auto-negotiation. This ability is communicated through two bits
in the auto-negotiation registers (PHYREG 0,4.10 and PHYREG 0,4.11).

The PHY transparently supports MAC-to-MAC advertisement of flow control through its auto-negotiation
process. Prior to auto-negotiation, the MAC indicates its flow control capabilities via PHYREG 0,4.10
(Pause) and PHYREG 0,4.11 (ASM_DIR). After auto-negotiation, the link partner's flow control
capabilities are indicated in PHYREG 0,5.10 and PHYREG 0,5.11.

There are two forms of flow control that can be established via auto-negotiation: symmetric and
asymmetric. Symmetric flow control is for point-to-point links; asymmetric for hub-to-end-node
connections. Symmetric flow control enables either node to flow-control the other. Asymmetric flow-
control enables a repeater or switch to flow-control a DTE, but not vice versa.

Table 3-22 lists the intended operation for the various settings of ASM_DIR and PAUSE. This
information is provided for reference only; it is the responsibility of the MAC to implement the correct
function. The PHY merely enables the two MACs to communicate their abilities to each other.

Table 3-22. Pause And Asymmetric Pause Settings

ASM_DIR Settings Local
(PHYREG 0,4.10) and
Remote (PHYREG 0,5.10)

Pause Setting -
Local (PHYREG
0,4.11)

Pause Setting -
Remote (PHYREG
0,5.11)

Result

Both ASM_DIR = 1b 1b 1b Symmetric - Either side can flow control the other.

1b 0b Asymmetric - Remote can flow control local only.

Ethernet Controller I211 —Interconnects

78

3.5.7.4 Management Data Interface

The PHY supports the IEEE 802.3 MII Management Interface also known as the Management Data
Input/Output (MDIO) Interface. This interface enables upper-layer devices to monitor and control the
state of the PHY. The MDIO interface consists of a physical connection, a specific protocol that runs
across the connection, and an internal set of addressable registers.

The PHY supports the core 16-bit MDIO registers. Registers 0-10 and 15 are required and their
functions are specified by the IEEE 802.3 specification. Additional registers are included for expanded
functionality. Specific bits in the registers are referenced using an PHY REG X.Y notation, where X is the
register number (0-31) and Y is the bit number (0-15).

3.5.7.5 Internal PHY Low Power Operation and Power Management

The internal PHY incorporates numerous features to maintain the lowest power possible.

The PHY can be entered into a low-power state according to MAC control (Power Management controls)
or via PHY Register 0. In either power down mode, the PHY is not capable of receiving or transmitting
packets.

3.5.7.5.1 Power Down via the PHY Register

The PHY can be powered down using the control bit found in PHYREG 0,0.11. This bit powers down a
significant portion of the port but clocks to the register section remain active. This enables the PHY
management interface to remain active during register power down. The power down bit is active high.
When the PHY exits software power-down (PHYREG 0,0.11 = 0b), it re-initializes all analog functions,
but retains its previous configuration settings.

3.5.7.5.2 Power Management State

The internal PHY is aware of the power management state. If the PHY is not in a power down state,
then PHY behavior regarding several features are different depending on the power state, refer to
Section 3.5.7.5.4.

3.5.7.5.3 Disable High Speed Power Saving Options

The I211 supports disabling 1000 Mb/s or both 1000 Mb/s and 100 Mb/s advertisement by the internal
PHY regardless of the values programmed in the PHY ANA Register (address - 4d) and the PHY GCON
Register (address - 9d).

This is for cases where the system doesn't support working in 1000 Mb/s or 100 Mb/s due to power
limitations.

This option is enabled in the following PHPM register bits:

• PHPM.Disable 1000 in non-D0a - disable 1000 Mb/s when in non-D0a states only.

0b 1b Asymmetric - Local can flow control remote.

0b 0b No flow control.

Either or both ASM_DIR = 0b 1b 1b Symmetric - Either side can flow control the other.

Either or both = 0b No flow control.

Table 3-22. Pause And Asymmetric Pause Settings

Interconnects—Ethernet Controller I211

79

• PHPM.Disable 100 in non-D0a - disable 1000 Mb/s and 100 Mb/s when in non-D0a states only.
• PHPM.Disable 1000 - disable 1000 Mb/s always.

Note: When Value of PHPM.Disable 1000 bit is changed, PHY initiates auto-negotiation without
direct driver command.

3.5.7.5.4 Low Power Link Up - Link Speed Control

Normal internal PHY speed negotiation drives to establish a link at the highest possible speed. The I211
supports an additional mode of operation, where the PHY drives to establish a link at a low speed. The
link-up process enables a link to come up at the lowest possible speed in cases where power is more
important than performance. Different behavior is defined for the D0 state and the other non-D0
states.

Table 3-23 lists link speed as function of power management state, link speed control, and GbE speed
enabling:

The internal PHY initiates auto-negotiation without a direct driver command in the following cases:

• When the PHPM.Disable 1000 in non-D0a bit is set and 1000 Mb/s is disabled on D3 or Dr entry
(but not in D0a), the PHY auto-negotiates on entry.

• When the PHPM.Disable 100 in non-D0a is set and 1000 Mb/s and 100 Mb/s are disabled on D3 or
Dr entry (but not in D0a), the PHY auto-negotiates on entry.

• When PHPM.LPLU changes state with a change in a power management state. For example, on
transition from D0a without PHPM.LPLU to D3 with PHPM.LPLU. Or, on transition from D3 with
PHPM.LPLU to D0 without LPLU.

• On a transition from D0a state to a non-D0a state, or from a non-D0a state to D0a state, and
PHPM.LPLU is set.

Table 3-23. Link Speed vs. Power State

Power
Management
State

Low
Power
Link Up
(PHPM.1,
PHPM.2)

GbE Disable Bits 100M Disable
Bit

PHY Speed Negotiation
Disable 1000
(PHPM.6)

Disable 1000
in non-D0a
(PHPM.3)

Disable 100
in non-D0a
(PHPM.9)

D0a

0, Xb
0b X X PHY negotiates to highest speed advertised

(normal operation).

1b X X PHY negotiates to highest speed advertised
(normal operation), excluding 1000 Mb/s.

1, Xb
0b X X PHY goes through Low Power Link Up (LPLU)

procedure, starting with advertised values.

1b X X PHY goes through LPLU procedure, starting with
advertised values. Does not advertise 1000 Mb/s.

Non-D0a

X, 0b

0b 0b 0b PHY negotiates to highest speed advertised.

0b 1b 0b PHY negotiates to highest speed advertised,
excluding 1000 Mb/s.1b X 0b

X X 1b PHY negotiates and advertises only 10 Mb/s

X, 1b

0b 0b 0b PHY goes through LPLU procedure, starting at 10
Mb/s.

0b 1b 0b PHY goes through LPLU procedure, starting at 10
Mb/s. Does not advertise 1000 Mb/s.

X X 1b PHY negotiates and advertises only 10 Mb/s

Ethernet Controller I211 —Interconnects

80

Notes:
• The Low-Power Link-Up (LPLU) feature previously described should be disabled (in both

D0a state and non-D0a states) when the intended advertisement is anything other than
10 Mb/s only, 10/100 Mb/s only, or 10/100/1000 Mb/s. This is to avoid reaching (through
the LPLU procedure) a link speed that is not advertised by the user.

• When the LAN PCIe function is disabled via the LAN_PCI_DIS bit in the Software Defined
Pins Control iNVM word, the relevant function is in a Non-D0a state. As a result,
management might operate with reduced link speed if the LPLU, Disable 1000 in Non-
D0a or Disable 100 in Non-D0a iNVM bits are set.

3.5.7.5.4.1 D0a State

A power-managed link speed control lowers link speed (and power) when highest link performance is
not required. When enabled (D0 Low Power Link Up mode), any link negotiation tries to establish a low-
link speed, starting with an initial advertisement defined by software.

The D0LPLU configuration bit enables D0 Low Power Link Up. Before enabling this feature, software
must advertise to one of the following speed combinations: 10 Mb/s only, 10/100 Mb/s only, or 10/100/
1000 Mb/s.

When speed negotiation starts, the PHY tries to negotiate at a speed based on the currently advertised
values. If link establishment fails, the PHY tries to negotiate with different speeds; it enables all speeds
up to the lowest speed supported by the partner. For example, PHY advertises 10 Mb/s only, and the
partner supports 1000 Mb/s only. After the first try fails, the PHY enables 10/100/1000 Mb/s and tries
again. The PHY continues to try and establish a link until it succeeds or until it is instructed otherwise.
In the second step (adjusting to partner speed), the PHY also enables parallel detect, if needed.
Automatic MDI/MDI-X resolution is done during the first auto-negotiation stage.

3.5.7.5.4.2 Non-D0a State

The PHY might negotiate to a low speed while in non-D0a states (Dr, D0u, D3). This applies only when
the link is required by one of the following: APM Wake or PME. Otherwise, the PHY is disabled during
the non-D0 state.

The Low Power on Link-Up (register PHPM.LPLU, is also loaded from iNVM) bit enables reduction in link
speed:

• At power-up entry to Dr state, the PHY advertises supports for 10 Mb/s only and goes through the
link up process.

• At any entry to a non-D0a state (Dr, D0u, D3), the PHY advertises support for 10 Mb/s only and
goes through the link up process.

• While in a non-D0 state, if auto-negotiation is required, the PHY advertises support for 10 Mb/s only
and goes through the link up process.

Link negotiation begins with the PHY trying to negotiate at 10 Mb/s speed only regardless of user auto-
negotiation advertisement. If link establishment fails, the PHY tries to negotiate at additional speeds; it
enables all speeds up to the lowest speed supported by the partner. For example, the PHY advertises
10 Mb/s only and the partner supports 1000 Mb/s only. After the first try fails, PHY enables 10/100/
1000 Mb/s and tries again. The PHY continues to try and establish a link until it succeeds or until it is
instructed otherwise. In the second step (adjusting to partner speed), the PHY also enables parallel
detect, if needed. Automatic MDI/MDI-X resolution is done during the first auto-negotiation stage.

3.5.7.5.5 Internal PHY Smart Power-Down (SPD)

Interconnects—Ethernet Controller I211

81

SPD is a link-disconnect capability applicable to all power management states. SPD combines a power
saving mechanism with the fact that the link might disappear and resume.

SPD is enabled by PHPM.SPD_EN or by SPD Enable bit in the iNVM if the following conditions are met:

1. Auto-negotiation is enabled.
2. PHY detects link loss.

While in SPD, the PHY powers down circuits and clocks that are not required for detection of link
activity. The PHY is still be able to detect link pulses (including parallel detect) and wake-up to engage
in link negotiation. The PHY does not send link pulses (NLP) while in SPD state; however, register
accesses are still possible.

When the internal PHY is in SPD and detects link activity, it re-negotiates link speed based on the power
state and the Low Power Link Up bits as defined by the PHPM.D0LPLU and PHPM.LPLU bits.

Note: The PHY does not enter SPD unless auto-negotiation is enabled.

While in SPD, the PHY powers down all circuits not required for detection of link activity. The PHY must
still be able to detect link pulses (including parallel detect) and wake up to engage in link negotiation.
The PHY does not send link pulses (NLP) while in SPD.

Notes: While in the link-disconnect state, the PHY must allow software access to its registers.
The link-disconnect state applies to all power management states (Dr, D0u, D0a, D3).
The link might change status, that is go up or go down, while in any of these states.

3.5.7.5.5.1 Internal PHY Back-to-Back SPD

While in link disconnect, the I211 monitors the link for link pulses to identify when a link is re-
connected. The I211 also periodically transmits pulses (every second) to resolve the case of two I211
devices (or devices with I211-like behavior) connected to each other across the link. Otherwise, two
such devices might be locked in SPD, not capable of identifying that a link was re-connected.

Back-to-back SPD is enabled by the SPD_B2B_EN bit in the PHPM register. The default value is enabled.
The Enable bit applies to SPD.

Note: This bit should not be altered by software once the I211 was set in SPD. If software requires
changing the back-to-back status, it first needs to transition the PHY out of SPD and only then
change the back-to-back bit to the required state.

3.5.7.5.6 Internal PHY Link Energy Detect

The I211 asserts the Link Energy Detect bit (PHPM.Link Energy Detect) each time energy is not
detected on the link. This bit provides an indication of a cable becoming plugged or unplugged.

This bit is valid only if PHPM.Go Link disconnect is set to 1b.

In order to correctly deduce that there is no energy, the bit must read 0b for three consecutive reads
each second.

3.5.7.5.7 Internal PHY Power-Down State

The I211 port enters a power-down state when the port’s clients are disabled and therefore the internal
PHY has no need to maintain a link. This can happen in one of the following cases:

Ethernet Controller I211 —Interconnects

82

1. D3/Dr state - Internal PHY enters a low-power state if the following conditions are met:
a. The LAN function is in a non-D0 state
b. APM WOL is inactive
c. ACPI PME is disabled for this port.
d. The Dynamic Device Off Enable iNVM bit is set (word 0x1E.14)
e. WUC.PPROXYE and MANC.MPROXYE bits are set to 1b

2. Device off mode - Internal PHY can be disabled if the DEV_OFF_N pin is asserted. The
PHY_in_LAN_Disable iNVM bit determines whether the PHY (and MAC) are powered down when the
DEV_OFF_N pin is asserted. The default is not to power down.

3.5.7.6 Advanced Diagnostics

The I211 integrated PHY incorporates hardware support for advanced diagnostics.

The hardware support enables output of internal PHY data to host memory for post processing by the
software device driver.

The current diagnostics supported are described in the sections that follow.

3.5.7.6.1 Time Domain Reflectometry (TDR)

By sending a pulse onto the twisted pair and observing the retuned signal, the following can be
deduced:

1. Is there a short?
2. Is there an open?
3. Is there an impedance mismatch?
4. What is the length to any of these faults?

3.5.7.6.2 Channel Frequency Response

By doing analysis on the Tx and Rx data, it can be established that a channel’s frequency response
(also known as insertion loss) can determine if the channel is within specification limits. (Clause
40.7.2.1 in IEEE 802.3).

3.5.7.7 1000 Mb/s Operation

3.5.7.7.1 Introduction

Figure 3-10 shows an overview of 1000BASE-T functions, followed by discussion and review of the
internal functional blocks.

Interconnects—Ethernet Controller I211

83

3.5.7.7.2 Transmit Functions

This section describes functions used when the MAC transmits data through the PHY and out onto the
twisted-pair connection (see Figure 3-10).

3.5.7.7.2.1 Scrambler

The scrambler randomizes the transmitted data. The purpose of scrambling is twofold:

1. Scrambling eliminates repeating data patterns (also known as spectral lines) from the 4DPAM5
waveform in order to reduce EMI.

2. Each channel (A, B, C, D) has a unique signature that the receiver uses for identification.

Figure 3-10. 1000BASE-T Functions Overview

Side - stream

Scram bler /

Descram bler

Trellis V iterbi

Encoder/ Decoder

8

8

4

4

M AC Interface

AGC, A/D,

Tim ing Recovery

4DPAM 5

Encoder

ECHO, NEXT,
FEXT

Cancellers

Line

Interface

Pulse Shaper,

DAC, Filter

Hybrid

Line Driver

DSP

Ethernet Controller I211 —Interconnects

84

The scrambler is driven by a 33-bit Linear Feedback Shift Register (LFSR), which is randomly loaded at
power up. The LFSR function used by the master differs from that used by the slave, giving each
direction its own unique signature. The LFSR, in turn, generates twelve mutually uncorrelated outputs.
Eight of these are used to randomize the inputs to the 4DPAM5 and Trellis encoders. The remaining four
outputs randomize the sign of the 4DPAM5 outputs.

3.5.7.7.2.2 Transmit FIFO

The transmit FIFO re-synchronizes data transmitted by the MAC to the transmit reference used by the
PHY. The FIFO is large enough to support a frequency differential of up to +/- 1000 ppm over a packet
size of 10 KB (jumbo frame).

3.5.7.7.2.3 Transmit Phase-Locked Loop PLL

This function generates the 125 MHz timing reference used by the PHY to transmit 4DPAM5 symbols.
When the PHY is the master side of the link, the XI input is the reference for the transmit PLL. When the
PHY is the slave side of the link, the recovered receive clock is the reference for the transmit PLL.

3.5.7.7.2.4 Trellis Encoder

The Trellis encoder uses the two high-order bits of data and its previous output to generate a ninth bit,
which determines if the next 4DPAM5 pattern should be even or odd.

For data, this function is:

Trellisn = Data7n-1 XOR Data6n-2 XOR Trellisn-3

This provides forward error correction and enhances the Signal-To-Noise (SNR) ratio by a factor of 6
dB.

3.5.7.7.2.5 4DPAM5 Encoder

The 4DPAM5 encoder translates 8-byte codes transmitted by the MAC into 4DPAM5 symbols. The
encoder operates at 125 MHz, which is both the frequency of the MAC interface and the baud rate used
by 1000BASE-T.

Each 8-byte code represents one of 28 or 256 data patterns. Each 4DPAM5 symbol consists of one of
five signal levels (-2,-1,0,1,2) on each of the four twisted pair (A,B,C,D) representing 54 or 625
possible patterns per baud period. Of these, 113 patterns are reserved for control codes, leaving 512
patterns for data. These data patterns are divided into two groups of 256 even and 256 odd data
patterns. Thus, each 8-byte octet has two possible 4DPAM5 representations: one even and one odd
pattern.

3.5.7.7.2.6 Spectral Shaper

This function causes the 4DPAM5 waveform to have a spectral signature that is very close to that of the
MLT3 waveform used by 100BASE-TX. This enables 1000BASE-T to take advantage of infrastructure
(cables, magnetics) designed for 100BASE-TX.

The shaper works by transmitting 75% of a 4DPAM5 code in the current baud period, and adding the
remaining 25% into the next baud period.

Interconnects—Ethernet Controller I211

85

3.5.7.7.2.7 Low-Pass Filter

To aid with EMI, this filter attenuates signal components more than 180 MHz. In 1000BASE-T, the
fundamental symbol rate is 125 MHz.

3.5.7.7.2.8 Line Driver

The line driver drives the 4DPAM5 waveforms onto the four twisted-pair channels (A, B, C, D), adding
them onto the waveforms that are simultaneously being received from the link partner.

Figure 3-11. 1000BASE-T Transmit Flow And Line Coding Scheme

Figure 3-12. Transmit/Receive Flow

Scrambler Polynomials:

1 + x 13 + x 33 (Master PHY Mode)

1 + x 20 + x 33 (Slave PHY Mode)

D0

D1

D2

D3

D4

D5

D6
D7

GMII

Scrambler Trellis PAM-5
Encoded Output

to 4-Pair UTP Line

8
PAM-5Encoder

9 4D

Ethernet Controller I211 —Interconnects

86

3.5.7.7.3 Receive Functions

This section describes function blocks that are used when the PHY receives data from the twisted pair
interface and passes it back to the MAC (see Figure 3-12).

3.5.7.7.3.1 Hybrid

The hybrid subtracts the transmitted signal from the input signal, enabling the use of simple 100BASE-
TX compatible magnetics.

3.5.7.7.3.2 Automatic Gain Control (AGC)

AGC normalizes the amplitude of the received signal, adjusting for the attenuation produced by the
cable.

3.5.7.7.3.3 Timing Recovery

This function re-generates a receive clock from the incoming data stream which is used to sample the
data. On the slave side of the link, this clock is also used to drive the transmitter.

3.5.7.7.3.4 Analog-to-Digital Converter (ADC)

The ADC function converts the incoming data stream from an analog waveform to digitized samples for
processing by the DSP core.

3.5.7.7.3.5 Digital Signal Processor (DSP)

DSP provides per-channel adaptive filtering, which eliminates various signal impairments including:

• Inter-symbol interference (equalization)
• Echo caused by impedance mismatch of the cable
• Near-end crosstalk (NEXT) between adjacent channels (A, B, C, D)
• Far-end crosstalk (FEXT)
• Propagation delay variations between channels of up to 120 ns
• Extraneous tones that have been coupled into the receive path

The adaptive filter coefficients are initially set during the training phase. They are continuously adjusted
(adaptive equalization) during operation through the decision-feedback loop.

3.5.7.7.3.6 Descrambler

The descrambler identifies each channel by its characteristic signature, removing the signature and re-
routing the channel internally. In this way, the receiver can correct for channel swaps and polarity
reversals. The descrambler uses the same base 33-bit LFSR used by the transmitter on the other side
of the link.

The descrambler automatically loads the seed value from the incoming stream of scrambled idle
symbols. The descrambler requires approximately 15 s to lock, normally accomplished during the
training phase.

Interconnects—Ethernet Controller I211

87

3.5.7.7.3.7 Viterbi Decoder/Decision Feedback Equalizer (DFE)

The Viterbi decoder generates clean 4DPAM5 symbols from the output of the DSP. The decoder includes
a Trellis encoder identical to the one used by the transmitter. The Viterbi decoder simultaneously looks
at the received data over several baud periods. For each baud period, it predicts whether the symbol
received should be even or odd, and compares that to the actual symbol received. The 4DPAM5 code is
organized in such a way that a single level error on any channel changes an even code to an odd one
and vice versa. In this way, the Viterbi decoder can detect single-level coding errors, effectively
improving the signal-to-noise (SNR) ratio by a factor of 6 dB. When an error occurs, this information is
quickly fed back into the equalizer to prevent future errors.

3.5.7.7.3.8 4DPAM5 Decoder

The 4DPAM5 decoder generates 8-byte data from the output of the Viterbi decoder.

3.5.7.7.3.9 100 Mb/s Operation

The MAC passes data to the PHY over the MII. The PHY encodes and scrambles the data, then transmits
it using MLT-3 for 100TX over copper. The PHY de-scrambles and decodes MLT-3 data received from
the network. When the MAC is not actively transmitting data, the PHY sends out idle symbols on the
line.

3.5.7.7.3.10 10 Mb/s Operation

The PHY operates as a standard 10 Mb/s transceiver. Data transmitted by the MAC as 4-bit nibbles is
serialized, Manchester-encoded, and transmitted on the MDI[0]+/- outputs. Received data is decoded,
de-serialized into 4-bit nibbles and passed to the MAC across the internal MII. The PHY supports all the
standard 10 Mb/s functions.

3.5.7.7.3.11 Link Test

In 10 Mb/s mode, the PHY always transmits link pulses. If link test function is enabled, it monitors the
connection for link pulses. Once it detects two to seven link pulses, data transmission are enabled and
remain enabled as long as the link pulses or data reception continues. If the link pulses stop, the data
transmission is disabled.

If the link test function is disabled, the PHY might transmit packets regardless of detected link pulses.
Setting the Port Configuration register bit (PHYREG 0,16.14) can disable the link test function.

3.5.7.7.3.12 10Base-T Link Failure Criteria and Override

Link failure occurs if link test is enabled and link pulses stop being received. If this condition occurs, the
PHY returns to the auto-negotiation phase, if auto-negotiation is enabled. Setting the Port Configuration
register bit (PHYREG 0,16.14) disables the link integrity test function, then the PHY transmits packets,
regardless of link status.

3.5.7.7.3.13 Jabber

If the MAC begins a transmission that exceeds the jabber timer, the PHY disables the transmit and
loopback functions and asserts collision indication to the MAC. The PHY automatically exits jabber mode
after 250-750 ms. This function can be disabled by setting bit PHYREG 0,16.10 = 1b.

Ethernet Controller I211 —Interconnects

88

3.5.7.7.3.14 Polarity Correction

The PHY automatically detects and corrects for the condition where the receive signal (MDI_PLUS[0]/
MDI_MINUS[0]) is inverted. Reversed polarity is detected if eight inverted link pulses or four inverted
end-of-frame markers are received consecutively. If link pulses or data are not received for 96-130 ms,
the polarity state is reset to a non-inverted state.

Automatic polarity correction can be disabled by setting bit PHYREG 0,16 bit 1.

3.5.7.7.3.15 Dribble Bits

The PHY handles dribble bits for all of its modes. If between one and four dribble bits are received, the
nibble is passed across the interface. The data passed across is padded with 1's if necessary. If
between five and seven dribble bits are received, the second nibble is not sent onto the internal MII bus
to the MAC. This ensures that dribble bits between 1-7 do not cause the MAC to discard the frame due
to a CRC error.

3.5.7.7.3.16 PHY Address

If the MDICNFG.Destination bit is cleared (internal PHY), MDIO access is always to the internal PHY.

Initialization—Ethernet Controller I211

89

4.0 Initialization

4.1 Power Up

4.1.1 Power-Up Sequence

Figure 4-1 shows the power-up sequence from power ramp up and to when the I211 is ready to accept
host commands.

Figure 4-1. Power-Up - General Flow

Vcc power on

LAN_PWR_GOOD reset

Load iNVM

Configure MAC and PHY

PE_RST_n reset

Initialize PCIe

Run Firmware
Dr mode

Platform
powered

?

No

Yes

D0 mode

Reset MAC

Hardware operation

Firmware operation

Ethernet Controller I211 —Initialization

90

4.1.2 Power-Up Timing Diagram

Figure 4-2. Power-Up Timing Diagram

4.2 Reset Operation
The I211 has a number of reset sources described in the sections that follow. After a reset, the software
device driver should verify that no errors were reported in the FWSM.Ext_Err_Ind (refer to
Section 8.6.2) field.

4.2.1 Reset Sources

The I211 reset sources are described in the sections that follow.

Table 4-1. Notes to Power-Up Timing Diagram

Note

1 Xosc is stable txog after the Power is stable

2 Internal Reset is released after all power supplies are good and tppg after Xosc is stable.

3 PE_RST# is de-asserted tPVPGL after power is stable (according to PCIe specification).

4 The PCIe reference clock is valid tPE_RST-CLK before the de-assertion of PE_RST# (according to PCIe specification).

5 An iNVM read starts on the rising edge of the internal Reset or LAN_PWR_GOOD.

6 After reading the iNVM, the PHY might exit power down mode.

7 De-assertion of PE_RST# causes the iNVM to be re-read, asserts PHY power-down and disables Wake Up.

8 After reading the iNVM, the PHY exits power-down mode.

9 Link training starts after tpgtrn from PE_RST# de-assertion.

10 A first PCIe configuration access might arrive after tpgcfg from PE_RST# de-assertion.

11 A first PCI configuration response can be sent after tpgres from PE_RST# de-assertion

12 Writing a 1b to the Memory Access Enable bit in the PCI Command Register transitions the device from D0u to D0 state.

D‐State D0u

iNVM Load

D0a

PHY State

PCIe Link Up L0

6

3

Dr

7

8

9

5

Power

Power‐On‐Reset
(Internal)

2

PCIe
Reference Clock

PERST#

Xosc

1

4

txog

tee tee

10 11

tpgtrn

12

tpgrestpgcfg

tPWRGD‐CLK

tPVPGL

tppg

Auto
Read

Ext.
Conf.

Auto
Read

Ext.
Conf.

nwoD/evitcAnwod‐derewoP

Initialization—Ethernet Controller I211

91

4.2.1.1 LAN_PWR_GOOD

The I211 has an internal mechanism for sensing the power pins. Once power is up and stable, the I211
creates an internal reset. This reset acts as a master reset of the entire chip. It is level sensitive, and
while it is zero holds all of the registers in reset. LAN_PWR_GOOD is interpreted to be an indication that
device power supplies are all stable. Note that LAN_PWR_GOOD changes state during system power-
up.

4.2.1.2 PE_RST_N

De-asserting PE_RST_N indicates that both the power and the PCIe clock sources are stable. This pin
asserts an internal reset also after a D3cold exit. Most units are reset on the rising edge of PE_RST_N.
The only exception is the PCIe unit, which is kept in reset while PE_RST_N is asserted (level).

4.2.1.3 In-Band PCIe Reset

The I211 generates an internal reset in response to a physical layer message from the PCIe or when
the PCIe link goes down (entry to polling or detect state). This reset is equivalent to PCI reset in
previous (PCI) GbE LAN controllers.

4.2.1.4 D3hot to D0 Transition

This is also known as ACPI reset. The I211 generates an internal reset on the transition from D3hot
power state to D0 (caused after configuration writes from D3 to D0 power state).

When the PMCSR.No_Soft_Reset bit in the configuration space is set, on transition from D3hot to D0
the I211 resets internal CSRs (similar to CTRL.RST assertion) but doesn’t reset registers in the PCIe
configuration space. If the PMCSR.No_Soft_Reset bit is cleared, the I211 resets all per-function
registers except for registers defined as sticky in the configuration space.

Note: Regardless of the value of the PMCSR.No_Soft_Reset bit, the function is reset (including bits
that are not defined as sticky in PCIe configuration space) if the link state has transitioned to
the L2/L3 ready state, on transition from D3cold to D0, if Function Level Reset (FLR) is
asserted or if transition D3hot to D0 is caused by asserting the PCIe reset (PE_RST pin).

Note: Software device drivers should implement the handshake mechanism defined in
Section 5.2.3.3 to verify that all pending PCIe completions finish, before moving the I211 to
D3.

4.2.1.5 FLR

A FLR function reset is issued by setting bit 15 in the Device Control configuration register (refer to
Section 9.4.5.5), which is equivalent to a D0  D3  D0 transition. The only difference is that this reset
does not require software device driver intervention in order to stop the master transactions of this
function.

A FLR reset to a function resets all the queues, interrupts, and statistics registers attached to the
function. It also resets PCIe read/write configuration bits as well as disables transmit and receive flows
for the queues allocated to the function. All pending read requests are dropped and PCIe read
completions to the function might be completed as unexpected completions and silently discarded
(following update of flow control credits) without logging or signaling as an error.

Ethernet Controller I211 —Initialization

92

Note: If software initiates a FLR when the Transactions Pending bit in the Device Status
configuration register is set to 1b (refer to Section 9.4.5.6), then software must not initialize
the function until allowing time for any associated completions to arrive. The Transactions
Pending bit is cleared upon completion of the FLR.

4.3 Software Reset

4.3.1 Software Reset (RST)

Software can reset the I211 by setting the Software Reset (CTRL.RST) bit in the Device Control
register. Following reset, the PCI configuration space (configuration and mapping) of the device is
unaffected. Prior to issuing a software reset the software device driver needs to operate the master
disable algorithm as defined in Section 5.2.3.3.

The CTRL.RST bit is provided primarily to recover from an indeterminate or suspected port hung
hardware state. Most registers (receive, transmit, interrupt, statistics, etc.) and state machines in the
port are set to their power-on reset values, approximating the state following a power-on or PCIe reset
(refer to Table 4-3 for further information on affects of software reset). However, PCIe configuration
registers and DMA logic is not reset, leaving the device mapped into system memory space and
accessible by a software device driver.

Note: To ensure that a software reset fully completed and that the I211 responds correctly to
subsequent accesses after setting the CTRL.RST bit, the software device driver should wait at
least 3 ms before accessing any register and then verify that EEC.Auto_RD is set to 1b and
that the STATUS.PF_RST_DONE bit is set to 1b.

4.3.1.1 Bus Master Enable (BME)

Disabling bus master activity of a function by clearing the Configuration Command register.BME bit to
0b, resets all DMA activities and MSI/MSIx operations related to the port. The master disable resets
only the DMA activities related to this function without affecting activity of other functions or LAN
ports.A Master Disable resets all the queues and DMA related interrupts. It also disables the transmit
and receive flows. All pending read requests are dropped and PCIe read completions to this function
might be completed as unexpected completions and silently discarded (following update of flow control
credits) without logging or signaling it as an error.

Note: Prior to issuing a master disable the software device driver needs to implement the master
disable algorithm as defined in Section 5.2.3.3. After Master Enable is set back to 1b,the
software device driver should re-initialize the transmit and receive queues.

4.3.1.2 PHY Reset

Software can write a 1b to the PHY Reset bit of the Device Control Register (CTRL.PHY_RST) to reset
the internal PHY. The PHY is internally configured after a PHY reset.

Note: The internal PHY should not be reset using PHYREG 0,0 bit 15 (Copper Control
Register.Copper Reset), since in this case, the internal PHY configuration process is bypassed
and there is no guarantee the PHY operates correctly.

Because the PHY can be accessed by the internal firmware and software device driver software, the
software device driver software should coordinate any PHY reset with the firmware using the following
procedure:

1. Take ownership of the PHY using the following flow:

Initialization—Ethernet Controller I211

93

a. Get ownership of the software/firmware semaphore SWSM.SWESMBI bit (offset 0x5B50 bit 1):
• Set the SWSM.SWESMBI bit.
• Read SWSM.
• If SWSM.SWESMBI was successfully set (semaphore was acquired); otherwise, go back to

step a.
• This step assures that the internal firmware does not access the shared resources register

(SW_FW_SYNC).
b. Software reads the Software-Firmware Synchronization Register (SW_FW_SYNC) and checks the

bit that controls the PHY it wants to own.
• If the bit is set (firmware owns the PHY), software tries again later.

c. Release ownership of the software/firmware semaphore by clearing the SWSM.SWESMBI bit.
2. Drive the PHY reset bit in CTRL bit 31.
3. Wait 100 s.
4. Release PHY reset in CTRL bit 31.
5. Release ownership of the relevant PHY to firmware using the following flow:

a. Get ownership of the software/firmware semaphore SWSM.SWESMBI (offset 0x5B50 bit 1):
• Set the SWSM.SWESMBI bit.
• Read SWSM.
• If SWSM.SWESMBI was successfully set (semaphore was acquired); otherwise, go back to

step a.
• Clear the bit in SW_FW_SYNC that control the software ownership of the resource to

indicate this resource is free.
• Release ownership of the software/firmware semaphore by clearing the SWSM.SWESMBI

bit.
6. Wait for the CFG_DONE bit (EEMNGCTL.CFG_DONE0).
7. Take ownership of the relevant PHY using the following flow:

a. Get ownership of the software/firmware semaphore SWSM.SWESMBI (offset 0x5B50 bit 1):
• Set the SWSM.SWESMBI bit.
• Read SWSM.
• If SWSM.SWESMBI was successfully set (semaphore was acquired); otherwise, go back to

step a.
• This step assures that the internal firmware does not access the shared resources register

(SW_FW_SYNC).
b. Software reads the Software-Firmware Synchronization Register (SW_FW_SYNC) and checks the

bit that controls the PHY it wants to own.
• If the bit is set (firmware owns the PHY), software tries again later.

c. Release ownership of the software/firmware semaphore by clearing SWSM.SWESMBI bit.
8. Configure the PHY.
9. Release ownership of the relevant PHY using the flow described in Section 4.6.2.

Note: Software PHY ownership should not exceed 100 ms. If software takes PHY ownership for a
longer duration, firmware might implement a timeout mechanism and take ownership of the
PHY.

Ethernet Controller I211 —Initialization

94

4.3.2 Registers and Logic Reset Affects

The resets affect the following registers and logic:

Table 4-2. I211 Reset Affects - Common Resets

Reset Activation LAN_PWR_
GOOD

PE_
RST_N Reserved

In-Band
PCIe
Reset

FW Reset Notes

LTSSM (PCIe Back to Detect/
Polling) X X X

PCIe Link Data Path X X X

PCI Configuration Registers -
Non Sticky X X 14.

PCI Configuration Registers -
Sticky X X X

PCIe Local Registers X X X 3.

Data Path X X X 4.

On-die Memories X X X 5.

MAC, PCS, Auto Negotiation and
Other Port Related Logic X X X

DMA X X X X

Functions Queue Enable X X X X 14.

Function Interrupt and Statistics
Registers X X X

Wake Up (PM) Context X Notes: X

Wake Up Control Register X X

Wake Up Status Registers X 7.

MMS Unit X 9.

Wake-Up Management Registers X X 10.

Memory Configuration Registers X X X

Strapping Pins X X 12.

Table 4-3. I211 Reset Affects - Per Function Resets

Reset Activation D3hotD0 FLR
Port SW

Reset
(CTRL.RST)

EE
Reset

PHY
Reset Notes

PCI Configuration Registers Read Only 3.

PCI Configuration Registers MSI-X X X 6.

PCI Configuration Registers Read/Write

PCIe Local Registers 5.

Data Path X X X

On-die Memories X X X 11.

MAC, PCS, Auto Negotiation and Other
Port Related Logic X X X

DMA X X 13.

Wake Up (PM) Context 7.

Wake Up Control Register 8.

Wake Up Status Registers 9.

Initialization—Ethernet Controller I211

95

Notes:
1. If AUX_POWER = 0b the Wakeup Context is reset (PME_Status and PME_En bits should be 0b at

reset if the I211 does not support PME from D3cold).
2. The MMS unit must configure the PHY after any PHY reset.
3. The following register fields do not follow the general rules previously described:

a. CTRL.SDP0_IODIR, CTRL.SDP1_IODIR, CTRL_EXT.SDP2_IODIR, CTRL_EXT.SDP3_IODIR,
CONNSW.ENRGSRC field, CTRL_EXT.SFP_Enable, CTRL_EXT.LINK_MODE, CTRL_EXT.EXT_VLAN
and LED configuration registers are reset on LAN_PWR_GOOD only. Any Flash read resets these
fields to the values in the Flash.

b. The Aux Power Detected bit in the PCIe Device Status register is reset on LAN_PWR_GOOD and
PE_RST_N (PCIe reset) assertion only.

c. FLA - reset on LAN_PWR_GOOD only.
d. The bits mentioned in the next note.

4. The following registers are part of this group:
e. Max payload size field in PCIe Capability Control register (offset 0xA8).
f. Active State Link PM Control field, Common Clock Configuration field and Extended Synch field

in PCIe Capability Link Control register (Offset 0xB0).
g. Read Completion Boundary in the PCIe Link Control register (Offset 0xB0).

5. The following registers are part of this group:
a. SWSM
b. GCR (only part of the bits - see register description for details)
c. FUNCTAG
d. GSCL_1/2/3/4
e. GSCN_0/1/2/3
f. SW_FW_SYNC - only part of the bits - see register description for details.

6. The following registers are part of this group:
a. MSIX control register, MSIX PBA and MSIX per vector mask.

7. The Wake Up Context is defined in the PCI Bus Power Management Interface Specification (sticky
bits). It includes:
— PME_En bit of the Power Management Control/Status Register (PMCSR).
— PME_Status bit of the Power Management Control/Status Register (PMCSR).
— Aux_En in the PCIe registers
— The device Requester ID (since it is required for the PM_PME TLP).

Function Queue Enable X X X

Function Interrupt and Statistics
Registers X X X

Memory Configuration Registers X X X 3.

Strapping Pins

Table 4-3. I211 Reset Affects - Per Function Resets (Continued)

Reset Activation D3hotD0 FLR
Port SW

Reset
(CTRL.RST)

EE
Reset

PHY
Reset Notes

Ethernet Controller I211 —Initialization

96

The shadow copies of these bits in the Wakeup Control register are treated identically.
8. Refers to bits in the Wake Up Control register that are not part of the Wake-Up Context (the

PME_En and PME_Status bits).
9. The Wake Up Status registers include the following:

a. Wake Up Status register
b. Wake Up Packet Length.
c. Wake Up Packet Memory.

10. The other configuration registers include:
a. General Registers
b. Interrupt Registers
c. Receive Registers
d. Transmit Registers
e. Statistics Registers
f. Diagnostic Registers

Of these registers, MTA[n], VFTA[n], WUPM[n], FTFT[n], FHFT[n], FHFT_EXT[n], TDBAH/TDBAL, and
RDBAH/RDVAL registers have no default value. If the functions associated with the registers are
enabled, they must be programmed by software. Once programmed, their value is preserved through
all resets as long as power is applied to the I211.

Note: In situations where the device is reset using the software reset CTRL.RST or CTRL.DEV_RST,
the transmit data lines are forced to all zeros. This causes a substantial number of symbol
errors detected by the link partner. In TBI mode, if the duration is long enough, the link
partner might restart the auto-negotiation process by sending break-link (/C/ codes with the
configuration register value set to all zeros).

11. The contents of the following memories are cleared to support the requirements of PCIe FLR:
a. The Tx packet buffers
b. The Rx packet buffers

12. Includes EEC.REQ, EEC.GNT, FLA.REQ and FLA.GNT fields.
13. The following DMA registers are cleared only by LAN_PWR_GOOD, PCIe Reset or CTRL.DEV_RST:

DMCTLX, DTPARS, DRPARS and DDPARS.
14. CTRL.DEV_RST assertion causes read of function related sections.

4.4 Device and Function Disable

4.4.1 General

For a LAN on Motherboard (LOM) design, it might be desirable for the system to provide BIOS-setup
capability for selectively enabling or disabling LAN functions. It enables the end-user more control over
system resource-management and avoid conflicts with add-in NIC solutions. The I211 provides support
for selectively enabling or disabling one or more LAN device(s) in the system.

Device presence (or non-presence) must be established early during BIOS execution, in order to ensure
that BIOS resource-allocation (of interrupts, of memory or I/O regions) is done according to devices
that are present only. This is frequently accomplished using a BIOS Configuration Values Driven on
Reset (CVDR) mechanism. The I211 LAN-disable mechanism is implemented in order to be compatible
with such a solution.

Initialization—Ethernet Controller I211

97

Note: Any references to NVM settings in this section must be replaced by iNVM settings for the I211
(NVM-less version of the I210). Refer to Section 3.2.

4.4.2 Disabling Both LAN Port and PCIe Function (Device Off)

The I211 provides a mechanism to disable its LAN port and the PCIe function. When DEV_OFF_N is
asserted (driven low).

For a LOM design, it might be desirable for the system to provide BIOS-setup capability for selectively
enabling or disabling LOM devices. This might allow the end-user more control over system resource-
management; avoid conflicts with add-in NIC solutions, etc. The I211 provides support for selectively
enabling or disabling it.

While in device disable mode, the PCIe link is in L3 state. The PHY is in power down mode. Output
buffers are tri-stated.

Asserting or deasserting PCIe PE_RST_N does not have any affect while the device is in device disable
mode (the device stays in the respective mode as long as the right settings on DEV_OFF_N). However,
the device might momentarily exit the device disable mode from the time PCIe PE_RST_N is de-
asserted again and until the Flash is read.

During power-up, the input pin DEV_OFF_N is ignored until the Flash is read. From that point, the
device might enter device disable according to the Flash settings.

4.4.3 BIOS Handling of Device Disable

4.4.3.1 Sequence for Entering the (Static) Device Off State
1. BIOS recognizes that the entire device should be disabled. The Device Off Enable Flash bit in word

0x1E should be set to 1b.
a. In order to shut down the PHY together with the rest of the device, the PHY_in_LAN_Disable

Flash bit (refer to Section 6.2.19) should be set to 1b.
2. BIOS asserts the DEV_OFF_N pin (device is on and not in PCIe reset).
3. BIOS issues a PCIe reset
4. PCIe reset sequence ends while the device is already in off state (minimum PCIe reset duration is

100 s).
5. The BIOS places the Link in the Electrical IDLE state (at the other end of the PCIe link) by clearing

the LINK Disable bit in the Link Control register.
6. BIOS might start with the device enumeration procedure (the I211 device function is now invisible).
7. Proceed with normal operation.

4.4.3.2 Sequence for Returning from the (Static) Device Off State
1. Device is in its off state.
2. BIOS de-asserts the DEV_OFF_N pin (while device is off but not while in PCIe reset)
3. BIOS issues a PCIe reset.
4. PCIe reset sequence ends while the device is already in on state (PCIe interface must be operative

within 100 ms).
5. BIOS might start with the device enumeration procedure (the I211 device function is now visible).

Ethernet Controller I211 —Initialization

98

6. Proceed with normal operation.

4.5 Software Initialization and Diagnostics

4.5.1 Introduction

This section discusses general software notes for the I211, especially initialization steps. This includes
general hardware, power-up state, basic device configuration, initialization of transmit and receive
operation, link configuration, software reset capability, statistics, and diagnostic hints.

4.5.2 Power Up State

The power-up sequence, as well as transitions between power states, are described in Section 4.1.1.
The detailed timing is given in Section 5.5. The next section gives more details on configuration
requirements.

4.5.3 Initialization Sequence

The following sequence of commands is typically issued to the device by the software device driver in
order to initialize the I211 to normal operation. The major initialization steps are:

• Disable Interrupts - see Interrupts during initialization.
• Issue Global Reset and perform General Configuration - see Global Reset and General

Configuration.
• Setup the PHY and the link - see Link Setup Mechanisms and Control/Status Bit Summary.
• Initialize all statistical counters - refer to Section 4.5.8.
• Initialize Receive - refer to Section 4.5.9.
• Initialize Transmit - refer to Section 4.5.10.
• Enable Interrupts - refer to Section 4.5.4.

4.5.4 Interrupts During Initialization
• Most drivers disable interrupts during initialization to prevent re-entering the interrupt routine.

Interrupts are disabled by writing to the Extended Interrupt Mask Clear (EIMC) register. Note that
the interrupts need to be disabled also after issuing a global reset, so a typical driver initialization
flow is:

• Disable interrupts
• Issue a Global Reset
• Disable interrupts (again)
• …

After initialization completes, a typical software device driver enables the desired interrupts by writing
to the Extended Interrupt Mask Set (EIMS) register.

4.5.5 Global Reset and General Configuration

Device initialization typically starts with a global reset that places the device into a known state and
enables the software device driver to continue the initialization sequence.

Initialization—Ethernet Controller I211

99

Several values in the Device Control (CTRL) register need to be set, upon power up, or after a device
reset for normal operation.

• The FD bit should be set per interface negotiation (if done in software), or is set by the hardware if
the interface is auto-negotiating. This is reflected in the Device Status Register in the auto-
negotiation case.

• Speed is determined via auto-negotiation by the PHY or forced by software if the link is forced.
Status information for speed is also readable in the STATUS register.

• The ILOS bit should normally be set to 0b.

4.5.6 Flow Control Setup

If flow control is enabled, program the FCRTL0, FCRTH0, FCTTV and FCRTV registers. In order to avoid
packet losses, FCRTH should be set to a value equal to at least two maximum size packets below the
receive buffer size (assuming a packet buffer size of 36 KB and the expected maximum size packet of
9.5 KB), the FCRTH0 value should be set to 36 - 2 * 9.5 = 17KB.For example, FCRTH0.RTH should be
set to 0x440.

The receive buffer size is controlled by RXPBSIZE.Rxpbsize register field. Refer to Section 4.5.9 for its
setting rules.

If DMA coalescing is enabled, to avoid packet loss, the FCRTC.RTH_Coal field should also be
programmed to a value equal to at least a single maximum packet size below the receive buffer size (a
value equal or less than FCRTH0.RTH + max size packet).

4.5.7 Link Setup Mechanisms and Control/Status Bit Summary

The CTRL_EXT.LINK_MODE value should be set to the desired mode prior to the setting of the other
fields in the link setup procedures.

4.5.7.1 PHY Initialization

Refer to the PHY documentation for the initialization and link setup steps. The software device driver
uses the MDIC register to initialize the PHY and setup the link. Section 3.5.3.1 describes the link setup
for the internal copper PHY. Section 3.5.2.2 Section describes the usage of the MDIC register.

4.5.7.2 MAC/PHY Link Setup (CTRL_EXT.LINK_MODE = 00b)

This section summarizes the various means of establishing proper MAC/PHY link setups, differences in
MAC CTRL register settings for each mechanism, and the relevant MAC status bits. The methods are
ordered in terms of preference (the first mechanism being the most preferred).

4.5.7.2.1 MAC Settings Automatically Based on Duplex and Speed Resolved by PHY
(CTRL.FRCDPLX = 0b, CTRL.FRCSPD = 0b,)

CTRL.FD Don't care; duplex setting is established from PHY's internal indication to the
MAC (FDX) after PHY has auto-negotiated a successful link-up.

CTRL.SLU Must be set to 1b by software to enable communications between MAC and PHY.

CTRL.RFCE Must be programmed by software after reading capabilities from PHY registers
and resolving the desired flow control setting.

Ethernet Controller I211 —Initialization

100

CTRL.TFCE Must be programmed by software after reading capabilities from PHY registers
and resolving the desired flow control setting.

CTRL.SPEED Don't care; speed setting is established from PHY's internal indication to the MAC
(SPD_IND) after PHY has auto-negotiated a successful link-up.

STATUS.FD Reflects the actual duplex setting (FDX) negotiated by the PHY and indicated to
MAC.

STATUS.LU Reflects link indication (LINK) from PHY qualified with CTRL.SLU (set to 1b).

STATUS.SPEED Reflects actual speed setting negotiated by the PHY and indicated to the MAC
(SPD_IND).

4.5.7.2.2 MAC Duplex and Speed Settings Forced by Software Based on Resolution of PHY
(CTRL.FRCDPLX = 1b, CTRL.FRCSPD = 1b)

CTRL.FD Set by software based on reading PHY status register after PHY has auto-
negotiated a successful link-up.

CTRL.SLU Must be set to 1b by software to enable communications between MAC and PHY.

CTRL.RFCE Must be programmed by software after reading capabilities from PHY registers
and resolving the desired flow control setting.

CTRL.TFCE Must be programmed by software after reading capabilities from PHY registers
and resolving the desired flow control setting.

CTRL.SPEED Set by software based on reading PHY status register after PHY has auto-
negotiated a successful link-up.

STATUS.FD Reflects the MAC forced duplex setting written to CTRL.FD.

STATUS.LU Reflects link indication (LINK) from PHY qualified with CTRL.SLU (set to 1b).

STATUS.SPEED Reflects MAC forced speed setting written in CTRL.SPEED.

4.5.7.2.3 MAC/PHY Duplex and Speed Settings Both Forced by Software (Fully-Forced
Link Setup) (CTRL.FRCDPLX = 1b, CTRL.FRCSPD = 1b, CTRL.SLU = 1b)

CTRL.FD Set by software to desired full/half duplex operation (must match duplex setting
of PHY).

CTRL.SLU Must be set to 1b by software to enable communications between MAC and PHY.
PHY must also be forced/configured to indicate positive link indication (LINK) to
the MAC.

CTRL.RFCE Must be programmed by software to desired flow-control operation (must match
flow-control settings of PHY).

CTRL.TFCE Must be programmed by software to desired flow-control operation (must match
flow-control settings of PHY).

CTRL.SPEED Set by software to desired link speed (must match speed setting of PHY).

STATUS.FD Reflects the MAC duplex setting written by software to CTRL.FD.

STATUS.LU Reflects 1b (positive link indication LINK from PHY qualified with CTRL.SLU).
Note that since both CTRL.SLU and the PHY link indication LINK are forced, this
bit set does not guarantee that operation of the link has been truly established.

STATUS.SPEED Reflects MAC forced speed setting written in CTRL.SPEED.

Initialization—Ethernet Controller I211

101

4.5.8 CTRL.FRCSPD = 0b; CTRL.FRCDPLX = 0bCTRL.FRCSPD = 1b; CTRL.FRCDPLX =
1bInitialization of Statistics

Statistics registers are hardware-initialized to values as detailed in each particular register's
description. The initialization of these registers begins upon transition to D0active power state (when
internal registers become accessible, as enabled by setting the Memory Access Enable bit of the PCIe
Command register), and is guaranteed to be completed within 1 s of this transition. Access to
statistics registers prior to this interval might return indeterminate values.

All of the statistical counters are cleared on read and a typical device driver reads them (thus making
them zero) as a part of the initialization sequence.

4.5.9 Receive Initialization

Program the receive address register(s) per the station address.

Set up the Multicast Table Array (MTA) by software. This means zeroing all entries initially and adding
in entries as requested.

Program the RXPBSIZE register so that the total size formed by the receive packet buffer plus the
transmit packet buffer(s) does not exceed 60 KB:

RXPBSIZE.Rxpbsize + TXPBSIZE.Txpbsize + TXPBSIZE.Txpb1size + TXPBSIZE.Txpb2size +
TXPBSIZE.Txpb3size <= 60 KB

Program RCTL with appropriate values. If initializing it at this stage, it is best to leave the receive logic
disabled (RCTL.RXEN = 0b) until after the receive descriptor rings have been initialized. If VLANs are
not used, software should clear VFE. Then there is no need to initialize the VFTA. Select the receive
descriptor type.

The following should be done once per receive queue needed:

1. Allocate a region of memory for the receive descriptor list.
2. Receive buffers of appropriate size should be allocated and pointers to these buffers should be

stored in the descriptor ring.
3. Program the descriptor base address with the address of the region.
4. Set the length register to the size of the descriptor ring.
5. Program SRRCTL of the queue according to the size of the buffers, the required header handling

and the drop policy.
6. If header split or header replication is required for this queue, program the PSRTYPE register

according to the required headers.
7. Enable the queue by setting RXDCTL.ENABLE. In the case of queue zero, the enable bit is set by

default - so the ring parameters should be set before RCTL.RXEN is set.
8. Poll the RXDCTL register until the ENABLE bit is set. The tail should not be bumped before this bit

was read as one.
9. Program the direction of packets to this queue according to the mode selected in the MRQC register.

Packets directed to a disabled queue are dropped.

Note: The tail register of the queue (RDT[n]) should not be bumped until the queue is enabled.

Ethernet Controller I211 —Initialization

102

4.5.9.1 Initialize the Receive Control Register

To properly receive packets the receiver should be enabled by setting RCTL.RXEN. This should be done
only after all other setup is accomplished. If software uses the Receive Descriptor Minimum Threshold
Interrupt, that value should be set.

4.5.9.2 Dynamic Enabling and Disabling of Receive Queues

Receive queues can be dynamically enabled or disabled given the following procedure is followed:

Enabling a queue:

• Follow the per queue initialization sequence described in Section 4.5.9.

Note: If there are still packets in the packet buffer assigned to this queue according to previous
settings, they are received after the queue is re-enabled. In order to avoid this condition, the
software might poll the PBWAC register. Once a an empty condition of the relevant packet
buffer is detected or two wrap around occurrences are detected the queue can be re-enabled.

Disabling a Queue:

1. Disable the packet assignments to this queue.
2. Poll the PBWAC register until an empty condition of the relevant packet buffer is detected or two

wrap around occurrences are detected.
3. Disable the queue by clearing RXDCTL.ENABLE. The I211 stops fetching and writing back

descriptors from this queue immediately. The I211 eventually completes the storage of one buffer
allocated to this queue. Any further packet directed to this queue is dropped. If the currently
processed packet is spread over more than one buffer, all subsequent buffers are not written.

4. The I211 clears RXDCTL.ENABLE only after all pending memory accesses to the descriptor ring or to
the buffers are done. The software device driver should poll this bit before releasing the memory
allocated to this queue.

Note: The Rx path can be disabled only after all Rx queues are disabled.

4.5.10 Transmit Initialization
• Program the TCTL register according to the MAC behavior needed.
• Program the TXPBSIZE register so any transmit buffer that is in use is at least greater to twice the

maximum packet size that might be stored in it. In addition, comply to the setting rules defined in
Section 4.5.9.

If operation in half duplex mode is expected, program the TCTL_EXT.COLD field. For internal PHY mode
the default value of 0x42 is acceptable. A suggested value for a typical PHY is 0x46 for 10 Mbps and
0x4C for 100 Mb/s.

The following should be done once per transmit queue:

• Allocate a region of memory for the transmit descriptor list.
• Program the descriptor base address with the address of the region.
• Set the length register to the size of the descriptor ring.
• Program the TXDCTL register with the desired Tx descriptor write back policy. Suggested values

are:
— WTHRESH = 1b
— All other fields 0b.

Initialization—Ethernet Controller I211

103

• If needed, set TDWBAL/TWDBAH to enable head write back.
• Enable the queue using TXDCTL.ENABLE (queue zero is enabled by default).
• Poll the TXDCTL register until the ENABLE bit is set.

Note: The tail register of the queue (TDT[n]) should not be bumped until the queue is enabled.

Enable transmit path by setting TCTL.EN. This should be done only after all other settings are done.

4.5.10.1 Dynamic Queue Enabling and Disabling

Transmit queues can be dynamically enabled or disabled given the following procedure is followed:

Enabling:

• Follow the per queue initialization described in the previous section.

Disabling:

• Stop storing packets for transmission in this queue.
• Wait until the head of the queue (TDH) is equal to the tail (TDT); the queue is empty.
• Disable the queue by clearing TXDCTL.ENABLE.

The Tx path might be disabled only after all Tx queues are disabled.

The I211 supports replacing the MAC address with a BIOS CLP interface.

4.6 Access to Shared Resources
Part of the resources in the I211 are shared between several software entities - namely the driver and
the internal firmware. In order to avoid contentions, a software device driver that needs to access one
of these resources should use the flow described in Section 4.6.1 in order to acquire ownership of this
resource and use the flow described in Section 4.6.2 in order to relinquish ownership of this resource.

The shared resources are:

5. The CSRs accessed by the internal firmware after the initialization process. Currently there are no
such CSRs.

6. SVR/LVR control registers.
7. I2C register set

Note: Any other software tool that accesses the register set directly should also follow the flow
described in the sections that follow.

4.6.1 Acquiring Ownership Over a Shared Resource

The following flow should be used to acquire a shared resource:

1. Get ownership of the software/software semaphore SWSM.SMBI (offset 0x5B50 bit 0).
a. Read the SWSM register.
b. If SWSM.SMBI is read as zero, the semaphore was taken.

Ethernet Controller I211 —Initialization

104

c. Otherwise, go back to step a.

This step assures that other software will not access the shared resources register
(SW_FW_SYNC).

2. Get ownership of the software/firmware semaphore SWSM.SWESMBI (offset 0x5B50 bit 1):
a. Set the SWSM.SWESMBI bit.
b. Read SWSM.
c. If SWSM.SWESMBI was successfully set - the semaphore was acquired - otherwise, go back to

step a.

This step assures that the internal firmware will not access the shared resources register
(SW_FW_SYNC).

3. Software reads the Software-Firmware Synchronization Register (SW_FW_SYNC) and checks both
bits in the pair of bits that control the resource it wants to own.
a. If both bits are cleared (both firmware and other software does not own the resource), software

sets the software bit in the pair of bits that control the resource it wants to own.
b. If one of the bits is set (firmware or other software owns the resource), software tries again later.

4. Release ownership of the software/software semaphore and the software/firmware semaphore by
clearing SWSM.SMBI and SWSM.SWESMBI bits.

5. At this stage, the shared resources is owned by the software device driver and it might access it.
The SWSM and SW_FW_SYNC registers can now be used to take ownership of another shared
resources.

Note: Software ownership of SWSM.SWESMBI bit should not exceed 100 ms. If software takes
ownership for a longer duration, firmware might implement a timeout mechanism and take
ownership of the SWSM.SWESMBI bit.

Note: Software ownership of bits in the SW_FW_SYNC register should not exceed 1 second. If
software takes ownership for a longer duration, firmware might implement a timeout
mechanism and take ownership of the relevant SW_FW_SYNC bits.

4.6.2 Releasing Ownership Over a Shared Resource

The following flow should be used to release a shared resource:

1. Get ownership of the software/software semaphore SWSM.SMBI (offset 0x5B50 bit 0).
a. Read the SWSM register.
b. If SWSM.SMBI is read as zero, the semaphore was taken.
c. Otherwise, go back to step a.

This step assures that other software will not access the shared resources register
(SW_FW_SYNC).

2. Get ownership of the software/firmware semaphore SWSM.SWESMBI (offset 0x5B50 bit 1):
a. Set the SWSM.SWESMBI bit.
b. Read SWSM.
c. If SWSM.SWESMBI was successfully set - the semaphore was acquired - otherwise, go back to

step a.

This step assures that the internal firmware will not access the shared resources register
(SW_FW_SYNC).

Initialization—Ethernet Controller I211

105

3. Clear the bit in SW_FW_SYNC that controls the software ownership of the resource to indicate this
resource is free.

4. Release ownership of the software/software semaphore and the software/firmware semaphore by
clearing SWSM.SMBI and SWSM.SWESMBI bits.

5. At this stage, the shared resource are released by the driver and it may not access it. The SWSM
and SW_FW_SYNC registers can now be used to take ownership of another shared resource.

Ethernet Controller I211 —Initialization

106

Note: This page intentionally left blank.

Power Management—Ethernet Controller I211

107

5.0 Power Management

This section describes how power management is implemented in the I211. The I211 supports the
Advanced Configuration and Power Interface (ACPI) specification as well as Advanced Power
Management (APM).

5.1 General Power State Information

5.1.1 PCI Device Power States

The PCIe Specification defines function power states (D-states) that enable the platform to establish
and control power states for the I211 ranging from fully on to fully off (drawing no power) and various
in-between levels of power-saving states, annotated as D0-D3. Similarly, PCIe defines a series of link
power states (L-states) that work specifically within the link layer between the I211 and its upstream
PCIe port (typically in the host chipset).

 For a given device D-state, only certain L-states are possible as follows.

• D0 (fully on): The I211 is completely active and responsive during this D-state. The link can be in
either L0 or a low-latency idle state referred to as L0s. Minimizing L0s exit latency is paramount for
enabling frequent entry into L0s while facilitating performance needs via a fast exit. A deeper link
power state, L1 state, is supported as well.

• D1 and D2: These modes are not supported by the I211.
• D3 (off): Two sub-states of D3 are supported:

— D3hot, where primary power is maintained.
— D3cold, where primary power is removed.

Link states are mapped into device states as follows:
— D3hot maps to L1 to support clock removal on mobile platforms
— D3cold maps to L2 if auxiliary power is supported on the I211 with wake-capable logic, or to L3

if no power is delivered to the I211. A sideband PE_WAKE_N mechanism is supported to
interface wake-enabled logic on mobile platforms during the L2 state.

5.1.2 PCIe Link Power States

Table 5-1 lists allowable mapping from D-states to L-states on the PCIe link.

Configuring the I211 into a D-state automatically causes the PCIe link to transition to the appropriate
L-state.

• L2/L3 Ready: This link state prepares the PCIe link for the removal of power and clock. The I211 is
in the D3hot state and is preparing to enter D3cold. The power-saving opportunities for this state
include, but are not limited to, clock gating of all PCIe architecture logic, shutdown of the PLL, and
shutdown of all transceiver circuitry.

Ethernet Controller I211 —Power Management

108

• L2: This link state is intended to comprehend D3cold with auxiliary power support. Note that
sideband PE_WAKE_N signaling exists to cause wake-capable devices to exit this state. The power-
saving opportunities for this state include, but are not limited to, shutdown of all transceiver
circuitry except detection circuitry to support exit, clock gating of all PCIe logic, and shutdown of
the PLL as well as appropriate platform voltage and clock generators.

• L3 (link off): Power and clock are removed in this link state, and there is no auxiliary power
available. To bring the I211 and its link back up, the platform must go through a boot sequence
where power, clock, and reset are reapplied appropriately.

5.2 Power States
The I211 supports the D0 and D3 architectural power states as described earlier. Internally, the I211
supports the following power states:

• D0u (D0 un-initialized) - an architectural sub-state of D0
• D0a (D0 active) - an architectural sub-state of D0
• D3 - architecture state D3hot
• Dr - internal state that contains the architecture D3cold state. Dr state is entered when PE_RST_N

is asserted or a PCIe in-band reset is received

Figure 5-1 shows the power states and transitions between them.

Figure 5-1. Power Management State Diagram

D r D 0u

D 0aD 3

PER ST# de- assertion
& iNVM read done

PER ST # assertion

PER ST #
assertion

PER ST#
assertion

W rite 11b
to Pow er S ta te

W rite 00b
to Pow er S ta te

Enable
m aster or s lave

access

In terna l Pow er O n
R eset assertion

H ot (in-band)
R eset

W rite 11b
to Pow er S ta te

Power Management—Ethernet Controller I211

109

5.2.1 D0 Uninitialized State (D0u)

The D0u state is an architectural low-power state.

When entering D0u, the I211:

• Disables wake up. However APM wake up is enabled (See additional information in Section 5.6.1), if
all of the following register bits are set:
— The WUC.APME bit is set to 1b.
— The WUC.APMPME bit or the PMCSR.PME_en bits are set to 1b.
— The WUC.EN_APM_D0 bit is set to 1b.

5.2.1.1 Entry into D0u state

D0u is reached from either the Dr state (on de-assertion of PE_RST_N) or the D3hot state (by
configuration software writing a value of 00b to the Power State field of the PCI PM registers).

De-asserting PE_RST_N means that the entire state of the I211 is cleared, other than sticky bits. Once
this is done, configuration software can access the I211.

On a transition from D3hot state to D0u state, the I211 PCI configuration space is not reset (since the
No_Soft_Reset bit in the PMCSR register is set to 1b). However following move to D0a state, the I211
requires that the software device driver perform a full re-initialization of the function.

5.2.2 D0active State

Once memory space is enabled, the I211 enters the D0 active state. It can transmit and receive
packets if properly configured by the software device driver. The PHY is enabled or re-enabled by the
software device driver to operate/auto-negotiate to full line speed/power if not already operating at full
capability.

Notes:
1. In the I211, if the WUC.EN_APM_D0 is cleared to 0b an APM wake event due to reception of a Magic

packet is not generated when the function is not in D3 (or Dr) state. Any APM wake up previously
active remains active when moving from D3 to D0.

2. If APM wake is required in D3 software device driver should not disable APM wake-up via the
WUC.APME bit on D0 entry. Otherwise APM wake following a system crash and entry into S3, S4 or
S5 system power management state is not enabled.

3. Following entry into D0,the software device driver can activate other wake-up filters by writing to
the Wake Up Filter Control (WUFC) register.

5.2.2.1 Entry to D0a State

D0a is entered from the D0u state by writing a 1b to the Memory Access Enable or the I/O Access
Enable bit of the PCI Command register (See Section 9.3.3). The DMA, MAC, and PHY of the
appropriate LAN function are also enabled.

5.2.3 D3 State (PCI-PM D3hot)

The I211 transitions to D3 when the system writes a 11b to the Power State field of the Power
Management Control/Status Register (PMCSR). Any wake-up filter settings that were enabled before
entering this state are maintained. If the PMCSR.No_Soft_reset bit is cleared upon completion or during

Ethernet Controller I211 —Power Management

110

the transition to D3 state, the I211 clears the Memory Access Enable and I/O Access Enable bits of the
PCI Command register, which disables memory access decode. If the PMCSR.No_Soft_reset bit is set
the I211 doesn’t clear any bit in the PCIe configuration space. While in D3, the I211 does not generate
master cycles.

Configuration and message requests are the only TLPs accepted by a function in the D3hot state. All
other received requests must be handled as unsupported requests, and all received completions are
handled as unexpected completions. If an error caused by a received TLP (such as an unsupported
request) is detected while in D3hot, and reporting is enabled, the link must be returned to L0 if it is not
already in L0 and an error message must be sent. See section 5.3.1.4.1 in The PCIe Base Specification.

5.2.3.1 Entry to D3 State

Transition to D3 state is through a configuration write to the Power State field of the PMCSR PCIe
configuration register.

Prior to transition from D0 to the D3 state, the software device driver disables scheduling of further
tasks to the I211; it masks all interrupts and does not write to the Transmit Descriptor Tail (TDT)
register or to the Receive Descriptor Tail (RDT) register and operates the master disable algorithm as
defined in Section 5.2.3.3.

If wake up capability is needed, the system should enable wake capability by setting to 1b the PME_En
bit in the PMCSR PCIe configuration register. After wake capability has been enabled, the software
device driver should set up the appropriate wake up registers (WUC, WUFC and associated filters) prior
to the D3 transition.

Note: The software device driver can override the PMCSR.PME_En bit setting via the WUC.APMPME
bit.

If Protocol offload (Proxying) capability is required and the MANC.MPROXYE bit is set to 1b,the software
device driver should:

1. Send to the firmware the relevant protocol offload information (type of protocol offloads required,
MAC and IPv4/6 addresses information for protocol offload) via the shared RAM Firmware/Software
Host interface as defined in Section , Section 10.8 and Section 10.8.2.3.

2. Program the PROXYFC register and associated filters according to the protocol offload required.
3. Program the WUC.PPROXYE bit to 1b.

Note: If operation during D3cold is required, even when wake capability is not required (such as for
manageability operation), the system should also set the Auxiliary (AUX) Power PM Enable bit
in the PCIe Device Control register.

As a response to being programmed into D3 state, the I211 transitions its PCIe link into the L1 link
state. As part of the transition into L1 state, the I211 suspends scheduling of new TLPs and waits for
the completion of all previous TLPs it has sent. If the PMCSR.No_Soft_reset bit is cleared, the I211
clears the Memory Access Enable and I/O Access Enable bits of the PCI Command register, which
disables memory access decode. Any receive packets that have not been transferred into system
memory are kept in the I211 (and discarded later on D3 exit). Any transmit packets that have not been
sent can still be transmitted (assuming the Ethernet link is up).

In order to reduce power consumption, if the link is still needed for wake-up or proxying functionality,
the PHY can auto-negotiate to a lower link speed on D3 entry (See Section 3.5.7.5.4).

Power Management—Ethernet Controller I211

111

5.2.3.2 Exit from D3 State

A D3 state is followed by either a D0u state (in preparation for a D0a state) or by a transition to Dr
state (PCI-PM D3cold state). To transition back to D0u, the system writes a 00b to the Power State field
of the Power Management Control/Status Register (PMCSR). Transition to Dr state is through
PE_RST_N assertion.

The No_Soft_Reset bit in the PMCSR register in the I211 is set to 1b, to indicate that the I211 does not
perform an internal reset on transition from D3hot to D0 so that transition does not disrupt the proper
operation of other active functions. In this case, software is not required to re-initialize the function’s
configuration space after a transition from D3hot to D0 (the function is in the D0initialized state);
however, the software device driver needs to re-initialize internal registers since transition from D3hot
to D0 causes an internal port reset (similar to asserting the CTRL.RST bit).

Note: The function is reset if the link state has made a transition to the L2/L3 ready state, on
transition from D3cold to D0, if FLR is asserted or if transition D3hot to D0 is caused by
assertion of PCIe reset (PE_RST pin) regardless of the value of the No_Soft_Reset bit.

5.2.3.3 Master Disable Via CTRL Register

System software can disable master accesses on the PCIe link by either clearing the PCI Bus Master bit
or by bringing the function into a D3 state. From that time on, the I211 must not issue master
accesses. Due to the full-duplex nature of PCIe, and the pipelined design in the I211, it might happen
that multiple requests are pending when the master disable request arrives. The protocol described in
this section insures that a function does not issue master requests to the PCIe link after its Master
Enable bit is cleared (or after entry to D3 state).

Two configuration bits are provided for the handshake between the I211 function and its software
device driver:

• GIO Master Disable bit in the Device Control (CTRL) register - When the GIO Master Disable bit is
set, the I211 blocks new master requests by this function. the I211 then proceeds to issue any
pending requests by this function. This bit is cleared on master reset (LAN_PWR_GOOD, PCIe reset
and software reset) to enable master accesses.

• GIO Master Enable Status bit in the Device Status (STATUS) register - Cleared by the I211 when
the GIO Master Disable bit is set and no master requests are pending and is set otherwise.
Indicates that no master requests are issued by this function as long as the GIO Master Disable bit
is set. The following activities must end before the I211 clears the GIO Master Enable Status bit:
— Master requests by the transmit and receive engines (for both data and MSI/MSI-X interrupts).
— All pending completions to the I211 are received.

In the event of a PCIe Master disable (Configuration Command register.BME set to 0b) or LAN port
disabled or if the function is moved into D3 state during a DMA access, the I211 generates an internal
reset to the function and stops all DMA accesses and interrupts. Following a move to normal operating
mode, the software device driver should re-initialize the receive and transmit queues of the relevant
port.

Notes: The software device driver sets the GIO Master Disable bit when notified of a pending master
disable (or D3 entry). the I211 then blocks new requests and proceeds to issue any pending
requests by this function. The software device driver then polls the GIO Master Enable Status
bit. Once the bit is cleared, it is guaranteed that no requests are pending from this function.
The software device driver might time out if the GIO Master Enable Status bit is not cleared
within a given time.
The GIO Master Disable bit must be cleared to enable a master request to the PCIe link. This
can be done either through reset or by the software device driver.

Ethernet Controller I211 —Power Management

112

5.2.4 Dr State (D3cold)

Transition to Dr state is initiated on several occasions:

• On system power up - Dr state begins with the assertion of the internal power detection circuit and
ends with de-assertion of PE_RST_N.

• On transition from a D0a state - During operation the system might assert PE_RST_N at any time.
In an ACPI system, a system transition to the G2/S5 state causes a transition from D0a to Dr state.

• On transition from a D3 state - The system transitions the I211 into the Dr state by asserting PCIe
PE_RST_N.

Any wake-up filter settings or proxying filter settings that were enabled before entering this reset state
are maintained.

The system might maintain PE_RST_N asserted for an arbitrary time. The de-assertion (rising edge) of
PE_RST_N causes a transition to D0u state.

While in Dr state, the I211 might enter one of several modes with different levels of functionality and
power consumption. The lower-power modes are achieved when the I211 is not required to maintain
any functionality (see Section 5.2.4.1).

5.2.4.1 Dr Disable Mode

The I211 enters a Dr disable mode on transition to D3cold state when it does not need to maintain any
functionality. The conditions to enter either state are:

• The I211 is in Dr state
• APM WoL (Wake-on-LAN) is inactive
• Proxying is not required (WUC.PPROXYE is cleared to 0b).
• ACPI PME is disabled
• The PHY Power Down Enable iNVM bit is set (word 0xF, bit 6).

Entering Dr disable mode is usually done by asserting PCIe PE_RST_N.

The I211 exits Dr disable mode when Dr state is exited (See Figure 5-1 for conditions to exit Dr state).

Refer to Section 5.2.6 for details about the static/dynamic device off states built on Dr Disable Mode.

5.2.4.2 Entry to Dr State

Dr entry on platform power-up begins with the assertion of the internal power detection circuit.

Entering Dr state from D0a state is done by asserting PE_RST_N. An ACPI transition to the G2/S5 state
is reflected in the I211 transition from D0a to Dr state. The transition can be orderly (such as user
selecting the shut down option), in which case the software device driver might have a chance to
intervene. Or, it might be an emergency transition (such as power button override), in which case, the
software device driver is not notified.

To reduce power consumption, if APM wake or PCI-PM PME1 is enabled, the PHY auto-negotiates to a
lower link speed on D0a to Dr transition (see Section 3.5.7.5.4).

1. ACPI 2.0 specifies that “OSPM will not disable wake events before setting the SLP_EN bit when
entering the S5 sleeping state. This provides support for remote management initiatives by
enabling Remote Power On (RPO) capability. This is a change from ACPI 1.0 behavior.”

Power Management—Ethernet Controller I211

113

Transition from D3 (hot) state to Dr state is done by asserting PE_RST_N. Prior to that, the system
initiates a transition of the PCIe link from L1 state to either the L2 or L3 state (assuming all functions
were already in D3 state). The link enters L2 state if PCI-PM PME is enabled.

5.2.4.3 Auxiliary Power Usage

The iNVM D3COLD_WAKEUP_ADVEN bit and the AUX_PWR strapping pin determines when D3cold PME
is supported:

• D3COLD_WAKEUP_ADVEN denotes that PME wake should be supported
• AUX_PWR strapping pin indicates that auxiliary power is provided

D3cold PME is supported as follows:

• If the D3COLD_WAKEUP_ADVEN is set to 1b and the AUX_PWR strapping is set to 1b, then D3cold
PME is supported

• Else D3cold PME is not supported

If D3cold is supported, the PME_En and PME_Status bits of the PMCSR, as well as their shadow bits in
the Wake Up Control (WUC) register are reset only by the power-up reset (detection of power rising).

5.2.5 Link Disconnect

In any of D0u, D0a, D3, or Dr power states, the I211 enters a link-disconnect state if it detects a link-
disconnect condition on the Ethernet link. Note that the link-disconnect state in the internal PHY is
invisible to software (other than the PHPM.Link Energy Detect bit state). In particular, while in D0 state,
software might be able to access any of the I211 registers as in a link-connect state.

5.2.6 Device Off States

Note: One single device off mode can be enabled in the iNVM at the same time, either Static or
Dynamic Device Off mode.

5.2.6.1 (Static) Device Off

The I211 enters a global power-down state when the DEV_OFF_N pin is asserted and the relevant iNVM
bits were configured as previously described (see Section 4.4.3 for more details on DEV_OFF_N
functionality).

5.2.6.2 Dynamic Device Off

The I211 enters a global power-down state dynamically, each time all of the following conditions are
met:

• The I211 Dynamic Device Off Enable iNVM bit (word 0x1E bit 14) was set (default hardware value is
disabled).

• WoL and Proxy functionalities are not required
• The link (PHY) is in powered down mode (not used for WoL), which means the following condition is

fulfilled:
• The Enable the PHY in D3 iNVM

Ethernet Controller I211 —Power Management

114

When in this state, the direction of SDP pins is either maintained or the pins are moved to High
Impedance according to a setting made in SDP_DDOFF_EN bit in iNVM word 0x0A.

Refer also to Section 3.5.7.5.7.

5.3 Power Limits by Certain Form Factors
Table 5-1 lists power limitation introduced by different form factors.

Table 5-1. Power Limits by Form-Factor

Note: This auxiliary current limit only applies when the primary 3.3 V voltage source is not available
(the card is in a low power D3 state).

5.4 Interconnects Power Management
This section describes the power reduction techniques employed by the I211 main interconnects.

5.4.1 PCIe Link Power Management

The I211 supports all PCIe power management link states:

• L0 state is used in D0u and D0a states.
• The L0s state is used in D0a and D0u states each time link conditions apply.
• The L1 state is also used in D0a and D0u states when idle conditions apply for a longer period of

time. The L1 state is also used in the D3 state.
• The L2 state is used in the Dr state following a transition from a D3 state if PCI-PM PME is enabled.
• The L3 state is used in the Dr state following power up, on transition from D0a, and if PME is not

enabled in other Dr transitions.

Form Factor

LOM PCIe add-in card (10 W slot)

Main N/A 3 A @ 3.3 V

Auxiliary (aux enabled) 375 mA @ 3.3 V 375 mA @ 3.3 V

Auxiliary (aux disabled) 20 mA @ 3.3 V 20 mA @ 3.3 V

Power Management—Ethernet Controller I211

115

While in L0 state, the I211 transitions the transmit lane(s) into L0s state once the idle conditions are
met for a period of time as follows:

L0s configuration fields are:

• L0s enable - The default value of the Active State Link PM Control field in the PCIe Link Control
Register is set to 00b (both L0s and L1 disabled). System software might later write a different
value into the Link Control register. The default value is loaded on any reset of the PCI configuration
registers.

The I211 transitions the link into L0s state once the PCIe link has been idle for a period of time defined
in the Latency_To_Enter_L0s field in the CSR Auto Configuration Power-Up NVM section (see Section).
The I211 will then transition the link into L1 state once the PCIe link has been in L0s state for a further
period as defined in the Latency_To_Enter_L1 field in the CSR Auto Configuration Power-Up NVM
section.

Figure 5-2. Link Power Management State Diagram

L3

L1

PERST# de-
assertion

PERST#
assertion

PERST#
assertion

PERST#
assertion

Write 11b
to Power State

Write 00b
to Power State

& (BME = 0 OR
No_Soft_Reset = 0)

Enable
master access

Internal Power On
Reset assertion

L2

L0

L0s

L1

Dr
D0u

L0

L0s

L1

D0a

D3

Write 11b
to Power State

Write 00b to Power State
& No_Soft_Reset = 1

& BME = 1

Ethernet Controller I211 —Power Management

116

To comply with the PCIe specification, if the link idle time exceeds the Latency_To_Enter_L0s value
defined in the iNVM, then the I211 enters L0s.

5.4.2 Internal PHY Power-Management

The PHY power management features are described in Section 3.5.7.5.

5.5 Timing of Power-State Transitions
The following sections give detailed timing for the state transitions. In the diagrams, the dotted
connecting lines represent the I211 requirements, while the solid connecting lines represent the I211
guarantees.

The timing diagrams are not to scale. The clocks edges are shown to indicate running clocks only and
are not to be used to indicate the actual number of cycles for any operation.

5.5.1 Power Up (Off to Dup to D0u to D0a)

Figure 5-3. Power Up (Off to Dup to D0u to D0a)

Table 5-2. Power Up (Off to Dup to D0u to D0a)

Note Description

1 Xosc is stable txog after power is stable.

2 LAN_PWR_GOOD is asserted after all power supplies are good and tppg after Xosc is stable.

3 The PCIe reference clock is valid tPE_RST-CLK before de-asserting PE_RST_N (according to PCIe specification).

Internal PCIe Clock

Internal PwrGd (PLL)

DState D0u D0a

PHY Reset

PCIe Link Up L0

Wake Up Enabled

4

Dr

7

APM

Power

Internal Power On
Reset

2

PCIe Reference Clock

PE_RSTn

Xosc

1

3

5

txog

6

tppg‐clkint

8 9

PHY Power State deganam‐rewoP(FFODD) DDOFF or reduced link speed On

APM

tpgtrn
10

tpgrestpgcfg

tPWRGD‐CLK

tPVPG
L

tppg

tclkpr

Power Management—Ethernet Controller I211

117

5.5.2 Transition from D0a to D3 and Back Without PE_RST_N

4 PE_RST_N is de-asserted tPVPGL after power is stable (according to PCIe specification).

5 The internal PCIe clock is valid and stable tppg-clkint from PE_RST_N de-assertion.

6 The PCIe internal PWRGD signal is asserted tclkpr after the external PE_RST_N signal.

7 Link training starts after tpgtrn from PE_RST_N de-assertion.

8 A first PCIe configuration access might arrive after tpgcfg from PE_RST_N de-assertion.

9 A first PCI configuration response can be sent after tpgres from PE_RST_N de-assertion.

10 Writing a 1b to the Memory Access Enable bit in the PCI Command Register transitions the I211 from D0u to D0. state.

Figure 5-4. Transition from D0a to D3 and Back Without PE_RST_N

Table 5-3. Transition from D0a to D3 and Back Without PE_RST_N

Note Description

1 Writing 11b to the Power State field of the Power Management Control/Status Register (PMCSR) transitions the I211 to
D3.

2 The system can keep the I211 in D3 state for an arbitrary amount of time.

3 To exit D3 state, the system writes 00b to the Power State field of the PMCSR.

4 The system can delay an arbitrary time before enabling memory access.

5 Writing a 1b to the Memory Access Enable bit or to the I/O Access Enable bit in the PCI Command Register transitions
the I211 from D0u to D0 state and returns the PHY to full-power/speed operation.

Table 5-2. Power Up (Off to Dup to D0u to D0a) (Continued)

Note Description

PCIe Reference
Clock

PE_RSTn

PHY Reset

PCIe Link

DState u0D3D D0

Wake Up Enabled

L0

D3 write

APMAny mode

D0a

L1 L0

PHY Power State full fulldeganam‐rewopdeganam‐rewop

1

Ethernet Controller I211 —Power Management

118

5.5.3 Transition From D0a to D3 and Back With PE_RST_N

Figure 5-5. Transition From D0a to D3 and Back With PE_RST_N

Table 5-4. Transition From D0a to D3 and Back With PE_RST_N

Note Description

1 Writing 11b to the Power State field of the PMCSR transitions the I211 to D3. PCIe link transitions to L1 state.

2 The system can delay an arbitrary amount of time between setting D3 mode and moving the link to a L2 or L3 state.

3 Following link transition, PE_RST_N is asserted.

4 The system must assert PE_RST_N before stopping the PCIe reference clock. It must also wait tl2clk after link transition
to L2/L3 before stopping the reference clock.

5 On assertion of PE_RST_N, the I211 transitions to Dr state.

6 The system starts the PCIe reference clock tPE_RST-CLK before de-assertion PE_RST_N.

7 The internal PCIe clock is valid and stable tppg-clkint from PE_RST_N de-assertion.

8 The PCIe internal PWRGD signal is asserted tclkpr after the external PE_RST_N signal.

9 Asserting internal PCIe PWRGD asserts PHY reset and disables wake up.

10 Link training starts after tpgtrn from PE_RST_N de-assertion.

11 A first PCIe configuration access might arrive after tpgcfg from PE_RST_N de-assertion.

12 A first PCI configuration response can be sent after tpgres from PE_RST_N de-assertion.

13 Writing a 1b to the Memory Access Enable bit in the PCI Command Register transitions the I211 from D0u to D0 state.

PCIe Reference Clock

PE_RSTn

DState

PHY Power State

D0u D0a

power‐managed full

Reset to PHY (active low)

PCIe Link

Wake Up Enabled

Dr

Any mode APM

full

D3 write

D0a D3

13

2L1L0L 0L3L/

1
2

6

11 12

3

4a

4b

10

Internal PCIe Clock
(2.5 GHz)

Internal PwrGd (PLL)

7

8

tppg‐clkint

tpgtrn
tpgrestpgcfg

tclkpr

tpgdl

tl2clktclkpg tPWRGD‐CLK

tl2pg

5

L0

9

Power Management—Ethernet Controller I211

119

5.5.4 Transition From D0a to Dr and Back Without Transition to D3

5.5.5 Timing Requirements

The I211 requires the following start-up and power state transitions.

Figure 5-6. Transition From D0a to Dr and Back Without Transition to D3

Table 5-5. Transition From D0a to Dr and Back Without Transition to D3

Note Description

1 The system must assert PE_RST_N before stopping the PCIe reference clock. It must also wait tl2clk after link transition
to L2/L3 before stopping the reference clock.

2 On assertion of PE_RST_N, the I211 transitions to Dr state and the PCIe link transition to electrical idle.

3 The system starts the PCIe reference clock tPE_RST-CLK before de-assertion PE_RST_N.

4 The internal PCIe clock is valid and stable tppg-clkint from PE_RST_N de-assertion.

5 The PCIe internal PWRGD signal is asserted tclkpr after the external PE_RST_N signal.

6 Asserting internal PCIe PWRGD asserts PHY reset and disables wake up.

7 Link training starts after tpgtrn from PE_RST_N de-assertion.

8 A first PCIe configuration access might arrive after tpgcfg from PE_RST_N de-assertion.

9 A first PCI configuration response can be sent after tpgres from PE_RST_N de-assertion.

10 Writing a 1b to the Memory Access Enable bit in the PCI Command Register transitions the I211 from D0u to D0 state.

Parameter Description Min. Max. Notes

txog Xosc stable from power stable 56 ms

tPE_RST-CLK
PCIe clock valid to PCIe power
good 100 s - According to PCIe spec.

PCIe Reference Clock

PE_RSTn

DState

PHY Power State

D0u D0a

power‐managed full

Reset to PHY
(active low)

PCIe Link

Wake Up Enabled

Dr

Any mode APM/SMBus

full

D0a

10

L0 L0

2

3

8 9

1

7

Internal PCIe Clock
(2.5 GHz)

Internal PwrGd (PLL)
6

4

5

tppg‐clkint

tpgtrn
tpgrestpgcfg

tclkpr

tpgdl

tclkpg tPWRGD‐CLK

Ethernet Controller I211 —Power Management

120

5.5.6 Timing Guarantees

The I211 guarantees the following start-up and power state transition related timing parameters.

5.6 Wake Up
The I211 supports two modes of wake-up management:

1. Advanced Power Management (APM) wake up
2. ACPI/PCIe defined wake up

The usual model is to activate one mode at a time but not both modes together. If both modes are
activated, the I211 might wake up the system on unexpected events. For example, if APM is enabled
together with the ACPI/PCIe Magic packet in the WUFC register, a magic packet might wake up the
system even if APM is disabled (WUC.APME = 0b). Alternatively, if APM is enabled together with some
of the ACPI/PCIe filters (enabled in the WUFC register), packets matching these filters might wake up
the system even if PCIe PME is disabled.

5.6.1 Advanced Power Management Wake Up

Advanced Power Management Wake Up or APM Wakeup (also known as Wake on LAN) is a feature that
existed in earlier 10/100 Mb/s NICs. This functionality was designed to receive a broadcast or unicast
packet with an explicit data pattern, and then assert a subsequent signal to wake up the system. This
was accomplished by using a special signal that ran across a cable to a defined connector on the
motherboard. The NIC would assert the signal for approximately 50 ms to signal a wake up. The I211
now uses (if configured) an in-band PM_PME message for this functionality.

tPVPGL
Power rails stable to PCIe PE_RST
active 100 ms - According to PCIe spec.

Tpgcfg
External PE_RST signal to first
configuration cycle. 100 ms According to PCIe spec.

td0mem
Device programmed from D3h to
D0 state to next device access 10 ms According to PCI power

management spec.

tl2pg
L2 link transition to PE_RST de-
assertion 0 ns According to PCIe spec.

tl2clk
L2 link transition to removal of
PCIe reference clock 100 ns According to PCIe spec.

Tclkpg
PE_RST de-assertion to removal of
PCIe reference clock 0 ns According to PCIe spec.

Tpgdl PE_RST de-assertion time 100 s According to PCIe spec.

Parameter Description Min. Max. Notes

txog Xosc stable from power stable 56 msec

tppg
Internal power good delay from valid power
rail 45 msec

tee NVM read duration 20 msec

tppg-clkint PCIe* PE_RST to internal PLL lock - 50 s

tclkpr
Internal PCIe PWGD from external PCIe
PE_RST 50 s

tpgtrn PCIe PE_RST to start of link training 20 ms According to PCIe spec.

tpgres
External PE_RST to response to first
configuration cycle 1 s According to PCIe spec.

Power Management—Ethernet Controller I211

121

When APM wake up is enabled, the I211 checks all incoming packets for Magic packets.

Once the I211 receives a matching Magic packet, and if the WUC.APMPME bit or the PMCSR.PME_En
bits are set to 1b and the WUC.APME bit is set to 1b it:

• Sets the PME_Status bit in the PMCSR register and issues a PM_PME message (in some cases, this
might require asserting the PE_WAKE_N signal first to resume power and clock to the PCIe
interface).

• Stores the first 128 bytes of the packet in the Wake Up Packet Memory (WUPM) register.
• Sets the Magic Packet Received bit in the Wake Up Status (WUS) register.
• Sets the packet length in the Wake Up Packet Length (WUPL) register.

The I211 maintains the first Magic packet received in the Wake Up Packet Memory (WUPM) register
until the software device driver writes a 1b to the WUS.MAG bit.

If the WUC.EN_APM_D0 bit is set to 1b, APM wake up is supported in all power states and only disabled
if software explicitly writes a 0b to the WUC.APME bit. If the WUC.EN_APM_D0 bit is cleared APM wake-
up is supported only in the D3 or Dr power states.

Notes:
1. When the WUC.APMPME bit is set a wake event is issued (PE_WAKE_N pin is asserted and a

PM_PME PCIe message is issued) even if the PMCSR.PME_En bit in configuration space is cleared.
To enable disabling of system Wake-up when PMCSR.PME_En is cleared, the software device driver
should clear the WUC.APMPME bit after power-up or PCIe reset.

2. If APM is enabled and the I211 is programmed to issue a wake event on the PCIe, each time a
Magic packet is received, a wake event is generated on the PCIe interface even if the WUS.MAG bit
was set as a result of reception of a previous Magic packet. Consecutive magic packets generate
consecutive Wake events.

5.6.2 ACPI Power Management Wake Up

The I211 supports PCIe power management based wake-up. It can generate system wake-up events
from a number of sources:

• Reception of a Magic packet.
• Reception of a network wake-up packet.
• Detection of a change in network link state (cable connected or disconnected).

Activating PCIe power management wake up requires the following:

• System software writes at configuration time a 1b to the PCI PMCSR.PME_En bit.
• Software device driver clears all pending wake-up status bits in the Wake Up Status (WUS) register.
• The software device driver programs the Wake Up Filter Control (WUFC) register to indicate the

packets that should initiate system wake up and programs the necessary data to the IPv4/v6
Address Table (IP4AT, IP6AT) and the Flexible Host Filter Table (FHFT). It can also set the
WUFC.LNKC bit to cause wake up on link status change.

• Once the I211 wakes the system, the software device driver needs to clear the WUS and WUFC
registers until the next time the system moves to a low power state with wake up enabled.

Normally, after enabling wake up, system software moves the device to D3 low power state by writing
a 11b to the PCI PMCSR.Power State field.

Ethernet Controller I211 —Power Management

122

Once wake up is enabled, the I211 monitors incoming packets, first filtering them according to its
standard address filtering method, then filtering them with all of the enabled wake-up filters. If a
packet passes both the standard address filtering and at least one of the enabled wake-up filters, the
I211:

• Sets the PME_Status bit in the PMCSR.
• Asserts PE_WAKE_N (if the PME_En bit in the PMCSR configuration register is set).
• Stores the first 128 bytes of the packet in the Wakeup Packet Memory (WUPM) register.
• Sets one or more bits in the Wake Up Status (WUS) register. Note that the I211 sets more than one

bit if a packet matches more than one filter.
• Sets the packet length in the Wake Up Packet Length (WUPL) register.

Note: If enabled, a link state change wake-up causes similar results. Sets the PMCSR.PME_Status
bit, asserts the PE_WAKE_N signal and sets the relevant bit in the WUS register.

The PE_WAKE_N remains asserted until the operating system either writes a 1b to the
PMCSR.PME_Status bit or writes a 0b to the PMCSR.PME_En bit.

After receiving a wake-up packet, the I211 ignores any subsequent wake-up packets until the software
device driver clears all of the received bits in the Wake Up Status (WUS) register. It also ignores link
change events until the software device driver clears the Link Status Changed (LNKC) bit in the Wake
Up Status (WUS) register.

5.6.3 Wake-Up and Proxying Filters

The I211 supports issuing wake-up to Host when device is in D3 or protocol offload (proxying) of
packets using two types of filters:

• Pre-defined filters
• Flexible filters

Each of these filters are enabled if the corresponding bit in the Wake Up Filter Control (WUFC) register
or Proxying Filter Control (PROXYFC) register is set to 1b.

Note: When VLAN filtering is enabled, packets that passed any of the receive wake-up filters should
only cause a wake-up event if they also passed the VLAN filtering.

Table 5-6. ARP Packet Structure and Processing

Offset # of bytes Field Value Action Comment

0 6 Destination Address Compare MAC header – processed by main
address filter.

6 6 Source Address Skip

12 S=(0/4/8) Possible VLAN Tags (single or
double)

Compare on
internal VLAN
only

 Processed by main address filter.

12 + S D=(0/8) Possible Length + LLC/SNAP
Header Skip

12 + S + D 2 Ethernet Type 0x0806 Compare ARP

14 + S + D 2 HW Type 0x0001 Compare

16 + S + D 2 Protocol Type 0x0800 Compare

18 + S + D 1 Hardware Size 0x06 Compare

Power Management—Ethernet Controller I211

123

5.7 Protocol Offload (Proxying)
In order to avoid spurious wake-up events and reduce system power consumption when the device is in
D3 low power state and system is in S3 or S4 low power states, the I211 supports protocol offload
(proxying) of:

1. A single IPv4 Address Resolution Protocol (ARP) request.
— Responds to IPv4 address resolution request with the host MAC (L2) address (as defined in RFC

826).
2. Two IPv6 Neighbor Solicitation (NS) requests, where each NS protocol offload request includes two

IPv6 addresses, for a total of four possible IPv6 addresses.
— IPv6 NS requests with the host MAC (L2) address (as defined in RFC 4861).

3. When NS protocol offload is enabled, the I211 supports up to two IPv6 Multicast-Address-Specific
Multicast Listener Discovery (MLD) queries (either MLDv1 or MLDv2). In addition, the I211 also
responds to general MLD queries, used to learn which IPv6 multicast addresses have listeners on an
attached link.
— MLD protocol offload is supported when NS protocol offload is enabled so that IPv6 routers

discover the presence of multicast listeners (that is, nodes wanting to receive multicast
packets), for packets with the IPv6 NS Solicited-node Multicast Address and continue
forwarding these NS requests on the link.

— MLD protocol offload is supported for either MLD Multicast Listener Query packets or MLD
Multicast Address and Source Specific Query packets that check for IPv6 multicast listeners
with the Solicited-node Multicast Address placed in the IPv6 destination address field of the
IPv6 NS packets that are off-loaded by the I211.

— IPv6 MLD queries, with the Solicited-node Multicast Address placed in the IPv6 destination
address field of the IPv6 NS packets that are off-loaded by the I211 (as defined in RFC 2710
and RFC 3810). The MLDv2 Multicast Listener Report messages returned by firmware to MLDv2
Multicast Listener Query messages which concern the device, contain a Multicast Address
Record for each configured Solicited IPv6 addresses (up to 2). Other fields are returned as
follows:
• Number of Sources = 0 (no Source Address fields supplied)
• Record Type = 2 (MODE_IS_EXCLUDE)
• Aux Data Len = 0 (no Auxiliary Data fields supplied)

4. mDNS proxy offload
— Multicast DNS (mDNS) is used to advertise and locate services on the local network. Its proxy

offload requires the I211 to respond to mDNS queries as well as keeping the network
connectivity of a system while the system is in sleep state and wake the system when a service
is requested from the system.

19 + S + D 1 Protocol Address Length 0x04 Compare

20 + S + D 2 Operation 0x0001 Compare

22 + S + D 6 Sender HW Address - Ignore

28 + S + D 4 Sender IP Address - Ignore

32 + S + D 6 Target HW Address - Ignore

38 + S + D 4 Target IP Address IP4AT Compare

Compare if the Directed ARP bit is
set to 1b.
May match any of four values in
IP4AT.

Table 5-6. ARP Packet Structure and Processing

Offset # of bytes Field Value Action Comment

Ethernet Controller I211 —Power Management

124

— For more information on the I211 functionality and enablement for mDNS Proxy Offload. See
section

In addition to the D3 low power functionality, by setting D0_PROXY bit to 1b, the I211 enables these
features in D0 and enables the system to be in a low power S0x state for longer durations to increase
system power savings.

5.7.1 Protocol Offload Activation in D3

To enable protocol offload, the software device driver should implement the following steps before D3
entry:

5. Clear all pending proxy status bits in the Proxying Status (PROXYS) register.
6. Program the Proxying Filter Control (PROXYFC) register to indicate the type of packets and then

program the necessary data to the IPv4/v6 Address Table (IP4AT, IP6AT) and the Flexible Host Filter
Table (FHFT) registers.

7. Set the WUFC.FW_RST_WK bit to 1b to initiate a wake if firmware reset was issued when in D3
state and proxying information was lost.

8. Read and clear the FWSTS.FWRI firmware reset indication bit.
— If a firmware reset was issued as reported in the FWSTS.FWRI bit, the software device driver

should clear the bit and then re-initialize the protocol offload list even if firmware keeps the
protocol offload list on a move from D3 to D0 (See note in Section 10.8.2.4.2.2).

9. Verify that the HICR.En bit (See Section) is set 1b, which indicates that the shared RAM interface is
available.

10. Write proxying information in the shared RAM interface located in addresses 0x8800-0x8EFF using
the format defined in Section 10.8.2.4.2. All addresses should be placed in networking order.

11. Once information is written into the shared RAM software should set the HICR.C bit to 1b.
12. Poll the HICR.C bit until bit is cleared by firmware indicating that the command was processed and

verified that the command completed successfully by checking that the HICR.SV bit was set.
13. Read the firmware response from the shared RAM to verify that data was received correctly.
14. Return to 10. if additional commands need to be sent to Firmware.
15. Verify that a firmware reset was not initiated during the proxying configuration process by reading

the FWSTS.FWRI firmware reset indication bit. If a firmware reset was initiated. Return to step 5.
16. Set WUC.PPROXYE bit to 1b and enable entry into D3 low power state.
17. Once the I211 moves back into D0 state, the software device driver needs to clear the

WUC.PPROXYE bit, PROXYS, and PROXYFC registers until the next time the system moves to a low
power state with proxying enabled.

Normally, after enabling wake-up or proxying, system software moves the device to D3 low power state
by writing a 11b to the PCI PMCSR.Power State field.

Once proxying is enabled by setting the WUC.PPROXYE bit to 1b and device is placed in the D3 low
power state, the I211 monitors incoming packets, first filtering them according to its standard address
filtering method, then filtering them with all of the proxying filters enabled in the PROXYFC register. If a
packet passes both the standard address filtering and at least one of the enabled proxying filters and
does not pass any of the enabled wake-up filters, the I211:

1. Executes the relevant protocol offload for the packet and not forward the packet to the host.
2. Set one or more bits in the Proxying Status (PROXYS) register according to the proxying filters

matched.

Power Management—Ethernet Controller I211

125

Note: The I211 sets more than one bit in the PROXYS register if a packet matches more than one
filter.

3. Wakes the system and forwards a packet that matches the proxying filters but can’t be supported
by the host for further processing if configured to do so by the software device driver via the Set
Firmware Proxying Configuration command using the shared RAM interface (See
Section 10.8.2.4.2.2).

Notes:
1. When the device is in D3, a packet that matches both one of the enabled proxying filters as defined

in the PROXYFC register and one of the enabled wake-up filters as defined in the WUFC register
only wakes up the system and protocol offload (proxying) does not occur.

2. Protocol offload is not executed for illegal packets with CRC errors or checksum errors and the
packets are silently discarded.

3. Once a packet that meets the criteria for proxying is received, the I211 should respond to the
request after less than 60 Seconds.

5.7.2 Protocol Offload Activation in D0

To enable protocol offload in D0,the software device driver should implement the following steps:

4. Clear all pending proxy status bits in the Proxying Status (PROXYS) register.
5. Program the Proxying Filter Control (PROXYFC) register to indicate the type of packets and then

program the necessary data to the IPv4/v6 Address Table (IP4AT, IP6AT) and the Flexible Host Filter
Table (FHFT) registers.

6. Verify that the HICR.En bit is set 1b, which indicates that the shared RAM interface is available.
7. Read and clear the FWSTS.FWRI firmware reset indication bit.

— If a firmware reset was issued as reported in the FWSTS.FWRI bit, the software device driver
should clear the bit and then re-initialize the protocol offload list.

8. Write proxying information in the shared RAM interface located in addresses 0x8800-0x8EFF using
the format defined in Section 10.8.2.4.2. All addresses should be placed in networking order.

9. Once information is written into the shared RAM, software should set the HICR.C bit to 1b.
10. Poll the HICR.C bit until the bit is cleared by firmware indicating that command was processed and

verified that the command completed successfully by checking that the HICR.SV bit was set.
11. Read the firmware response from the shared RAM to verify that data was received correctly.
12. Return to step 8. if additional commands need to be sent to firmware.
13. Verify that a firmware reset was not initiated during the proxying configuration process by reading

the FWSTS.FWRI firmware reset indication bit. If a firmware reset was initiated, return to step 4.
14. Set the PROXYFC.D0_PROXY bit to 1b.
15. Set the WUC.PPROXYE bit to 1b to enable protocol offload.

Once proxying is enabled in D0 by setting both the WUC.PPROXYE bit to 1b and the
PROXYFC.D0_PROXY bit to 1b, the I211 monitors incoming packets, first filtering them according to the
standard address filtering method and then filtering them according to the proxying filters enabled in
the PROXYFC register. If a packet passes both the standard address filtering and at least one of the
enabled proxying filters then the I211:

1. Executes the relevant protocol offload for the packet and not forward the packet to the host.
2. Set one or more bits in the Proxying Status (PROXYS) register according to the proxying filter that

detected a match.

Ethernet Controller I211 —Power Management

126

Note: The I211 sets more than one bit in the PROXYS register if a packet matches more than one
filter.

3. Discard silently illegal packets with CRC errors or checksum errors without implementing the
protocol offload.

4. Forward a packet that matches the proxying filters but can’t be supported by firmware to the host
for further processing, if configured to do so by the software device driver via the Set Firmware
Proxying Configuration command using the shared RAM interface.

iNVM Map—Ethernet Controller I211

127

6.0 iNVM Map

6.1 iNVM General Map
Table 6-1 lists the possible auto-load word structures that can be written in the iNVM (see Section
3.4.2.1). This table lists common modules for the iNVM including: software and firmware. Blocks are
detailed in the following sections. All addresses in Table 6-1 are absolute in word units.

Note: For a better understanding as to how the iNVM is implemented in the I211, see Section 3.2.

A detailed list of iNVM words loaded by hardware following power up, hardware reset or software
generated resets.

Table 6-1. Common iNVM Map

iNVM Word
Offsets Used By/In High Byte Low Byte RO to Host

0x00:0x02 HW Ethernet Address (Words 0x00-0x02) - Section 6.2.1

0x04 SW Port Identification LED Blinking (Word 0x04) - Section 6.3.1

0x05 SW iNVM Map Revision (Word 0x05)

0x06 SW Compatibility High Compatibility Low

0x07 SW Compatibility High Compatibility Low

0x0A HW Initialization Control Word 1 (Word 0x0A) - Section 6.2.2

0x0B HW Subsystem ID (Word 0x0B) - Section 6.2.3

0x0C HW Subsystem Vendor ID (Word 0x0C) - Section 6.2.4

0x0D HW Device ID (Word 0x0D) - Section 6.2.5 RO word

0x0E HW Vendor ID (Word 0x0E) - Section 6.2.6 RO word

0x0F HW Initialization Control Word 2 (Word 0x0F) - Section 6.2.7

0x10:0x12 HW Reserved

0x13 HW Initialization Control 4 (Word 0x13) - Section 6.2.8

0x14 HW PCIe L1 Exit Latencies (Word 0x14) - Section 6.2.9

0x15 HW PCIe Completion Timeout Configuration (Word 0x15) - Section 6.2.10

0x16 HW MSI-X Configuration (Word 0x16) - Section 6.2.11

0x17 HW Reserved

0x18 HW PCIe Init Configuration 1 (Word 0x18) - Section 6.2.12

0x19 HW PCIe Init Configuration 2 Word (Word 0x19) - Section 6.2.13

0x1A HW PCIe Init Configuration 3 Word (Word 0x1A) - Section 6.2.14

0x1B HW PCIe Control 1 (Word 0x1B) - Section 6.2.15

0x1C HW LED1 Configuration Defaults (Word 0x1C) - Section 6.2.16

0x1D HW Reserved

Ethernet Controller I211 —iNVM Map

128

6.2 Hardware Accessed Words
This section describes the iNVM words that are loaded by the I211 hardware. Most of these bits are
located in configuration registers.

Note: When Word is mentioned before a iNVM address, the address is the absolute address in the
iNVM. When Offset is mentioned before a iNVM address, the address is relative to the start of
the relevant iNVM section.

6.2.1 Ethernet Address (Words 0x00-0x02)

The Ethernet Individual Address (IA) is a 6-byte field that must be unique for each NIC, and thus
unique for each copy of the iNVM image. The first three bytes are vendor specific. The value from this
field is loaded into the Receive Address Register 0 (RAL0/RAH0).

The Ethernet address is loaded from addresses 0x0 to 0x02.
The following table lists the mapping of the Ethernet MAC addresses to the iNVM words.

0x1E HW Device Rev ID (Word 0x1E) - Section 6.2.17

0x1F HW LED0, 2 Configuration Defaults (Offset 0x1F) - Section 6.2.20

0x20 HW Software Defined Pins Control (Word 0x20) - Section 6.2.19

0x21 HW Functions Control (Word 0x21) - Section 6.2.20

0x22 HW LAN Power Consumption (Word 0x22) - Section 6.2.21

0x23 HW Reserved

0x24 HW Initialization Control 3 (Word 0x24) - Section 6.2.22

0x25:0x27 HW Reserved

0x28 HW PCIe Control 2 (Word 0x28) - Section 6.2.23 RO word

0x29 HW PCIe Control 3 (Word 0x29) - Section 6.2.24

0x2A:0x2D HW Reserved

0x2E HW Watchdog Configuration (Word 0x2E) - Section 6.2.25

0x2F:0x33 OEM/PXE Reserved

0x34 HW/SW Reserved

0x35 HW/SW Reserved

0x36:0x37 PXE Reserved

0x38: 0x3B HW Reserved

0x3C:0x3F SW/PXE Reserved

0x42:0x43 SW Reserved

0x44:0x4F SW Reserved

0x50:0x51 FW Reserved

0x52:0x7F FW Reserved

0x80... Reserved for hardware and firmware structures.

MAC Address 0x00 0x01 0x02

00-A0-C9-00-00-00 0xA000 0x00C9 0x0000

iNVM Word
Offsets Used By/In High Byte Low Byte RO to Host

iNVM Map—Ethernet Controller I211

129

6.2.2 Initialization Control Word 1 (Word 0x0A)

The Initialization Control Word 1 contains initialization values that:

• Set defaults for some internal registers
• Enable/disable specific features
• Determine which PCI configuration space values are loaded from the iNVM.

6.2.3 Subsystem ID (Word 0x0B)

If the Load Subsystem IDs in Initialization Control Word 1 iNVM word is set, the Subsystem ID word in
the Common section is read in to initialize the PCIe Subsystem ID. Default value is 0x0 (refer to
Section 9.3.14).

Bit Name Default HW Mode Description

15 iNVM 0b iNVM

14 GPAR_EN 0b1

1. This bit must be set to 1b in every iNVM image.

Global Parity Enable
Enables parity checking of all the I211 memories.
0b = Disable parity check
1b = Enable parity check according to the per RAM parity enable bits.
Loaded to the PCIEERRCTL register (refer to Section 8.19.4) only at
LAN_PWR_GOOD events.

13 Reserved 1b Reserved.

12 Reserved 0b Reserved.

11 HI_DISABLE 0b

Host Interface Disable.
This bit is meaningful only for the I211 SKU.
1b = Do not allow the host to download firmware code.
0b = The host is allowed to download firmware code using the flow
described in Section 3.2.6.

10:7 Reserved 0x0 Reserved

6 SDP_DDOFF_EN 0b

When set, SDP I/Os keep their value and direction when the I211 enters
Dynamic Device Off mode.
When cleared, SDP I/Os move to HighZ plus pull-up mode in Dynamic
Device Off mode.
This bit is meaningless if Dynamic Device Off mode is disabled in iNVM
word 0x1E.

5 Reserved 1b Reserved.

4 LAN PLL Shutdown
Enable 0b

When set, enables shutting down the PHY PLL in low-power states when
the internal PHY is powered down (such as link disconnect). When
cleared, the PHY PLL is not shut down in a low-power state.

3 Power Management 1b

0b = Power management registers set to read only. In this mode, the
I211 does not execute a hardware transition to D3.
1b = Full support for power management. For normal operation, this bit
must be set to 1b.
 See section 9.4.1 .

2 DMA Clock Gating
Disabled 1b When set, disables DMA clock gating power saving mode.

1 Load Subsystem IDs 1b
When this bit is set to 1b the I211 loads its PCIe subsystem ID and
subsystem vendor ID from the iNVM (Subsystem ID and Subsystem
Vendor ID iNVM words).

0 Load Vendor/Device
IDs 1b When set to 1b the I211 loads its PCIe Device IDs from the iNVM

(Device ID iNVM words) and the PCIe Vendor ID from the iNVM.

Ethernet Controller I211 —iNVM Map

130

6.2.4 Subsystem Vendor ID (Word 0x0C)

If the Load Subsystem IDs bit in Initialization Control Word 1 iNVM word is set, the Subsystem Vendor
ID word in the Common section is read in to initialize the PCIe Subsystem Vendor ID. The default value
is 0x8086 (refer to Section 9.3.13).

6.2.5 Device ID (Word 0x0D)

If the Load Vendor/Device IDs bit in Initialization Control Word 1 is set, the Device ID iNVM word is
read in from the Common section to initialize the device ID of the LAN function. The default value is
0x1539 for the I211 (for other SKUs refer to Section 9.3.2).

6.2.6 Vendor ID (Word 0x0E)

If the Load Vendor/Device IDs bit in Initialization Control Word 1 iNVM word is set, this word is read in
to initialize the PCIe Vendor ID. The default value is 0x8086 (refer to Section 9.3.1).

Note: If a value of 0xFFFF is placed in the Vendor ID iNVM word, the value in the PCIe Vendor ID
register returns to the default 0x8086 value. This functionality is implemented to avoid a
system hang situation.

6.2.7 Initialization Control Word 2 (Word 0x0F)

The Initialization Control Word 2 read by the I211, contains additional initialization values that:

• Set defaults for some internal registers
• Enable/disable specific features

Bit Name Default HW
Mode Description

15 APM PME# Enable 0b Initial value of the Assert PME On APM Wakeup bit in the Wake Up Control
(WUC.APMPME) register. Refer to Section 8.18.1.

14 PCS Parallel Detect 1b Enables PCS parallel detect. Mapped to the PCS_LCTL.AN TIMEOUT EN bit. Refer
to Section 8.15.3.

13:12 Pause Capability 11b Desired pause capability for advertised configuration base page. Mapped to
PCS_ANADV.ASM. Refer to Section 8.15.3.

11 ANE 0b
Auto-Negotiation Enable
Mapped to PCS_LCTL.AN_ENABLE. Refer to Section 8.15.3.
Note: Bit should be 0b when the port operates in internal copper PHY mode.

10 FRCSPD 0b
Force Speed
Default setting for the Force Speed bit in the Device Control register
(CTRL[11]). Refer to Section 8.2.1

9 FD 1b
Full-Duplex
Default setting for duplex setting. Mapped to CTRL[0]. Refer to Section 8.2.1

8 TX_LPI_EN 0b
Enable entry into EEE LPI on TX path. Refer to Section 8.20.1.
0b = Disable entry into EEE LPI on Tx path.
1b = Enable entry into EEE LPI on Tx path.

7 MAC Clock Gating
Enable 0b

Enables the MAC clock gating power saving mode. Mapped to STATUS[31]. This
bit is relevant only if the Enable Dynamic MAC Clock Gating bit is set. Refer to
Section 8.2.2.

6 PHY Power Down
Enable 1b When set, enables the internal PHY to enter a low-power state (refer to

Section 3.5.7.5). This bit is mapped to CTRL_EXT[20] (refer to Section 8.2.3).

iNVM Map—Ethernet Controller I211

131

6.2.8 Initialization Control 4 (Word 0x13)

These words control general initialization values of the LAN port.

6.2.9 PCIe L1 Exit Latencies (Word 0x14)

5 10BASE-TE 0b

Enable Low Amplitude 10BASE-T Operation
Setting this bit enables the I211 to operate in IEEE802.3az 10BASE-Te low
power operation. Bit is loaded to IPCNFG.10BASE-TE register bit (refer to
Section 8.22.1).
0b = 10BASE-Te operation disabled.
1b = 10BASE-Te operation enabled.
Note: When operating in 10BASE-T mode and bit is set supported cable length
is reduced.

4 Reserved 0b Reserved

3 Enable Dynamic
MAC Clock Gating 0b

When set, enables dynamic MAC clock gating mechanism. Refer to
Section 8.2.3.

2 Reserved 0b Reserved.

1 EEE_1G_AN 1b
Report EEE 1 GbE Capability in Auto-negotiation. Refer to Section 8.22.1.
0b = Do not report EEE 1 GbE capability in auto-negotiation.
1b = Report EEE 1 GbE capability in auto-negotiation.

0 EEE_100M_AN 1b
Report EEE 100 Mb/s Capability in Auto-negotiation. Refer to Section 8.22.1.
0b = Do not report EEE 100 Mb/s capability in auto-negotiation.
1b = Report EEE 100 Mb/s capability in auto-negotiation.

Bit Name Default HW
Mode Description

15:8 Reserved 0x0 Reserved.

7 SPD Enable 1b
Smart Power Down
When set, enables internal PHY smart power down mode (refer to
Section 3.5.7.5.5).

6 LPLU 1b
Low Power Link Up
Enables a decrease in link speed in non-D0a states when power policy and power
management states dictate it (refer to Section 3.5.7.5.4).

5:1 PHY_ADD 0x00 PHY address. Value loaded to the MDICNFG.PHYADD field. Refer to Section 8.2.5.

0 DEV_RST_EN 1b Enable software reset (CTRL.DEV_RST) generation to the LAN port (refer to
Section 4.3).

Bits Name Default HW
Mode Description

15 Reserved 1b Reserved.

14:12 L1_Act_Acc_Latency 110b Loaded to the Endpoint L1 Acceptable Latency field in Device
Capabilities in the PCIe Configuration registers at power up.

11:6 Reserved 0b Reserved.

5:3 L1 G1 Sep exit latency 100b L1 exit latency G1S. Loaded to Link Capabilities -> L1 Exit Latency
at PCIe v2.1 (2.5GT/s) system in a separate clock setting.

2:0 L1 G1 Com exit latency 100b L1 exit latency G1C. Loaded to Link Capabilities -> L1 Exit Latency
at PCIe v2.1 (2.5GT/s) system in a common clock setting.

Bit Name Default HW
Mode Description

Ethernet Controller I211 —iNVM Map

132

6.2.10 PCIe Completion Timeout Configuration (Word 0x15)

6.2.11 MSI-X Configuration (Word 0x16)

These words configure MSI-X functionality for the LAN.

6.2.12 PCIe Init Configuration 1 (Word 0x18)

This word is used to define L0s exit latencies.

Bit Name Default HW
Mode Description

15:5 Reserved Reserved.

4 Completion Timeout
Resend 0b

When set, enables to resend a request once the completion timeout expired.
0b = Do not re-send request on completion timeout.
1b = Re-send request on completion timeout. Refer to Section 8.5.1.

3:0 Reserved 0x0 Reserved.

Bit Name Default HW
Mode Description

15:11 MSI_X_N 0x4
This field specifies the number of entries in MSI-X tables of the relevant LAN.
The range is 0-4. MSI_X_N is equal to the number of entries minus one. Refer to
Section 9.4.3.3.

10 MSI Mask 1b
MSI Per-vector Masking Setting
This bit is loaded to the masking bit (bit 8) in the Message Control word of the
MSI Configuration Capability structure.

9:0 Reserved 0x0 Reserved.

Bits Name Default HW
Mode Description

15 Reserved 0b Reserved.

14:12 L0s Acceptable Latency 011b Loaded to the Endpoint L0s Acceptable Latency field in the Device
Capabilities in the PCIe configuration registers at power up.

11:6 Reserved 0b Reserved.

5:3 L0s G1 Sep Exit Latency 111b

L0s Exit Latency G1S
Loaded to L0s Exit Latency field in the Link Capabilities register in
the PCIe Configuration registers in PCIe v2.1 (2.5GT/s) system at a
separate clock setting.

2:0 L0s G1 Com Exit Latency 101b

L0s Exit Latency G1C
Loaded to L0s Exit Latency field in the Link Capabilities register in
the PCIe Configuration registers in PCIe v2.1 (2.5GT/s) system at a
Common clock setting.

iNVM Map—Ethernet Controller I211

133

6.2.13 PCIe Init Configuration 2 Word (Word 0x19)

This word is used to set defaults for some internal PCIe configuration registers.

6.2.14 PCIe Init Configuration 3 Word (Word 0x1A)

This word is used to set defaults for some internal PCIe registers.

Bit Name Default HW
Mode Description

15 Reserved Reserved.

14 IO_Sup 1b

I/O Support (affects I/O BAR request)
When set to 1b, I/O is supported. When cleared the I/O Access Enable bit in the
Command Reg in the Mandatory PCI Configuration area is RO with a value of 0b.
For additional information on CSR access via I/O address space, see Section 8.1.1.3.

13 CSR_conf_en 1b

Enable CSR Access Via Configuration Space
When set, enables CSR access via the configuration registers located at configuration
address space 0x98 and 0x9C.
For additional information on CSR access via configuration address space, see
Section 8.1.1.4.

12 Serial Number
Enable 1b

Serial Number Capability Enable
Should be set to 1b.

11:0 Reserved 0x0 Reserved.

Bit Name Default HW
Mode Description

15:13 AER Capability Version 0x2
AER Capability Version Number
PCIe AER extended capability version number.
Refer to Section 9.5.1.1.

12 Cache_Lsize 0b

Cache Line Size
0b = 64 bytes.
1b = 128 bytes.
This bit defines the cache line size reported in the PCIe Mandatory
Configuration register area. Refer to Section 9.3.7.

11:10 GIO_Cap 10b

PCIe Capability Version
The value of this field is reflected in the two LSBs of the capability version in
the PCIe CAP register (config space – offset 0xA2).
This field must be set to 10b to use extended configuration capability.
Note that this is not the PCIe version. It is the PCIe capability version. This
version is a field in the PCIe capability structure and is not the same as the
PCIe version. It changes only when the content of the capability structure
changes. For example, PCIe 1.0, 1.0a, and 1.1 all have a capability version of
one. PCIe 2.0 has a version of two because it added registers to the
capabilities structures. Refer to Section 9.4.5.3.

9:8 Max Payload Size 10b

Default Packet Size
00b = 128 bytes.
01b = 256 bytes.
10b = 512 bytes.
11b = Reserved.
Loaded to two LSB bits of the Max Payload Size Supported field in the Device
Capabilities register (refer to Section 9.4.5.4).

7:4 Reserved Reserved.

Ethernet Controller I211 —iNVM Map

134

6.2.15 PCIe Control 1 (Word 0x1B)

This word is used to configure initial settings for PCIe default functionality.

6.2.16 LED1 Configuration Defaults (Word 0x1C)

These iNVM words specify the hardware defaults for the LEDCTL register fields controlling the LED1
(ACTIVITY indication) output behavior. These words control the LED behavior of the LAN port.

3:2 Act_Stat_PM_Sup 11b
Determines support for active state link power management.
Loaded into the PCIe Active State Link PM Support register. Refer to
Section 9.4.5.7.

1 Slot_Clock_Cfg 1b When set, the I211 uses the PCIe reference clock supplied on the connector
(for add-in solutions).

0 Reserved Reserved.

Bit Name Default HW
Mode Description

15:12 Reserved 0x0 Reserved.

11 Disable ACLs 0b If set, the ACLs on the PCIe VDMs are disabled.

10 No_Soft_Reset 1b

No_Soft_Reset
This bit defines the behavior of the I211 when a transition from the D3hot to D0
power state occurs. When this bit is set, no internal reset is issued when making
a transition from D3hot to D0. Value is loaded to the No_Soft_Reset bit in the
PMCSR register (refer to Section 9.4.1.4).

9:0 Reserved 0 Reserved.

Bit Name Default HW
Mode Description

15:8 Reserved 0x0 Reserved.

7 LED1 Blink 1b
Initial value of LED1_BLINK field.
0b = Non-blinking.
See Section 8.2.8 and Section 7.5.

6 LED1 Invert 0b
Initial value of LED1_IVRT field.
0b = Active-low output.
See Section 8.2.8 and Section 7.5.

5:4 Reserved 00b Reserved.

3:0 LED1 Mode 0100b

Initial value of the LED1_MODE field specifying what event/state/pattern is
displayed on LED1 (LINK/ACTIVITY) output. A value of 0100b (0x4) indicates the
LINK state when active and ACTIVITY when BLINK.
See Section 8.2.8 and Section 7.5.

Bit Name Default HW
Mode Description

iNVM Map—Ethernet Controller I211

135

6.2.17 Device Rev ID (Word 0x1E)

6.2.18 LED0,2 Configuration Defaults (Word 0x1F)

These iNVM words specify the hardware defaults for the LEDCTL register fields controlling the LED
(LINK_UP) and LED2 (LINK_100) output behaviors. These words control the LED behavior of the LAN
port.

Bit Name Default HW
Mode Description

15 (Static) Device Off
Enable1

1. One single device off mode can be enabled in /iNVM at the same time, either Static or Dynamic Device Off mode.

0b Enable power down when the DEV_OFF_N pin is asserted. Refer to Section 5.2.4.1
for details.

14 Dynamic Device
Off Enable1 0b

Enable Dynamic Power Down
The device dynamically powers down when PCIe is in Dr state and the PHY is not
used for WoL. Refer to Section 5.2.6.2 for details.

13:12 Reserved 00b • Reserved.

11 Reserved 0b
Reserved. When reset, the LAN class code is set to 0x020000 (LAN)
Refer to Section 9.3.6.

10 Reserved 0b Reserved.

9:8 Lanphy_devoff_p
wrdn_confg 00b

00b = No copper PHY power down in device off states.
01b = Power Down with energy detect in device off state.
1xb = IEEE power down - coming out of power down is immediate, link needs to be
re-negotiated. This is the recommended NVM setting when the device off feature is
enabled.

7:0 DEVREVID 0x0

Device Revision ID
The actual device revision ID is this iNVM value XORed with the hardware default of
Rev ID. For any device version the default value in this field is set to zero unless we
need to overwrite the hardware default. Refer to Section 9.3.5.

Bit Name Default HW
Mode Description

15 LED2 Blink 0b
Initial value of LED2_BLINK field.
0b = Non-blinking.
Refer to Section 8.2.8 and Section 7.5.

14 LED2 Invert 0b
Initial value of LED2_IVRT field.
0b = Active-low output.
Refer to Section 8.2.8 and Section 7.5.

13:12 Reserved 0x0 Reserved

11:8 LED2 Mode 0111b

Initial value of the LED2_MODE field specifying what event/state/pattern is
displayed on the LED2 (LINK_1000) output. A value of 0111b (0x7) indicates 1000
Mb/s operation.
Refer to Section 8.2.8 and Section 7.5.

7 LED0 Blink 0b
Initial value of LED0_BLINK field.
0b = Non-blinking.
Refer to Section 8.2.8 and Section 7.5.

6 LED0 Invert 0b
Initial value of LED0_IVRT field.
0b = Active-low output.
Refer to Section 8.2.8 and Section 7.5.

Ethernet Controller I211 —iNVM Map

136

6.2.19 Software Defined Pins Control (Word 0x20)

These words at offset 0x20 from start of relevant iNVM section are used to configure initial settings of
software defined pins (SDPs) for the LAN.

5 Global Blink Mode 0b

Global Blink Mode
0b = Blink at 200 ms on and 200 ms off.
1b = Blink at 83 ms on and 83 ms off.
Refer to Section 8.2.8 and Section 7.5.

4 Reserved 0b Reserved. Set to 0b.

3:0 LED0 Mode 0110b

Initial value of the LED0_MODE field specifying what event/state/pattern is
displayed on the LED0 (LINK_100) output. A value of 0100b (0x4) indicates the
LINK_100 state.
Refer to Section 8.2.8 and Section 7.5.

Bit Name Default HW
Mode Description

15 SDPDIR[3] 0b

SDP3 Pin – Initial Direction
This bit configures the initial hardware value of the SDP3_IODIR bit in the
Extended Device Control (CTRL_EXT) register following power up. Refer to
Section 8.2.3.

14 SDPDIR[2] 0b

SDP2 Pin – Initial Direction
This bit configures the initial hardware value of the SDP2_IODIR bit in the
Extended Device Control (CTRL_EXT) register following power up. See section
8.2.3 .

13 PHY_in_LAN_disa
ble 1b

Determines the behavior of the MAC and PHY when the LAN port is disabled
through an external pin.
0b = MAC and PHY are kept functional in device off mode.
1b = MAC and PHY are powered down in device off mode.

12 Disable 100 in
non-D0a 0b

Disables 1000 Mb/s and 100 Mb/s operation in non-D0a states (refer to
Section 3.5.7.5.4).
Sets default value of PHPM.Disable 100 bit in non-D0a mode.

11 Reserved 0b Reserved.

10 I2C_ON_SDP_EN 0b

When set to 1b, SDP pins 0 and 2 operate as I2C pins controlled by the I2CCMD
and I2CPARAMS registers set.
Used to set the default value of CTRL_EXT.I2C over SDP Enabled. Refer to
Section 8.2.3.

9 SDPDIR[1] 0b
SDP1 Pin – Initial Direction
This bit configures the initial hardware value of the SDP1_IODIR bit in the Device
Control (CTRL) register following power up. See section 8.2.1 .

8 SDPDIR[0] 0b
SDP0 Pin – Initial Direction
This bit configures the initial hardware value of the SDP0_IODIR bit in the Device
Control (CTRL) register following power up. See section 8.2.1 .

7 SDPVAL[3] 0b

SDP3 Pin – Initial Output Value
This bit configures the initial power-on value output on SDP3 (when configured as
an output) by configuring the initial hardware value of the SDP3_DATA bit in the
Extended Device Control (CTRL_EXT) register after power up. See section 8.2.3 .

6 SDPVAL[2] 0b

SDP2 Pin – Initial Output Value
This bit configures the initial power-on value output on SDP2 (when configured as
an output) by configuring the initial hardware value of the SDP2_DATA bit in the
Extended Device Control (CTRL_EXT) register after power up. See section 8.2.3 .

5 WD_SDP0 0b When set, SDP[0] is used as a watchdog timeout indication. When reset, it is used
as an SDP (as defined in bits 8 and 0). See section 8.2.1 .

4 Giga Disable 0b When set, GbE operation is disabled. A usage example for this bit is to disable GbE
operation if system power limits are exceeded (refer to Section 3.5.7.5.4).

Bit Name Default HW
Mode Description

iNVM Map—Ethernet Controller I211

137

6.2.20 Functions Control (Word 0x21)

3 Disable 1000 in
non-D0a 1b Disables 1000 Mb/s operation in non-D0a states (refer to Section 3.5.7.5.4).

2 D3COLD_WAKEU
P_ADVEN 1b

Controls reporting of D3 Cold wake-up support in the Power Management
Capabilities (PMC) configuration register (refer to Section 9.4.1.3).
In addition, bit is loaded to CTRL.ADVD3WUC (refer to Section 8.2.1).
When set, D3Cold wake up capability is advertised based on whether AUX_PWR
pin is connected to 3.3V to advertise presence of auxiliary power (yes, if AUX_PWR
is indicated, no otherwise). When set to 0b, D3Cold wake up capability is not
advertised even if AUX_PWR presence is indicated.
If full 1 GbE operation in D3 state is desired but the system's power requirements
in this mode would exceed the D3Cold wake up enabled specification limit (375 mA
at 3.3V), this bit can be used to prevent the capability from being advertised to
the system.

1 SDPVAL[1] 0b

SDP1 Pin – Initial Output Value
This bit configures the initial power-on value output on SDP1 (when configured as
an output) by configuring the initial hardware value of the SDP1_DATA bit in the
Device Control (CTRL) register after power up. See section 8.2.1 .

0 SDPVAL[0] 0b

SDP0 Pin – Initial Output Value
This bit configures the initial power-on value output on SDP0 (when configured as
an output) by configuring the initial hardware value of the SDP0_DATA bit in the
Device Control (CTRL) register after power up. See section 8.2.1 .

Bit Name Default HW
Mode Description

15:11 Reserved 0x0 Reserved.

10 BAR32 1b

Bit (loaded to the BARCTRL register) preserves the legacy 32-bit BAR mode when
BAR32 is set. When cleared to 0b, 64-bit BAR addressing mode is selected.
Note: If PREFBAR is set, the BAR32 bit should always be 0b (64-bit BAR
addressing mode).
Refer to Section 9.3.11.

9 PREFBAR 0b

0b = BARs are marked as non prefetchable.
1b = BARs are marked as prefetchable.
Refer to Section 9.3.11.
Notes:
1. The I211 implements non-prefetchable space in memory BAR, since it has

read side affects. This bit is loaded from the PREFBAR bit in the iNVM.
2. If PREFBAR bit is set then the BAR32 bit should be 0b.

8:0 Reserved 0x0 Reserved.

Bit Name Default HW
Mode Description

Ethernet Controller I211 —iNVM Map

138

6.2.21 LAN Power Consumption (Word 0x22)

6.2.22 Initialization Control 3 (Word 0x24)

These words control the general initialization values of the LAN port.

Bit Name Default HW
Mode Description

15:8 LAN D0 Power 0x0

The value in this field is reflected in the PCI Power Management Data Register of
the PCIe function for D0 power consumption and dissipation (Data_Select = 0 or
4). Power is defined in 100 mW units. The power also includes the external logic
required for the LAN function. Refer to Section 9.4.1.4.

7:5 PCIe Function
Common Power 0x0

The value in this field is reflected in the PCI Power Management Data register of
the PCIe function when the Data_Select field is set to 8 (common function). The
MSBs in the data register that reflects the power values are padded with zeros.
Refer to Section 9.4.1.4.

4:0 LAN D3 Power 0x0

The value in this field is reflected in the PCI Power Management Data register of
the PCIe function for D3 power consumption and dissipation (Data_Select = 3 or
7). Power is defined in 100 mW units. The power also includes the external logic
required for the function. The MSBs in the data register that reflects the power
values are padded with zeros. Refer to Section 9.4.1.4.

Bit Name Default HW
Mode Description

15 Reserved 0b Reserved.

14 Reserved 0b Reserved.

13 ILOS 0b
Invert Loss-of-Signal (LOS/LINK) Signal
Default setting for the loss-of-signal polarity bit (CTRL[7]). Refer to Section 8.2.1.

12:11 Reserved 00b Reserved.

10 APM Enable 0b

Initial value of Advanced Power Management Wake Up Enable bit in the Wake Up
Control (WUC.APME) register. Mapped to CTRL[6] and to WUC[0]. Refer to
Section 8.2.1 and Section 8.18.1.
Note: The disabled port that has the PHY_in_LAN_disable iNVMbit (refer to
Section 6.2.19), set to 1b, the APM Enable iNVM bit should be 0b.

9 Enable Automatic
Crossover 1b

When set, the device automatically determines whether or not it needs to cross over
between pairs so that an external cross-over cable is not required.
Used to set the default value to IPCNFG bit 0.

8 Reserved 0b Reserved.

7 LAN Boot Disable 1b A value of 1b disables the Expansion ROM BAR in the PCI configuration space.

6 EN_APM_D0 0b

Enable APM Wake On D0
0b = Enable APM wake only when function is in D3 and WUC.APME is set to 1b.
1b = Always enable APM wake when WUC.APME is set to 1b.
Loaded to the WUC.EN_APM_D0 bit (refer to Section 8.18.1).

5:4 Link Mode 00b

Initial value of Link Mode bits of the Extended Device Control
(CTRL_EXT.LINK_MODE) register, specifying which link interface and protocol is
used by the MAC.
00b = MAC operates with internal copper PHY (10/100/1000BASE-T).
See Section 8.2.3.

3:0 Reserved 0x0 Reserved.

iNVM Map—Ethernet Controller I211

139

6.2.23 PCIe Control 2 (Word 0x28)

This word is used to configure the initial settings for the PCIe default functionality.

6.2.24 PCIe Control 3 (Word 0x29)

This word is used for programming PCIe functionality and function disable control.

Bits Name Default HW
Mode Description

15:14 Reserved Reserved

13 ECRC Generation for
MCTP 0b

0b = Add ECRC to MCTP packets if ECRC is enabled via the ECRC Generation
Enable field in PCIe Advanced Error Capabilities and Control register.
1b = Do not add ECRC to MCTP packets even if ECRC is enabled.
Should be cleared in normal operation.

12 ECRC Check 1b

Loaded into the ECRC Check Capable bit of the PCIe Advanced Error Capabilities
and Control register.
0b = Function is not capable of checking ECRC.
1b = Function is capable of checking ECRC.

11 ECRC Generation 1b

Loaded into the ECRC Generation Capable bit of the PCIe Advanced Error
Capabilities and Control register.
0b = Function is not capable of generating ECRC.
1b = Function is capable of generating ECRC.

10 FLR Capability Enable 1b FLR Capability Enable bit is loaded to the PCIe configuration registers -> Device
Capabilities.

9:6 FLR Delay 0x1
Delay in microseconds from D0 to D3 move until a reset assertion.
Meaningless when the FLR delay disable bit is set to 1b.

5 FLR Delay Disable 1b
FLR Delay Disable
0 = Add delay to FLR assertion.
1 = Do not add delay to FLR assertion.

4 Reserved Reserved.

0 CSR_Size 0b

The CSR_Size and FLBAR_Size fields define the usable iNVM size and CSR
mapping window size as shown in BARCTRL register description.
Note: When CSR_Size and FLBAR_size fields in the iNVM are set to 0b, Flash BAR
in the PCI configuration space is disabled.

Bits Name Default HW
Mode Description

15 en_pin_pcie_func_dis 0b
When set to 1b, enables disabling the PCIe function by driving the SDP_1 pin to
0b (refer to Section 4.4.3).
Note: The SDP_1 pin on the port is sampled on power up and during PCIe reset.

14 Reserved 0b Reserved.

13 nvm_alt_aux_pwr_en
1 0b When set to 1b, SDP_3 pad controls the auxiliary power functionality. When

SDP_3 pad is driven high, it indicates that auxiliary power is provided.

12 Reserved 0b Reserved.

11 Reserved 0b Reserved.

10 nvm_aux_pwr_en1 0b When set to 1b, DEV_OFF_N pad controls the auxiliary power functionality. When
DEV_OFF_N pad is driven high, it indicates that auxiliary power is provided.

9:7 Reserved 0x0 Reserved

6 Reserved 0b Reserved

5 Wake_pin_enable 0b
Enables the use of the WAKE# pin for a PME event in all non-LTSSM L2 power
states. When bit is set to 1b, the WAKE# pin is asserted even when the device is
not in D3cold state, if a wake event is detected.

4:0 Reserved 11100b
Reserved.
In NVM/iNVM, set this field like its HW default value.

Ethernet Controller I211 —iNVM Map

140

1 At most one of these two bits may be set.

6.2.25 Watchdog Configuration (Word 0x2E)

6.3 Software Accessed Words
Words 0x03 to 0x07 in the iNVM image are reserved for compatibility information. New bits within these
fields are defined as the need arises for determining software compatibility between various hardware
revisions.

6.3.1 Port Identification LED Blinking (Word 0x04)

Default iNVM setting for this word must be 0x0911.

6.3.2 iNVM Map Revision (Word 0x05)

This word is valid only for device starter images and indicates the version of the iNVM map.

Bit Name Default HW
Mode Description

15 Watchdog Enable 0b
Enable Watchdog Interrupt. Refer to Section 8.13.1.
Note: If this bit is set to 1b the value of iNVM Watchdog Timeout field should be 2 or
higher to avoid immediate generation of a watchdog interrupt.

14:11 Watchdog
Timeout 0x2

Watchdog Timeout Period (in seconds). Refer to Section 8.13.1.
Note: Loaded to 4 LSB bits of WDSTP.WD_Timeout field.

10:0 Reserved Reserved.

Bits Name Default
HW Mode Description

15:0 Reserved 0x0 Reserved.

Bit Description

15:12 Reserved.

11:8

Control for LED 2
0001b = Default in STATE1 + Default in STATE2.
0010b = Default in STATE1 + LED is ON in STATE2.
0011b = Default in STATE1 + LED is OFF in STATE2.
0100b = LED is ON in STATE1 + Default in STATE2.
0101b = LED is ON in STATE1 + LED is ON in STATE2.
0110b = LED is ON in STATE1 + LED is OFF in STATE2.
0111b = LED is OFF in STATE1 + Default in STATE2.
1000b = LED is OFF in STATE1 + LED is ON in STATE2.
1001b = LED is OFF in STATE1 + LED is OFF in STATE2.

7:4 Control for LED 1 – same encoding as for LED2.

3:0 Control for LED 0 – same encoding as for LED2.

iNVM Map—Ethernet Controller I211

141

6.3.3 OEM Specific (Words 0x06, 0x07)

These words are available for OEM use.

6.3.3.1 PXE VLAN Configuration Pointer (0x003C)

6.3.3.1.1 PXE VLAN Configuration Section

6.3.3.1.1.1 VLAN Block Signature - 0x0000

6.3.3.1.1.2 Version and Size - 0x0001

Bit Description

15:12 iNVM major version (decimal).

11:8 0x0 (for the decimal point)

7:0 iNVM minor version (decimal).

Bits Name Default Description

15:0 PXE VLAN Configu-
ration Pointer

0x0 The pointer contains offset of the first Flash word of the PXE VLAN config block.

Word Offset Word Name Description

0x0000 VLAN Block Signature ASCII 'V', 'L'.

0x0001 Version and Size Contains version and size of structure.

0x0002 VLAN Tag VLAN tag value for the I211. Contains PCP, CFI and
VID fields. A value of 0 means no VLAN is configured
for this port.

Bits Field Name Default Description

15:0 VLAN Block Signature 0x4C56 ASCII 'V', 'L'.

Bits Field Name Default Description

15:8 Size 0x06 Total size in bytes of section.

7:0 Version 0x01 Version of this structure. Should be set to 0x1.

Ethernet Controller I211 —iNVM Map

142

6.3.3.1.1.3 VLAN Tag - 0x0002

Bits Field Name Default Description

15:13 Priority (0-7) 0x0 Priority 0-7.

12 Reserved 0x0 Always 0.

11:0 VLAN ID (1- 4095) 0x0 VLAN ID (1-4095).

Inline Functions—Ethernet Controller I211

143

7.0 Inline Functions

7.1 Receive Functionality
Typically, packet reception consists of recognizing the presence of a packet on the wire, performing
address filtering, storing the packet in the receive data FIFO, transferring the data to one of the 2
receive queues in host memory, and updating the state of a receive descriptor.

A received packet goes through two stages of filtering.

The first step in queue assignment is to verify that the packet is destined to the port. This is done by a
set of L2 filters as described in Section 7.1.3.

In the second stage, a received packet that successfully passed the Rx filters is associated with one or
more receive descriptor queues as described in Section 7.1.1.

7.1.1 L2 Packet Filtering

The receive packet filtering role is to determine which of the incoming packets are allowed to pass to
the local system and which of the incoming packets should be dropped since they are not targeted to
the local system. Received packets are destined to the host. This section describes how host filtering is
done.

As shown in Figure 7-1, host filtering has two stages:

1. Packets are filtered by L2 filters (MAC address, unicast/multicast/broadcast). See Section 7.1.1.1
for details.

2. Packets are then filtered by VLAN if a VLAN tag is present. See Section 7.1.1.2 for details.

A packet is not forwarded to the host if any of the following takes place:

1. The packet does not pass MAC address filters as described later in this section.
2. The packet does not pass VLAN filtering as described later in this section.

A packet that passes receive filtering as previously described might still be dropped due to other
reasons. Normally, only good packets are received. These are defined as those packets with no Under
Size Error, Over Size Error (see Section 7.1.1.3), Packet Error, Length Error and CRC Error are
detected. However, if the store-bad-packet bit is set (RCTL.SBP), then bad packets that pass the filter
function are stored in host memory. Packet errors are indicated by error bits in the receive descriptor
(RDESC.ERRORS). It is possible to receive all packets, regardless of whether they are bad, by setting
the promiscuous enabled (Unicast and Multicast) and the store-bad-packet bits in the RCTL register.

If there is insufficient space in the receive FIFO, hardware drops the packet and indicates the missed
packet in the appropriate statistics registers.

When the packet is routed to a queue with the SRRCTL.Drop_En bit set to 1b, receive packets are
dropped when insufficient receive descriptors exist to write the packet into system memory.

Ethernet Controller I211 —Inline Functions

144

Note: CRC errors before the SFD are ignored. Any packet must have a valid SFD in order to be
recognized by the I211 (even bad packets).

7.1.1.1 MAC Address Filtering

Figure 7-2 shows the MAC address filtering. A packet passes successfully through the MAC address
filtering if any of the following conditions are met:

1. It is a unicast packet and promiscuous unicast filtering is enabled.
2. It is a multicast packet and promiscuous multicast filtering is enabled.
3. It is a unicast packet and it matches one of the unicast MAC filters.
4. It is a multicast packet and it matches one of the multicast filters.
5. It is a broadcast packet and Broadcast Accept Mode (RCTL.BAM) is enabled.

Figure 7-1. I211 Receive Filtering Flow Chart

Discard
Packet

Fail

Fail
Host VLANFilter

Pass

To Host

Packet Arrived

Host MAC
Address
Filter

Inline Functions—Ethernet Controller I211

145

7.1.1.1.1 Unicast Filter

The entire MAC address is checked against the 16 host unicast addresses. The 16 host unicast
addresses are controlled by the host interface. The destination address of an incoming packet must
exactly match one of the pre-configured host address filters. These addresses can be unicast or
multicast. Those filters are configured through RAL, and RAH registers.

Promiscuous Unicast — Receive all unicasts. Promiscuous unicast mode in the RCTL register can be set/
cleared only through the host interface. This mode is usually used when the I211 is used as a sniffer.

Figure 7-2. Host MAC Address Receive Filtering Flow Chart

Unicast
Packet

type

Start

Promiscuous
Unicast enable

Unicast pass

No

Yes

Yes

No

Broadcast
accept mode

Yes

Promiscuous multicast
enable

Broadcast

Multicast

Yes

VLAN filtering Multicast pass

no

yes

no

Discard packet

No

Ethernet Controller I211 —Inline Functions

146

7.1.1.1.2 Multicast Filter (Inexact)

A 12-bit portion of incoming packet multicast address must exactly match Multicast Filter Address
(MFA) in order to pass multicast filtering. This means that 12 bits out of 48 bits of the destination
address are used and can be selected by the MO field of RCTL (Section 8.9.1). The 12 bits extracted
from the Multicast Destination address are used as an address for a bit in the Multicast Table Array
(MTA). If the value of the bit selected in the MTA table is 1b, the packet is sent to the host (See
Section 8.9.15). These entries can be configured only by the host interface. Packets received according
to this mode have the PIF bit in the descriptor set to indicate imperfect filtering that should be validated
by the software device driver.

Promiscuous Multicast — Receive all multicast. Promiscuous multicast mode can be set/cleared in the
RCTL register only through the host interface and it is usually used when the I211 is used as a sniffer.

Note: When the promiscuous bit is set and a multicast packet is received, the PIF bit of the packet
status is not set.

7.1.1.2 VLAN Filtering

A receive packet that successfully passed MAC address filtering is then subjected to VLAN header
filtering.

1. If the packet does not have a VLAN header, it passes to the next filtering stage.

Note: If external VLAN is enabled (CTRL_EXT.EXT_VLAN is set), it is assumed that the first VLAN
tag is an external VLAN and it is skipped. All next stages refer to the second VLAN.

2. If VLAN filtering is disabled (RCTL.VFE bit is cleared), the packet is forwarded to the next filtering
stage.

3. If the packet has a VLAN header, and it matches an enabled host VLAN filter (relevant bit in VFTA
table is set), the packet is forwarded to the next filtering stage.

4. Otherwise, the packet is dropped.

Figure 7-3 shows the VLAN filtering flow.

Inline Functions—Ethernet Controller I211

147

7.1.1.3 Size Filtering

A packet is defined as undersize if it is smaller than 64 bytes.

A packet is defined as oversize in the following conditions:

• The RCTL.LPE bit cleared and one of the following conditions is met:
— The packet is bigger than 1518 bytes and there are no VLAN tags in the packet.
— The packet is bigger than 1522 bytes and there is one VLAN tag in the packet.
— The packet is bigger than 1526 bytes and there are two VLAN tags in the packet.

• The RCTL.LPE bit is set to 1b and the packet is bigger than RLPML.RLPML bytes.

Note: Even when the RCTL.LPE bit is set, the maximum supported received-packet size is 9.5 KB
(9728 bytes).

Figure 7-3. I211 VLAN Filtering

Packet Has
VLAN Header

Yes

Discard
Packet

No

Yes

Host VLAN
Filters Enable

MAC
Address
Filtering

Host VLAN
Filters Pass

Ethernet Controller I211 —Inline Functions

148

7.1.2 Receive Queues Assignment

The following filter mechanisms determines the destination of a receive packet. These are described
briefly in this section and in full details in separate sections:

• RSS — Receive Side Scaling distributes packet processing between several processor cores by
assigning packets into different descriptor queues. RSS assigns to each received packet an RSS
index. Packets are routed to a queue out of a set of Rx queues based on their RSS index and other
considerations. See Section 7.1.2.7 for details on RSS.

• L2 Ether-type filters — These filters identify packets by their L2 Ether-type and assign them to
receive queues. Examples of possible uses are LLDP packets and 802.1X packets. See
Section 7.1.2.3 for mode details. The I211 incorporates 4 Ether-type filters.

• 2-tuple filters — These filters identify packets with specific TCP/UDP destination port and/or L4
protocol. Each filter consists of a 2-tuple (protocol and destination TCP/UDP port) and routes
packets into one of the Rx queues. The I211 has 8 such filters. See Section 7.1.2.4 for details.

• TCP SYN filters — The I211 might route TCP packets with their SYN flag set into a separate queue.
SYN packets are often used in SYN attacks to load the system with numerous requests for new
connections. By filtering such packets to a separate queue, security software can monitor and act
on SYN attacks. The I211 has one such filter. See Section 7.1.2.6 for more details.

• Flex Filters - These filters can be either used as WoL filters when the I211 is in D3 state or for
queueing in normal operating mode (D0 state). Filters enable queueing according to a match of any
128 Byte sequence at the beginning of a packet. Each one of the 128 bytes can be either compared
or masked using a dedicated mask field. The I211 has 8 such filters. See Section 7.1.2.5 for details.

• VLAN priority filters — These filters identify packets by their L2 VLAN priority and assign them to
receive queues. See Section 7.1.2.7 for mode details. The I211 incorporates 8 VLAN priority filters.

• MAC address filters — These filters identify packets by their L2 MAC address and assign them to
receive queues. See Section 7.1.2.8 for mode details. The I211 incorporates 16 MAC address
filters.

A received packet is allocated to a queue as described in the following sections.

7.1.2.1 Queuing Method

When the MRQC.Multiple Receive Queues Enable field equals 010b (multiple receive queues as defined
by filters and RSS for 4 queues) or 000b (multiple receive queues as defined by filters (2-tuple filters,
L2 Ether-type filters, SYN filter and Flex Filters), the received packet is assigned to a queue in the
following manner (Each filter identifies one of 2 receive queues):

1. Queue by MAC address filters (if a match)
2. Queue by L2 Ether-type filters (if a match)
3. If RFCTL.SYNQFP is 0b (2-tuple filter and Flex filter have priority), then:

a. Queue by Flex filter (if a match)
b. Queue by 2-tuple filter
c. Queue by SYN filter (if a match)

4. If RFCTL.SYNQFP is 1b (SYN filter has priority), then:
a. Queue by SYN filter (if a match)
b. Queue by Flex filter (if a match)
c. Queue by 2-tuple filter (if a match)

5. Queue by VLAN Priority (if a match)
6. Queue by RSS (if RSS enabled) - Identifies one of 1 x 2 queues through the RSS index. The

following modes are supported:

Inline Functions—Ethernet Controller I211

149

— No RSS — The default queue as defined in MRQC.DEF_Q is used for packets that do not meet
any of the previous conditions.

— RSS only — A set of 2 queues is allocated for RSS. The queue is identified through the RSS
index. Note that it is possible to use a subset of the 4 queues.

Note: No RSS here mean either that RSS is disabled (MRQC.Multiple Receive Queues Enable field
equals 000b) or that the packet did not match any of the RSS filters.

Figure 7-6 shows the receive queue assignment flow.

Ethernet Controller I211 —Inline Functions

150

Figure 7-4. Receive Queuing Flow

Packet matches
 L2 EtherType

 Filter?

Packet matches
 SYN

 Filter?

Packet matches
 flex filter?

Use MRQC.Def_Q[2:0]
as Queue number.

Use RSS index
(3 bits)

as Queue number.

END

The L2 EtherType filter
defines the Rx Queue

The SYN filter defines the
Rx Queue

The flex filters define the
Rx Queue

The 2-Tuple filters define
the Rx Queue

Packet matches
 2-Tuple
 Filter?

RSS enabled
and RSS match

found?

RFCTL.SYNQFP

Yes

Yes

Yes

1b

No

No

Packet matches
 flex filter?

The flex filters define the
Rx Queue

The 2-Tuple filters define
the Rx Queue

Packet matches
 2-Tuple
 Filter?

Yes

Yes

No

No

Packet matches
 SYN

 Filter?

The SYN filter defines the
Rx Queue

Yes

Yes

No

0b

Yes
No

Start

Packet matches
 MAC Address

 Filter?

No

The MAC Address filter
defines the Rx Queue

Yes

VLAN Priority
enabled and match

found?

No

The VLAN Priority define
the Rx Queue

Yes

Inline Functions—Ethernet Controller I211

151

7.1.2.2 Queue Configuration Registers

Configuration registers (CSRs) that control queue operation are replicated per queue (total of 4 copies
of each register). Each of the replicated registers correspond to a queue such that the queue index
equals the serial number of the register (such as register 0 corresponds to queue 0, etc.). Registers
included in this category are:

• RDBAL and RDBAH — Rx Descriptor Base
• RDLEN — RX Descriptor Length
• RDH — RX Descriptor Head
• RDT — RX Descriptor Tail
• RXDCTL — Receive Descriptor Control
• RXCTL — Rx DCA Control
• SRRCTL — Split and Replication Receive Control
• PSRTYPE — Packet Split Receive Type

7.1.2.3 L2 Ether-type Filters

These filters identify packets by L2 Ether-type and assign them to a receive queue. The following
usages have been identified:

• IEEE 802.1X packets — Extensible Authentication Protocol over LAN (EAPOL).
• Time sync packets (such as IEEE 1588) — Identifies Sync or Delay_Req packets
• IEEE802.1AB LLDP (Link Layer Discovery Protocol) packets.
• IEEE1722 (Layer 2 Transport Protocol for Time Sensitive Applications) packets
• IEEE1722 Layer 2 transport protocol for timed sensitive applications.

The I211 incorporates 4 Ether-type filters.

The Packet Type field in the Rx descriptor captures the filter number that matched the L2 Ether-type.
See Section 7.1.4.2 for decoding of the Packet Type field.

The Ether-type filters are configured via the ETQF register as follows:

• The EType field contains the 16-bit Ether-type compared against all L2 type fields in the Rx packet.
• The Filter Enable bit enables identification of Rx packets by Ether-type according to this filter. If this

bit is cleared, the filter is ignored for all purposes.
• The Etype Length and Etype Length Enable are used to enable parsing beyond the Ethertype

defined by the ETQF entry, the Etype Length points to the following Ethertype in the packet to
support extended Rx parsing.

• The Rx Queue field contains the absolute destination queue for the packet.
• The 1588 Time Stamp field indicates that the packet should be time stamped according to the IEEE

1588 specification.
• The Queue Enable field enables forwarding Rx packets based on the Ether-type defined in this

register. Refer to Section 7.1.2.1 on the impact and order of ETQF on the I211 queue selection
algorithm.

• The Ethertype length field contains the size of the Ethertype in bytes.
• The Ethertype length Enable field enables the parsing of the Rx packets based on the Ethertype

defined in this register.

Ethernet Controller I211 —Inline Functions

152

Note: Software should not assign the same Ether-type value to different ETQF filters with different
Rx Queue assignments.

Note: The Etype Length and Etype Length Enable should only be used when parsing beyond the
defined Ethertype is required to enable Rx offloading for non L2 only packets.

Note: Queuing and Immediate interrupt decisions for an incoming packet that matches more than a
single ETQF entry are done according to the setting of the last ETQF match.

7.1.2.4 2-Tuple Filters

These filters identify specific packets destined to a certain TCP/UDP port and implement a specific
protocol. Each filter consists of a 2-tuple (protocol and destination TCP/UDP port) and forwards packets
into one of the receive queues.

The I211 incorporates 8 such filters.

The 2-tuple filters are configured via the TTQF (See Section 8.10.3), IMIR (See Section 8.10.1) and
IMIR_EXT (See Section 8.10.2) registers as follows (per filter):

• Protocol — Identifies the IP protocol, part of the 2-tuple queue filters. Enabled by a bit in the
TTQF.Mask field.

• Destination port — Identifies the TCP/UDP destination port, part of the 2-tuple queue filters.
Enabled by the IMIR.PORT_BP bit.

• Size threshold (IMIREXT.Size_Thresh) — Identifies the length of the packet that should trigger the
filter. This is the length as received by the host, not including any part of the packet removed by
hardware. Enabled by the IMIREXT.Size_BP field.

• Control Bits — Identify TCP flags that might be part of the filtering process. Enabled by the
IMIREXT.CtrlBit_BP field.

• Rx queue — Determines the Rx queue for packets that match this filter:
— The TTQF.Rx Queue field contains the queue serial number.

• Queue enable — Enables forwarding a packet that uses this filter to the queue defined in the
TTQF.Rx Queue field.

• Mask — A 1-bit field that masks the L4 protocol check. The filter is a logical AND of the non-masked
2-tuple fields. If all 2-tuple fields are masked, the filter is not used for queue forwarding.

Notes:
• If more than one 2-tuple filter with the same priority is matched by the packet, the first

filter (lowest ordinal number) is used in order to define the queue destination of this
packet.

• The immediate interrupt and 1588 actions are defined by the OR of all the matching
filters.

7.1.2.5 Flex Filters

The I211 supports a total of 8 flexible filters. Each filter can be configured to recognize any arbitrary
pattern within the first 128 bytes of the packet. To configure the flexible filters, software programs the
mask values (required values and the minimum packet length), into the Flexible Host Filter Table (FHFT
and FHFT_EXT, See Section 8.18.17 and Section 8.18.18). These 8 flexible filters can be used as for
wake-up or proxying when in D3 state or for queueing when in D0 state. Software must enable the
filters in the Wake Up Filter Control (WUFC See Section 8.18.2) register or Proxying Filter Control

Inline Functions—Ethernet Controller I211

153

(PROXYFC see Section 8.18.6) for operation in D3 low power mode or in the WUFC register in D0 mode.
In D0 mode these filters enable forwarding of packets that match up to 128 Bytes defined in the filter to
one of the receive queues. In D3 mode these filters can be used for Wake-on-Lan.

Once enabled, the flexible filters scan incoming packets for a match. If the filter encounters any byte in
the packet where the mask bit is one and the byte doesn't match the value programmed in the Flexible
Host Filter Table (FHFT or FHFT_EXT), then the filter fails that packet. If the filter reaches the required
length without failing the packet, it forwards the packet to the appropriate receive queue. It ignores
any mask bits set to one beyond the required length (defined in the Length field in the FHFT or
FHFT_EXT registers).

Note: The flex filters are temporarily disabled when read from or written to by the host. Any packet
received during a read or write operation is dropped. Filter operation resumes once the read
or write access completes.

The flex filters are configured in D0 state via the WUFC, FHFT and FHFT_EXT registers as follows (per
filter):

• Byte Sequence to be compared - Program 128 Byte sequence, mask bits and Length field in FHFT
and FHFT_EXT registers.

• Filter Priority - Program filter priority in queueing field in FHFT and FHFT_EXT registers.
• Receive queue - Program receive queue to forward packet in queueing field in FHFT and FHFT_EXT

registers.
• Filter actions - Program immediate interrupt requirement in queueing field in FHFT and FHFT_EXT

registers.
• Filter enable - Set WUFC.FLEX_HQ bit to 1 to enable flex filter operation in D0 state. Set

appropriate WUFC.FLX[n] bit to 1 to enable specific flex filter.

Before entering D3 state software device driver programs the FHFT and FHFT_EXT filters for
appropriate wake events and enables relevant filters by setting the WUFC.FLX[n] bit to 1 or the
PROXYFC.FLX[n] bit to 1b. Following move to D0 state the software device driver programs the FHFT
and FHFT_EXT filters for appropriate queueing decisions and enables the relevant filters by setting the
WUFC.FLX[n] bit to 1b and the WUFC.FLEX_HQ bit to 1b.

Notes: If more than one flex filter with the same priority is matched by the packet, the first filter
(lowest address) is used in order to define the queue destination of this packet.
The immediate interrupt action is defined by the OR of all the matching filters.

7.1.2.6 SYN Packet Filters

The I211 might forward TCP packets whose SYN flag is set into a separate queue. SYN packets are
often used in SYN attacks to load the system with numerous requests for new connections. By filtering
such packets to a separate queue, security software can monitor and act on SYN attacks.

SYN filters are configured via the SYNQF registers as follows:

• Queue En — Enables forwarding of SYN packets to a specific queue.
• Rx Queue field — Contains the destination queue for the packet.

7.1.2.7 VLAN Priority Filters

The I211 can forward packets according to their VLAN priority to separate queues. The I211 supports
the configuration of the destination queue per VLAN priority.

Ethernet Controller I211 —Inline Functions

154

VLAN priority filters are configured via the VLANPQF registers as follows:

• Queue En — Enables forwarding of packets for each VLAN priority to a specific queue.
• Rx Queue field — Contains the destination queue for each VLAN priority packet.

7.1.2.8 VLAN Tag Filters

The I211 can forward packets according to their VLAN tag to separate queues. The I211 supports the
configuration of the destination queue per VLAN tag.

VLAN tag filters are configured via the VLANTAGQF registers as follows:

• VLAN tag value - The VLAN tag value to be filtered
• Queue En — Enables forwarding of packets for each filtered VLAN tag to a specific queue.
• Rx Queue field — Contains the destination queue for each filtered VLAN tag packet.

7.1.2.9 MAC Address Filters

The I211 can forward packets according to their MAC address to separate queues. The I211 supports
the configuration of the destination queue per MAC address.

MAC Address filters are configured via the RAL/H registers as follows:

• MAC address value - The MAC address value to be filtered
• Queue En — Enables forwarding of packets for each filtered MAC address to a specific queue.
• Rx Queue field — Contains the destination queue for each filtered MAC address.

7.1.2.10 Receive-Side Scaling (RSS)

RSS is a mechanism to distribute received packets into several descriptor queues. Software then
assigns each queue to a different processor, sharing the load of packet processing among several
processors.

The I211 uses RSS as one ingredient in its packet assignment policy (the others are the various filters
for Qav). The RSS output is a RSS index. The I211’s global assignment uses these bits (or only some of
the LSB bits) as part of the queue number.

RSS is enabled by the MRQC register. The RSS hash is reported only on the advanced receive descriptor
and it multiplexed with UDP fragmentation parameters. Selection between these two status indications
is done by the RXCSUM.PCSD bit setting.

When RSS is enabled, the I211 provides software with the following information as required by
Microsoft* RSS specification or for device driver assistance:

• A Dword result of the Microsoft* RSS hash function, to be used by the stack for flow classification,
is written into the receive packet descriptor (required by Microsoft* RSS).

• A 4-bit RSS Type field conveys the hash function used for the specific packet (required by
Microsoft* RSS).

Figure 7-5 shows the process of computing an RSS output:

1. The receive packet is parsed into the header fields used by the hash operation (such as IP
addresses, TCP port, etc.).

Inline Functions—Ethernet Controller I211

155

2. A hash calculation is performed. The I211 supports a single hash function, as defined by Microsoft*
RSS. The I211 does not indicate to the software device driver which hash function is used. The 32-
bit result is fed into the packet receive descriptor.

3. The seven LSB bits of the hash result are used as an index into a 128-entry indirection table. Each
entry provides a 3-bit RSS output index.

When RSS is disabled, packets are assigned an RSS output index = zero. System software might
enable or disable RSS at any time. While disabled, system software might update the contents of any of
the RSS-related registers.

When multiple requests queues are enabled in RSS mode, un-decodable packets are assigned an RSS
output index = zero. The 32-bit tag (normally a result of the hash function) equals zero.

7.1.2.10.1 RSS Hash Function

Figure 7-5. RSS Block Diagram

RSS Hash

LS

Packet
Descriptor

Parsed
Receive
Packet

7

32

RSS Disable or (RSS
And Not Decodable)

3

0

3

RSS Output Index

Indirection Table
128 x 3

Ethernet Controller I211 —Inline Functions

156

Section 7.1.2.10.1 provides a verification suite used to validate that the hash function is computed
according to Microsoft* nomenclature.

The I211 hash function follows Microsoft* definition. A single hash function is defined with several
variations for the following cases:

• TcpIPv4 — The I211 parses the packet to identify an IPv4 packet containing a TCP segment per the
criteria described later in this section. If the packet is not an IPv4 packet containing a TCP segment,
RSS is not done for the packet.

• IPv4 — The I211 parses the packet to identify an IPv4 packet. If the packet is not an IPv4 packet,
RSS is not done for the packet.

• TcpIPv6 — The I211 parses the packet to identify an IPv6 packet containing a TCP segment per the
criteria described later in this section. If the packet is not an IPv6 packet containing a TCP segment,
RSS is not done for the packet.

• TcpIPv6Ex — The I211 parses the packet to identify an IPv6 packet containing a TCP segment with
extensions per the criteria described later in this section. If the packet is not an IPv6 packet
containing a TCP segment, RSS is not done for the packet. Extension headers should be parsed for
a Home-Address-Option field (for source address) or the Routing-Header-Type-2 field (for
destination address).

• IPv6Ex — The I211 parses the packet to identify an IPv6 packet. Extension headers should be
parsed for a Home-Address-Option field (for source address) or the Routing-Header-Type-2 field
(for destination address). Note that the packet is not required to contain any of these extension
headers to be hashed by this function. In this case, the IPv6 hash is used. If the packet is not an
IPv6 packet, RSS is not done for the packet.

• IPv6 — The I211 parses the packet to identify an IPv6 packet. If the packet is not an IPv6 packet,
receive-side-scaling is not done for the packet.

The following additional cases are not part of the Microsoft* RSS specification:

• UdpIPV4 — The I211 parses the packet to identify a packet with UDP over IPv4.
• UdpIPV6 — The I211 parses the packet to identify a packet with UDP over IPv6.
• UdpIPV6Ex — The I211 parses the packet to identify a packet with UDP over IPv6 with extensions.

A packet is identified as containing a TCP segment if all of the following conditions are met:

• The transport layer protocol is TCP (not UDP, ICMP, IGMP, etc.).
• The TCP segment can be parsed (such as IP options can be parsed, packet not encrypted).
• The packet is not fragmented (even if the fragment contains a complete TCP header).

Bits[31:16] of the Multiple Receive Queues Command (MRQC) register enable each of the above hash
function variations (several can be set at a given time). If several functions are enabled at the same
time, priority is defined as follows (skip functions that are not enabled):

IPv4 packet:

1. Try using the TcpIPv4 function.
2. Try using IPV4_UDP function.
3. Try using the IPv4 function.

IPv6 packet:

1. If TcpIPv6Ex is enabled, try using the TcpIPv6Ex function; else if TcpIPv6 is enabled try using the
TcpIPv6 function.

2. If UdpIPv6Ex is enabled, try using UdpIPv6Ex function; else if UpdIPv6 is enabled try using UdpIPv6
function.

Inline Functions—Ethernet Controller I211

157

3. If IPv6Ex is enabled, try using the IPv6Ex function, else if IPv6 is enabled, try using the IPv6
function.

The following combinations are currently supported:

• Any combination of IPv4, TcpIPv4, and UdpIPv4.
• And/or.
• Any combination of either IPv6, TcpIPv6, and UdpIPv6 or IPv6Ex, TcpIPv6Ex, and UdpIPv6Ex.

When a packet cannot be parsed by the previously mentioned rules, it is assigned an RSS output index
= zero. The 32-bit tag (normally a result of the hash function) equals zero.

The 32-bit result of the hash computation is written into the packet descriptor and also provides an
index into the indirection table.

The following notation is used to describe the hash functions:

• Ordering is little endian in both bytes and bits. For example, the IP address 161.142.100.80
translates into 0xa18e6450 in the signature.

• A “^ “denotes bit-wise XOR operation of same-width vectors.
• @x-y denotes bytes x through y (including both of them) of the incoming packet, where byte 0 is

the first byte of the IP header. In other words, it is considered that all byte-offsets as offsets into a
packet where the framing layer header has been stripped out. Therefore, the source IPv4 address is
referred to as @12-15, while the destination v4 address is referred to as @16-19.

• @x-y, @v-w denotes concatenation of bytes x-y, followed by bytes v-w, preserving the order in
which they occurred in the packet.

All hash function variations (IPv4 and IPv6) follow the same general structure. Specific details for each
variation are described in the following section. The hash uses a random secret key length of 320 bits
(40 bytes); the key is typically supplied through the RSS Random Key Register (RSSRK).

The algorithm works by examining each bit of the hash input from left to right. Intel’s nomenclature
defines left and right for a byte-array as follows: Given an array K with k bytes, Intel’s nomenclature
assumes that the array is laid out as shown:

K[0] K[1] K[2] … K[k-1]

K[0] is the left-most byte, and the MSB of K[0] is the left-most bit. K[k-1] is the right-most byte, and
the LSB of K[k-1] is the right-most bit.

ComputeHash(input[], N)
For hash-input input[] of length N bytes (8N bits) and a random secret key K of 320 bits
Result = 0;
For each bit b in input[] {
if (b == 1) then Result ^= (left-most 32 bits of K);
shift K left 1 bit position;
}
return Result;

The following four pseudo-code examples are intended to help clarify exactly how the hash is to be
performed in four cases, IPv4 with and without ability to parse the TCP header and IPv6 with an without
a TCP header.

7.1.2.10.1.1 Hash for IPv4 with TCP

Concatenate SourceAddress, DestinationAddress, SourcePort, DestinationPort into one single byte-
array, preserving the order in which they occurred in the packet:

Ethernet Controller I211 —Inline Functions

158

Input[12] = @12-15, @16-19, @20-21, @22-23.
Result = ComputeHash(Input, 12);

7.1.2.10.1.2 Hash for IPv4 with UDP

Concatenate SourceAddress, DestinationAddress, SourcePort, DestinationPort into one single byte-
array, preserving the order in which they occurred in the packet:

Input[12] = @12-15, @16-19, @20-21, @22-23.
Result = ComputeHash(Input, 12);

7.1.2.10.1.3 Hash for IPv4 without TCP

Concatenate SourceAddress and DestinationAddress into one single byte-array

Input[8] = @12-15, @16-19
Result = ComputeHash(Input, 8)

7.1.2.10.1.4 Hash for IPv6 with TCP

Similar to above:

Input[36] = @8-23, @24-39, @40-41, @42-43
Result = ComputeHash(Input, 36)

7.1.2.10.1.5 Hash for IPv6 with UDP

Similar to above:

Input[36] = @8-23, @24-39, @40-41, @42-43
Result = ComputeHash(Input, 36)

7.1.2.10.1.6 Hash for IPv6 without TCP

Input[32] = @8-23, @24-39
Result = ComputeHash(Input, 32)

7.1.2.10.2 Indirection Table

The RETA indirection table is a 128-entry structure, indexed by the seven LSB bits of the hash function
output. Each entry of the table contains the following:

• Bits [2:0] - RSS index

Note: In RSS only mode, all 3 bits are used. In VMDq mode RSS is not supported.

System software might update the indirection table during run time. Such updates of the table are not
synchronized with the arrival time of received packets. Therefore, it is not guaranteed that a table
update takes effect on a specific packet boundary.

7.1.2.10.3 RSS Verification Suite

Assume that the random key byte-stream is:

0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,

Inline Functions—Ethernet Controller I211

159

0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa

7.1.2.10.3.1 IPv4

7.1.2.10.3.2 IPv6

The IPv6 address tuples are only for verification purposes and might not make sense as a tuple.

7.1.2.10.4 Association Through MAC Address

Each of the 16 MAC address filters can be associated with a VM. The POOLSEL field in the Receive
Address High (RAH) register determines the target VM. Packets that do not match any of the MAC filters
(such as promiscuous) are assigned with the default VM as defined in the VT_CTL.DEF_PL field.

Software can program different values to the MAC filters (any bits in RAH or RAL) at any time. The I211
would respond to the change on a packet boundary but does not guarantee the change to take place at
some precise time.

7.1.3 Receive Data Storage

7.1.3.1 Host Buffers

Each descriptor points to a one or more memory buffers that are designated by the software device
driver to store packet data.

The size of the buffer can be set using either the generic RCTL.BSIZE field, or the per queue
SRRCTL[n].BSIZEPACKET field.

If SRRCTL[n].BSIZEPACKET is set to zero for any queue, the buffer size defined by RCTL.BSIZE is used.
Otherwise, the buffer size defined by SRRCTL[n].BSIZEPACKET is used.

If the receive buffer size is selected by bit settings in the Receive Control (RCTL.BSIZE) buffer sizes of
256, 512, 1024, and 2048 bytes are supported.

Table 7-1. IPv4

Destination Address/Port Source Address/Port IPv4 Only IPv4 With TCP

161.142.100.80:1766 66.9.149.187:2794 0x323e8fc2 0x51ccc178

65.69.140.83:4739 199.92.111.2:14230 0xd718262a 0xc626b0ea

12.22.207.184:38024 24.19.198.95:12898 0xd2d0a5de 0x5c2b394a

209.142.163.6:2217 38.27.205.30:48228 0x82989176 0xafc7327f

202.188.127.2:1303 153.39.163.191:44251 0x5d1809c5 0x10e828a2

Table 7-2. IPv6

Destination Address/Port Source Address/Port IPv6 Only IPv6 With TCP

3ffe:2501:200:3::1 (1766) 3ffe:2501:200:1fff::7 (2794) 0x2cc18cd5 0x40207d3d

ff02::1 (4739) 3ffe:501:8::260:97ff:fe40:efab (14230) 0x0f0c461c 0xdde51bbf

fe80::200:f8ff:fe21:67cf (38024) 3ffe:1900:4545:3:200:f8ff:fe21:67cf
(44251) 0x4b61e985 0x02d1feef

Ethernet Controller I211 —Inline Functions

160

If the receive buffer size is selected by SRRCTL[n].BSIZEPACKET, buffer sizes of 1KB to 127 KB are
supported with a resolution of 1 KB.

In addition, for advanced descriptor usage the SRRCTL.BSIZEHEADER field is used to define the size of
the buffers allocated to headers. Header Buffer sizes of 64 bytes to2048 bytes with a resolution of 64
bytes are supported.

The I211 places no alignment restrictions on receive memory buffer addresses. This is desirable in
situations where the receive buffer was allocated by higher layers in the networking software stack, as
these higher layers might have no knowledge of a specific device's buffer alignment requirements.

Note: When the No-Snoop Enable bit is used in advanced descriptors, the buffer address is 16-bit
(2-byte) aligned.

7.1.3.2 On-Chip Receive Buffer

The I211 allocates by default a 36 KB on-chip packet buffer. The buffer is used to store packets until
they are forwarded to the host. Actual on-chip receive buffer allocated can be controlled the RXPBSIZE
register.

7.1.3.3 On-chip Descriptor Buffers

The I211 contains a 16 descriptor cache for each receive queue used to reduce the latency of packet
processing and to optimize the usage of PCIe bandwidth by fetching and writing back descriptors in
bursts. The fetch and write-back algorithm are described in Section 7.1.4.3 and Section 7.1.4.4.

7.1.4 Receive Descriptors

7.1.4.1 Legacy Receive Descriptor Format

A receive descriptor is a data structure that contains the receive data buffer address and fields for
hardware to store packet information. If SRRCTL[n].DESCTYPE = 000b, the I211 uses the legacy
Receive descriptor listed in Table 7-3. The shaded areas indicate fields that are modified by hardware
upon packet reception (so-called descriptor write-back).

After receiving a packet for the I211, hardware stores the packet data into the indicated buffer and
writes the length, packet checksum, status, errors, and status fields.

Packet Buffer Address (64) - Physical address of the packet buffer.

Length Field (16)

Length covers the data written to a receive buffer including CRC bytes (if any). Software must read
multiple descriptors to determine the complete length for a packet that spans multiple receive buffers.

Fragment Checksum (16)

Table 7-3. Legacy Receive Descriptor (RDESC) Layout

63 48 47 40 39 32 31 16 15 0

0 Buffer Address [63:0]

8 VLAN Tag Errors Status Fragment Checksum Length

Inline Functions—Ethernet Controller I211

161

This field is used to provide the fragment checksum value. This field equals to the unadjusted 16-bit
ones complement of the packet. Checksum calculation starts at the L4 layer (after the IP header) until
the end of the packet excluding the CRC bytes. In order to use the fragment checksum assist to offload
L4 checksum verification, software might need to back out some of the bytes in the packet. For more
details see Section 7.1.7.2

Status Field (8)

Status information indicates whether the descriptor has been used and whether the referenced buffer is
the last one for the packet. See Table 7-4 for the layout of the Status field. Error status information is
shown in Figure 7-8.

• PIF (bit 7) - Passed imperfect filter only
• IPCS (bit 6) - IPv4 checksum calculated on packet
• L4CS (bit 5) - L4 (UDP or TCP) checksum calculated on packet
• UDPCS (bit 4) - UDP checksum or IP payload checksum calculated on packet.
• VP (bit 3) - Packet is 802.1Q (matched VET); indicates strip VLAN in 802.1Q packet
• RSV (bit 2) - Reserved
• EOP (bit 1) - End of packet
• DD (bit 0) - Descriptor done

EOP and DD

Table 7-5 lists the meaning of these bits:

VP Field

The VP field indicates whether the incoming packet's type matches the VLAN Ethernet Type
programmed in the VET Register. For example, if the packet is a VLAN (802.1Q) type, it is set if the
packet type matches VET and CTRL.VME is set (VLAN mode enabled). It also indicates that VLAN has
been stripped from the 802.1Q packet. For more details, see Section 7.4.

IPCS (IPv4 Checksum), L4CS (L4 Checksum), and UDPCS (UDP Checksum)

The meaning of these bits is listed in Table 7-6:

Table 7-4. Receive Status (RDESC.STATUS) Layout

7 6 5 4 3 2 1 0

PIF IPCS L4CS UDPCS VP Rsv EOP DD

Table 7-5. Receive Status Bits

DD EOP Description

0b 0b Software setting of the descriptor when it hands it off to the hardware.

0b 1b Reserved (invalid option).

1b 0b
A completion status indication for a non-last descriptor of a packet that spans across multiple descriptors. In
a single packet case, DD indicates that the hardware is done with the descriptor and its buffers. Only the
Length fields are valid on this descriptor.

1b 1b A completion status indication of the entire packet. Note that software Might take ownership of its
descriptors. All fields in the descriptor are valid (reported by the hardware).

Ethernet Controller I211 —Inline Functions

162

Refer to Table 7-18 for a description of supported packet types for receive checksum offloading.
Unsupported packet types do not have the IPCS or L4CS bits set. IPv6 packets do not have the IPCS bit
set, but might have the L4CS bit set if the I211 recognized the TCP or UDP packet.

PIF

Hardware supplies the PIF field to expedite software processing of packets. Software must examine any
packet with PIF bit set to determine whether to accept the packet. If the PIF bit is clear, then the packet
is known to be destined to this station, so software does not need to look at the packet contents.
Multicast packets passing only the Multicast Vector (MTA) set the PIF bit. In addition, the following
condition causes PIF to be cleared:

• The DA of the packet is a multicast address and promiscuous multicast is set (RCTL.MPE = 1b).
• The DA of the packet is a broadcast address and accept broadcast mode is set (RCTL.BAM = 1b)

A MAC control frame forwarded to the host (RCTL.PMCF = 0b) that does not match any of the exact
filters, has the PIF bit set.

Error Field (8)

Most error information appears only when the store-bad-packet bit (RCTL.SBP) is set and a bad packet
is received. See Table 7-7 for a definition of the possible errors and their bit positions.

• RXE (bit 7) - RX Data Error
• IPE (bit 6) - IPv4 Checksum Error
• L4E (bit 5) - TCP/UDP Checksum Error
• Reserved (bit 4:0)

IPE/L4E

The IP and TCP/UDP checksum error bits from Table 7-7 are valid only when the IPv4 or TCP/UDP
checksum(s) is performed on the received packet as indicated via IPCS and L4CS. These, along with the
other error bits, are valid only when the EOP and DD bits are set in the descriptor.

Note: Receive checksum errors have no effect on packet filtering.

If receive checksum offloading is disabled (RXCSUM.IPOFLD and RXCSUM.TUOFLD), the IPE and L4E
bits are 0b.

Table 7-6. IPCS, L4CS, and UDPCS

L4CS UDPCS IPCS Functionality

0b 0b 0b Hardware does not provide checksum offload. Special case: Hardware does not provide UDP
checksum offload for IPV4 packet with UDP checksum = 0b

1b 0b 1b / 0b Hardware provides IPv4 checksum offload if IPCS is active and TCP checksum is offload. A
pass/fail indication is provided in the Error field – IPE and L4E.

0b 1b 1b / 0b Hardware provides IPv4 checksum offload if IPCS is active and UDP checksum is offload. A
pass/fail indication is provided in the Error field – IPE and L4E.

Table 7-7. RXE, IPE and L4E

7 6 5 4 3 2 1 0

RXE IPE L4E Reserved

Inline Functions—Ethernet Controller I211

163

RXE

The RXE error bit is asserted in the following case:

1. CRC error is detected. CRC can be a result of reception of /V/ symbol on the TBI interface or
assertion of RxERR on the MII/GMII interface or bad EOP or lose of sync during packet reception.
Packets with a CRC error are posted to host memory only when store-bad-packet bit (RCTL.SBP) is
set.

VLAN Tag Field (16)

Hardware stores additional information in the receive descriptor for 802.1Q packets. If the packet type
is 802.1Q (determined when a packet matches VET and CTRL.VME = 1b), then the VLAN Tag field
records the VLAN information and the four-byte VLAN information is stripped from the packet data
storage. Otherwise, the VLAN Tag field contains 0x0000. The rule for VLAN tag is to use network
ordering (also called big endian). It appears in the following manner in the descriptor:

7.1.4.2 Advanced Receive Descriptors

7.1.4.2.1 Advanced Receive Descriptors (RDESC) - Read Format

Table 7-9 shows the receive descriptor. This is the format that software writes to the descriptor queue
and hardware reads from the descriptor queue in host memory. Hardware writes back the descriptor in
a different format, shown in Table 7-10.

Packet Buffer Address (64) - Physical address of the packet buffer. The lowest bit is either A0 (LSB
of address) or NSE (No-Snoop Enable), depending on bit RXCTL.RXdataWriteNSEn of the relevant
queue. See Section 8.12.1.

Header Buffer Address (64) - Physical address of the header buffer. The lowest bit is DD.

Note: The I211 does not support null descriptors (a descriptor with a packet or header address that
is always equal to zero).

When software sets the NSE bit in the receive descriptor, the I211 places the received packet
associated with this descriptor in memory at the packet buffer address with NSE set in the PCIe
attribute fields. NSE does not affect the data written to the header buffer address.

When a packet spans more than one descriptor, the header buffer address is not used for the second,
third, etc. descriptors; only the packet buffer address is used in this case.

Table 7-8. VLAN Tag Field Layout (for 802.1Q Packet)

15 13 12 11 0

PRI CFI VLAN

Table 7-9. RDESC Descriptor Read Format

63 1 0

0 Packet Buffer Address [63:1] A0/NSE

8 Header Buffer Address [63:1] DD

Ethernet Controller I211 —Inline Functions

164

NSE is enabled for packet buffers that the software device driver knows have not been touched by the
processor since the last time they were used, so the data cannot be in the processor cache and snoop is
always a miss. Avoiding these snoop misses improves system performance. No-snoop is particularly
useful when the DMA engine is moving the data from the packet buffer into application buffers, and the
software device driver is using the information in the header buffer for its work with the packet.

Note: When No-Snoop Enable is used, relaxed ordering should also be enabled with
CTRL_EXT.RO_DIS.

7.1.4.2.2 Advanced Receive Descriptors (RDESC) - Write-back Format

When the I211 writes back the descriptors, it uses the descriptor format shown in Table 7-10.

Note: SRRCTL[n]. DESCTYPE must be set to a value other than 000b for the I211 to write back the
special descriptors.

RSS Type (4)

The I211 must identify the packet type and then choose the appropriate RSS hash function to be used
on the packet. The RSS type reports the packet type that was used for the RSS hash function.

Packet Type (13)

• VPKT (bit 12) - VLAN Packet indication

Table 7-10. RDESC Descriptor Write-back Format

63 48 47 35 34 32 31 30 21 20 19 18 17 16 4 3 0

0
RSS Hash Value/

{Fragment Checksum, IP identification}
SPH HDR_LEN[9:0] HDR_LEN[11:10] RSV Packet Type RSS Type

8 VLAN Tag PKT_LEN Extended Error Extended Status

Table 7-11. RSS Type

Packet Type Description

0x0 No hash computation done for this packet.

0x1 HASH_TCP_IPV4

0x2 HASH_IPV4

0x3 HASH_TCP_IPV6

0x4 HASH_IPV6_EX

0x5 HASH_IPV6

0x6 HASH_TCP_IPV6_EX

0x7 HASH_UDP_IPV4

0x8 HASH_UDP_IPV6

0x9 HASH_UDP_IPV6_EX

0xA:0xF Reserved

Inline Functions—Ethernet Controller I211

165

• L2 Packet (bit 11) - L2 packet indication if this bit is set along with a higher layer indication it
indicates the ETQF type is valid

• L2 Packet (bit 11) - L2 packet indication if this bit is set along with a higher layer indication it
indicates the ETQF type is validL2 Packet (bit 11) - L2 packet indication, if this bit is set along with
a higher layer indication it indicates the ETQF type is valid ETQF Valid (bit 11) - L2 ETQF field in
Packet Type is valid. Higher layer indications (bits 7:0) can still be set.

The 11 LSB bits of the packet type reports the packet type identified by the hardware as follows:

RSV(22):

Reserved.

HDR_LEN (10) - The length (bytes) of the header as parsed by the I211. In split mode when HBO
(Header Buffer Overflow) is set in the Extended error field, the HDR_LEN can be greater then zero
though nothing is written to the header buffer. In header replication mode, the HDR_LEN field does not
reflect the size of the data actually stored in the header buffer because the I211 fills the buffer up to
the size configured by SRRCTL[n].BSIZEHEADER, which might be larger than the header size reported
here. This field is only valid in the first descriptor of a packet and should be ignored in all subsequent
descriptors.

Note: When the packet is time stamped and the time stamp is placed at the beginning of the buffer
the RDESC.HDR_LEN field is updated with the additional time stamp bytes (16 bytes). For
further information see Section 7.1.7.

Packet types supported by the header split and header replication are listed in Appendix A.1. Other
packet types are posted sequentially in the host packet buffer. Each line in Table 7-13 has an enable bit
in the PSRTYPE register. When one of the bits is set, the corresponding packet type is split. If the bit is
not set, a packet matching the header layout is not split.

Header split and replication is described in Section 7.1.5 while the packet types for this functionality are
enabled by the PSRTYPE[n] registers (Section 8.9.3).

Table 7-12. Packet Type LSB Bits (11:10)

Bit Index Bit 11 = 0b

0 IPV4 - Indicates IPv4 header present1

1. On unsupported tunneled frames only packet types of external IP header are set if detected.

1 IPV4E - Indicates IPv4 Header includes IP options1

2 IPV6 - Indicates IPv6 header present1 2 3

2. When a packet is fragmented then the internal packet type bits on a supported tunneled packet (IPv6 tunneled in IPv4 only) won’t
be set.

3. On supported tunneled frames (IPv6 tunneled in IPv4 only) then all the internal Packet types are set if detected (IPV6, IPV6E, TCP,
UDP, SCTP and NFS)

3 IPV6E - Indicates IPv6 Header includes extensions1 2 3

4 TCP - Indicates TCP header present1 3 4

4. When a packet is fragmented the TCP, UDP, SCTP and NFS bits won’t be set.

5 UDP - Indicates UDP header present1 3 4

6 SCTP - Indicates SCTP header present1 3 4

7 NFS - Indicates NFS header present1 3 4

10:8
EtherType - ETQF register index that matches the packet. Special types might be defined for 1588, 802.1X, LLDP
or any other requested type.Ethertype - ETQF register index that matches the packet. Special types might be
defined for 1588, 802.1x, 1722, LLDP or other requested EtherTypes

Ethernet Controller I211 —Inline Functions

166

Note: The header of a fragmented IPv6 packet is defined before the fragmented extension header.

SPH (1) - Split Header - When set, indicates that the HDR_LEN field reflects the length of the header
found by hardware. If cleared, the HDR_LEN field should be ignored.In the case where
SRRCTL[n].DESCTYPE is set to Header replication mode, SPH bit is set but the HDR_LEN field does not
reflect the size of the data actually stored in the header buffer, because the I211 fills the buffer up to
the size configured by SRRCTL[n].BSIZEHEADER.

RSS Hash / {Fragment Checksum, IP identification} (32)

This field has multiplexed functionality according to the received packet type (reported on the Packet
Type field in this descriptor) and device setting.

Fragment Checksum (16-Bit; 63:48)

The fragment checksum word contains the unadjusted one’s complement checksum of the IP
payload and is used to offload checksum verification for fragmented UDP packets as described in
Section 7.1.7.2. This field is mutually exclusive with the RSS hash. It is enabled when the
RXCSUM.PCSD bit is cleared and the RXCSUM.IPPCSE bit is set.

IP identification (16-Bit; 47:32)

The IP identification word identifies the IP packet to whom this fragment belongs and is used to
offload checksum verification for fragmented UDP packets as described in Section 7.1.7.2. This
field is mutually exclusive with the RSS hash. It is enabled when the RXCSUM.PCSD bit is cleared
and the RXCSUM.IPPCSE bit is set.

RSS Hash Value (32)

The RSS hash value is required for RSS functionality as described in Section 7.1.2.7. This bit is
mutually exclusive with the fragment checksum. It is enabled when the RXCSUM.PCSD bit is set.

Extended Status (20)

Status information indicates whether the descriptor has been used and whether the referenced buffer is
the last one for the packet. Table 7-13 lists the extended status word in the last descriptor of a packet
(EOP is set). Table 7-14 lists the extended status word in any descriptor but the last one of a packet
(EOP is cleared).

Table 7-13. Receive Status (RDESC.STATUS) Layout of the Last Descriptor

19 18 17 16 15 14 13 12 11 10

Rsv Rsv Rsv TS TSIP Reserved Strip CRC LLINT UDPV

VEXT Rsv PIF IPCS L4I UDPCS VP Rsv EOP DD

9 8 7 6 5 4 3 2 1 0

Table 7-14. Receive Status (RDESC.STATUS) Layout of Non-Last Descriptor

19... 2 1 0

Reserved EOP = 0b DD

Inline Functions—Ethernet Controller I211

167

TS (16) - Time Stamped Packet (Time Sync). The Time Stamp bit is set to indicate that the device
recognized a Time Sync packet and time stamped it in the RXSTMPL/H time stamp registers (See
Section 7.8.2.3).

TSIP (15) - Timestamp in packet. The Timestamp In Packet bit is set to indicate that the received
packet arrival time was captured by the hardware and the timestamp was placed in the receive
buffer. For further details see Section 7.1.7.

Reserved (2, 8, 14:13, 17, 18) - Reserved at zero.

PIF (7), IPCS(6), UDPCS(4), VP(3), EOP (1), DD (0) - These bits are described in the legacy
descriptor format in Section 7.1.4.

L4I (5) - This bit indicates that an L4 integrity check was done on the packet, either TCP
checksum, UDP checksum or SCTP CRC checksum. This bit is valid only for the last descriptor of
the packet. An error in the integrity check is indicated by the L4E bit in the error field. The type of
check done can be induced from the packet type bits 4, 5 and 6. If bit 4 is set, a TCP checksum
was done. If bit 5 is set a UDP checksum was done, and if bit 6 is set, a SCTP CRC checksum was
done.

VEXT (9) - First VLAN is found on a double VLAN packet. This bit is valid only when
CTRL_EXT.EXT_VLAN is set. For more details see Section 7.4.5.

UDPV (10) - This bit indicates that the incoming packet contains a valid (non-zero value)
checksum field in an incoming first fragment UDP IPv4 packet. This means that the Fragment
Checksum field in the receive descriptor contains the IP payload checksum as described in
Section 7.1.7.2. When this field is cleared in the first fragment that contains the UDP header,
means that the packet does not contain a valid UDP checksum and the fragment checksum field in
the Rx descriptor should be ignored. This field is always cleared in incoming fragments that do not
contain the UDP header or in non fragmented packet.

LLINT (11) - This bit indicates that the packet caused an immediate interrupt via the low latency
interrupt mechanism.

Strip CRC (12) - This bit indicates that Ethernet CRC has been stripped from incoming packet.
Strip CRC operation is defined by the RCTL.SECRC bit.

Extended Error (12)

Table 7-15 and the text that follows describes the possible errors reported by hardware.

RXE (bit 11)

RXE is described in the legacy descriptor format in Section 7.1.4.

IPE (bit 10)

The IPE error indication is described in the legacy descriptor format in Section 7.1.4.

L4E (bit 9)

L4 error indication - When set, indicates that hardware attempted to do an L4 integrity check as
described in the L4I bit, but the check failed.

Reserved (bits 8:7)

Reserved (bits 6:4)

HBO (bit 3) - Header Buffer Overflow

Table 7-15. Receive Errors (RDESC.ERRORS) Layout

11 10 9 8 7 6 4 3 2 0

RXE IPE L4E Reserved Reserved HBO Reserved

Ethernet Controller I211 —Inline Functions

168

Note: The HBO bit is relevant only if SPH is set.
1. In both header replication modes, HBO is set if the header size (as calculated by hardware) is

bigger than the allocated buffer size (SRRCTL.BSIZEHEADER) but the replication still takes place up
to the header buffer size. Hardware sets this bit in order to indicate to software that it needs to
allocate bigger buffers for the headers.

2. In header split mode, when SRRCTL[n] BSIZEHEADER is smaller than HDR_LEN, then HBO is set to
1b, In this case, the header is not split. Instead, the header resides within the host packet buffer.
The HDR_LEN field is still valid and equal to the calculated size of the header. However, the header
is not copied into the header buffer.

Note: Most error information appears only when the store–bad–packet bit (RCTL.SBP) is set and a
bad packet is received.

Reserved (bits 2:0) - Reserved

PKT_LEN (16)

Number of bytes existing in the host packet buffer

The length covers the data written to a receive buffer including CRC bytes (if any). Software must read
multiple descriptors to determine the complete length for packets that span multiple receive buffers. If
SRRCTL.DESC_TYPE = 4 (advanced descriptor header replication large packet only) and the total
packet length is smaller than the size of the header buffer (no replication is done), this field continues
to reflect the size of the packet, although no data is written to the packet buffer. Otherwise, if the
buffer is not split because the header is bigger than the allocated header buffer, this field reflects the
size of the data written to the first packet buffer (header and data).

Note: When the packet is time stamped and the time stamp is placed at the beginning of the buffer,
the RDESC.PKT_LEN field is updated with the additional time stamp bytes (16 bytes). For
further information see Section 7.1.7.

VLAN Tag (16)

These bits are described in the legacy descriptor format in Section 7.1.4.

7.1.4.3 Receive Descriptor Fetching

The fetching algorithm attempts to make the best use of PCIe bandwidth by fetching a cache-line (or
more) descriptor with each burst. The following paragraphs briefly describe the descriptor fetch
algorithm and the software control provided.

When the RXDCTL[n].ENABLE bit is set and the on-chip descriptor cache is empty, a fetch happens as
soon as any descriptors are made available (Host increments the RDT[n] tail pointer). When the on-
chip buffer is nearly empty (defined by RXDCTL.PTHRESH), a prefetch is performed each time enough
valid descriptors (defined by RXDCTL.HTHRESH) are available in host memory.

When the number of descriptors in host memory is greater than the available on-chip descriptor cache,
the I211 might elect to perform a fetch that is not a multiple of cache-line size. Hardware performs this
non-aligned fetch if doing so results in the next descriptor fetch being aligned on a cache-line boundary.
This enables the descriptor fetch mechanism to be more efficient in the cases where it has fallen behind
software.

All fetch decisions are based on the number of descriptors available and do not take into account any
split of the transaction due to bus access limitations.

Inline Functions—Ethernet Controller I211

169

7.1.4.4 Receive Descriptor Write-back

Processors have cache-line sizes that are larger than the receive descriptor size (16 bytes).
Consequently, writing back descriptor information for each received packet would cause expensive
partial cache-line updates. A receive descriptor packing mechanism minimizes the occurrence of partial
line write-backs.

To maximize memory efficiency, receive descriptors are packed together and written as a cache-line
whenever possible. Descriptors write-backs accumulate and are opportunistically written out in cache
line-oriented chunks, under the following scenarios:

• RXDCTL[n].WTHRESH descriptors have been used (the specified maximum threshold of unwritten
used descriptors has been reached).

• The receive timer expires (EITR) - in this case all descriptors are flushed ignoring any cache-line
boundaries.

• Explicit software flush (RXDCTL.SWFLS).
• Dynamic packets - if at least one of the descriptors that are waiting for write-back are classified as

packets requiring immediate notification the entire queue is flushed out.

When the number of descriptors specified by RXDCTL[n].WTHRESH have been used, they are written
back regardless of cache-line alignment. It is therefore recommended that RXDCTL[n].WTHRESH be a
multiple of cache-line size. When the receive timer (EITR) expires, all used descriptors are forced to be
written back prior to initiating the interrupt, for consistency. Software might explicitly flush
accumulated descriptors by writing the RXDCTL[n] register with the SWFLS bit set.

When the I211 does a partial cache-line write-back, it attempts to recover to cache-line alignment on
the next write-back.

For applications where the latency of received packets is more important than the bus efficiency and
the CPU utilization, an EITR value of zero can be used. In this case, each receive descriptor are written
to the host immediately. If RXDCTL[n].WTHRESH equals zero, then each descriptor are written back
separately;, otherwise, write back of descriptors can be coalesced if descriptor accumulates in the
internal descriptor ring due to bandwidth constrains.

All write-back decisions are based on the number of descriptors available and do not take into account
any split of the transaction due to bus access limitations.

7.1.4.5 Receive Descriptor Ring Structure

Figure 7-6 shows the structure of each of the 4 receive descriptor rings. Hardware maintains 4 circular
queues of descriptors and writes back used descriptors just prior to advancing the head pointer(s).
Head and tail pointers wrap back to base when size descriptors have been processed.

Ethernet Controller I211 —Inline Functions

170

Software inserts receive descriptors by advancing the tail pointer(s) to refer to the address of the entry
just beyond the last valid descriptor. This is accomplished by writing the descriptor tail register(s) with
the offset of the entry beyond the last valid descriptor. The hardware adjusts its internal tail pointer(s)
accordingly. As packets arrive, they are stored in memory and the head pointer(s) is incremented by
hardware. When the head pointer(s) is equal to the tail pointer(s), the queue(s) is empty. Hardware
stops storing packets in system memory until software advances the tail pointer(s), making more
receive buffers available.

The receive descriptor head and tail pointers reference to 16-byte blocks of memory. Shaded boxes in
Figure 7-6 represent descriptors that have stored incoming packets but have not yet been recognized
by software. Software can determine if a receive buffer is valid by reading the descriptors in memory.
Any descriptor with a non-zero DD value has been processed by the hardware and is ready to be
handled by the software.

Figure 7-6. Receive Descriptor Ring Structure

 Circular Buffer Queues

Head

Base + Size

Base

Receive
Queue

Tail

Inline Functions—Ethernet Controller I211

171

Note: The head pointer points to the next descriptor that is written back. After the descriptor write-
back operation completes, this pointer is incremented by the number of descriptors written
back. Hardware owns all descriptors between [head... tail]. Any descriptor not in this range is
owned by software.

The receive descriptor rings are described by the following registers:

• Receive Descriptor Base Address (RDBA3 to RDBA0) register:
This register indicates the start of the descriptor ring buffer. This 64-bit address is aligned on a 16-
byte boundary and is stored in two consecutive 32-bit registers. Note that hardware ignores the
lower 4 bits.

• Receive Descriptor Length (RDLEN3 to RDLEN0) registers:
This register determines the number of bytes allocated to the circular buffer. This value must be a
multiple of 128 (the maximum cache-line size). Since each descriptor is 16 bytes in length, the
total number of receive descriptors is always a multiple of eight.

• Receive Descriptor Head (RDH3 to RDH0) registers:
This register holds a value that is an offset from the base and indicates the in-progress descriptor.
There can be up to 64 KB, 8 KB descriptors in the circular buffer. Hardware maintains a shadow
copy that includes those descriptors completed but not yet stored in memory.

• Receive Descriptor Tail (RDT3 to RDT0) registers:
This register holds a value that is an offset from the base and identifies the location beyond the last
descriptor hardware can process. This is the location where software writes the first new descriptor.

If software statically allocates buffers, uses legacy receive descriptors, and uses memory read to check
for completed descriptors, it has to zero the status byte in the descriptor before bumping the tail
pointer to make it ready for reuse by hardware. Zeroing the status byte is not a hardware requirement
but is necessary for performing an in-memory scan.

All the registers controlling the descriptor rings behavior should be set before receive is enabled, apart
from the tail registers that are used during the regular flow of data.

7.1.4.5.1 Low Receive Descriptors Threshold

As described above, the size of the receive queues is measured by the number of receive descriptors.
During run time the software processes completed descriptors and then increments the Receive
Descriptor Tail registers (RDT). At the same time, hardware might post new packets received from the
LAN incrementing the Receive Descriptor Head registers (RDH) for each used descriptor.

The number of usable (free) descriptors for the hardware is the distance between Tail and Head
registers. When the Tail reaches the Head, there are no free descriptors and further packets might be
either dropped or block the receive FIFO. In order to avoid this behavior, the I211 might generate a low
latency interrupt (associated with the relevant receive queue) once the amount of free descriptors is
less or equal than the threshold. The threshold is defined in 16 descriptors granularity per queue in the
SRRCTL[n].RDMTS field.

7.1.5 Header Splitting and Replication

7.1.5.1 Purpose

This feature consists of splitting or replicating packet's header to a different memory space. This helps
the host to fetch headers only for processing: headers are replicated through a regular snoop
transaction in order to be processed by the host CPU. It is recommended to perform this transaction
with the DCA feature enabled (see Section 8.12) or in conjunction with a software-prefetch.

Ethernet Controller I211 —Inline Functions

172

The packet (header and payload) is stored in memory through a (optionally) non-snoop transaction.
Later, a transaction moves the payload from the software device driver buffer to application memory or
it is moved using a normal memory copy operation.

The I211 supports header splitting in several modes:

• Legacy mode: legacy descriptors are used; headers and payloads are not split.
• Advanced mode, no split: advanced descriptors are in use; header and payload are not split.
• Advanced mode, split: advanced descriptors are in use; header and payload are split to different

buffers. If the packet cannot be split, only the packet buffer is used.
• Advanced mode, replication: advanced descriptors are in use; header is replicated in a separate

buffer and also in a payload buffer.
• Advanced mode, replication, conditioned by packet size: advanced descriptors are in use;

replication is performed only if the packet is larger than the header buffer size.

7.1.5.2 Description

In Figure 7-7 and Figure 7-8, the header splitting and header replication modes are shown.

Figure 7-7. Header Splitting

Payload

Header

Buffer 0

Buffer 1

Host Memory

Payload

Header

Packet Buffer Address

Header Buffer Address

0

8

0313263

Inline Functions—Ethernet Controller I211

173

The physical address of each buffer is written in the Buffer Addresses fields. The sizes of these buffers
are statically defined by BSIZEPACKET and BSIZEHEADER fields in the SRRCTL[n] registers.

The packet buffer address includes the address of the buffer assigned to the replicated packet,
including header and data payload portions of the received packet. In the case of a split header, only
the payload is included.

The header buffer address includes the address of the buffer that contains the header information. The
receive DMA module stores the header portion of the received packets into this buffer.

The I211 uses the packet replication or splitting feature when the SRRCTL[n].DESCTYPE is larger than
one. The software device driver must also program the buffer sizes in the SRRCTL[n] registers.

When header split is selected, the packet is split only on selected types of packets. A bit exists for each
option in PSRTYPE[n] registers so several options can be used in conjunction with them. If one or more
bits are set, the splitting is performed for the corresponding packet type. See Appendix A.1 for details
on the possible headers type supported).

Table 7-16 lists the behavior of the I211 in the different modes.

Figure 7-8. Header Replication

Table 7-16. I211 Split/Replicated Header Behavior

DESCTYPE Condition SPH HBO PKT_LEN HDR_LEN Header and Payload DMA

Split

1. Header can't be
decoded 0b 0b Min(Packet length,

BSIZEPACKET) N/A Header + Payload  Packet
buffer

2. Header <=
BSIZEHEADER 1b 0b Min(Payload length,

BSIZEPACKET)1 Header size
Header  Header buffer
Payload  Packet buffer

3. Header >
BSIZEHEADER 1b 1b Min(Packet length,

BSIZEPACKET) Header size2 Header + Payload  Packet
buffer

Payload

Header

Packet
Buffer

Header
Buffer

Host Memory

Header and Payload

Header and First
Part of Payload

Packet Buffer Address

Header Buffer Address

0

8

0313263

Ethernet Controller I211 —Inline Functions

174

Software Notes:

• If SRRCTL[n].NSE is set, all buffers' addresses in a packet descriptor must be word aligned.
• Packet header can't span across buffers, therefore, the size of the header buffer must be larger

than any expected header size. Otherwise, only the part of the header fitting the header buffer is
replicated. In the case of header split mode (SRRCTL[n].DESCTYPE = 010b), a packet with a
header larger than the header buffer is not split.

• Section A.1 describes the details of the split/replicate conditions for different types of headers
according to the settings of the PSRTYPE register values.

7.1.6 Receive Packet Timestamp in Buffer

The I211 supports adding an optional tailored header before the MAC header of the packet in the
receive buffer. The 64 MSB bits of the 128 bit tailored header include a timestamp composed of the
packet reception time measured in the SYSTIML (Low DW) and SYSTIMH (High DW) registers (See
Section 7.8.3.1 for further information on SYSTIML/H operation). The 64 LSB bits of the tailored header
are reserved.

The timestamp information is placed in Host order (Little Endian) format as listed in Table 7-17.

Replicate

1. Header can't be
decoded 0b3 0b Min(Packet length,

BSIZEPACKET) N/A

(Header + Payload) (partial5)
 Header buffer
Header + Payload  Packet
buffer

2. Packet length <=
BSIZEHEADER 1b3 0b Min(Packet length,

BSIZEPACKET) Header size

Header + Payload  Header
buffer
Header + Payload  Packet
buffer

3. Packet length >
BSIZEHEADER 1b3 0b/1b4 Min(Packet length,

BSIZEPACKET) Header size

Header + Payload (partial5) 
Header buffer
Header + Payload  Packet
buffer

Replicate
Large
Packet only

1. Header can't be
decoded 0b3 0b Min(Packet length,

BSIZEPACKET) N/A

(Header + Payload) (partial5)
 Header buffer
Header + Payload  Packet
buffer

2. Packet length <=
BSIZEHEADER 1b3 0b Packet length Header size Header + Payload  Header

buffer

2. Packet length >
BSIZEHEADER 1b3 0b/1b5 Min(Packet length,

BSIZEPACKET) Header size

(Header + Payload) (partial5)
 Header buffer
Header + Payload  Packet
buffer

1. In a header only packet (such as TCP ACK packet), the PKT_LEN is zero.
2. The HDR_LEN doesn't reflect the actual data size stored in the Header buffer. It reflects the header size determined by the parser.

When timestamp in packet is enabled header size reflects the additional 16 bytes of the timestamp.
3. In replicate mode if SPH = 0b due to no match to any of the headers selected in the PSRTYPE[n] register, then the header size is

not relevant. In any case, even if SPH = 1b due to match to one of the headers selected in the PSRTYPE[n] register, the HDR_LEN
doesn't reflect the actual data size stored in the header buffer.

4. HBO is 1b if the header size is bigger than BSIZEHEADER and zero otherwise.
5. Partial means up to BSIZEHEADER.

Table 7-17. Timestamp Layout in Buffer

0 3 4 7 8 11 12 15 16...

Reserved (0x0) Reserved (0x0) SYSTIML SYSTIMH Received Packet

Table 7-16. I211 Split/Replicated Header Behavior

DESCTYPE Condition SPH HBO PKT_LEN HDR_LEN Header and Payload DMA

Inline Functions—Ethernet Controller I211

175

The Timestamp in Buffer is enabled by the following settings:

• The 1588 logic must not be disabled by the TSAUXC.Disable systime flag (it should be cleared)
• The RXPBSIZE.cfg_ts_en flag should be set, allocating the extra 16 bytes in the packet buffer for

the received packets
• Specific setting of the relevant receive queues by the SRRCTL[n] registers

— The Timestamp flag should be set, instructing the hardware to post the timestamp in the
packet buffer

— If the DESCTYPE is set to any of the header split modes then the BSIZEHEADER field should be
set to a larger header buffer than 128 bytes

Packets are received to the queue are time stamped if they meet the criteria listed in Table 7-67 within
Section 7.9.1. Meeting these cases the packet is reported as follow:

• Place a 64 bit timestamp, indicating the time a packet was received by the MAC, at the beginning of
the receive buffer before the received packet.

• Set the TSIP bit in the RDESC.STATUS field of the last receive descriptor.
• Update the RDESC.Packet Type field in the last receive descriptor. Value in this field enables

identifying that this is a PTP (Precision Time Protocol) packet (this indication is only relevant for L2
packets).

• Update the RDESC.HDR_LEN and RDESC.PKT_LEN values to include size of timestamp.

Software driver should take into account the additional size of the timestamp when preparing the
receive descriptors for the relevant queue.

While the receive path is disabled, the Timestamp in Buffer mode can be disabled by clearing
RXPBSIZE.cfg_ts_en flag and issuing a Port Software Reset event (CTRL.RST).

7.1.7 Receive Packet Checksum and SCTP CRC Offloading

The I211 supports the off loading of four receive checksum calculations: packet checksum, fragment
payload checksum, the IPv4 header checksum, and the TCP/UDP checksum. In addition, SCTP CRC32
calculation is supported as described in Section 7.1.7.3

The packet checksum and the fragment payload checksum shares the same location as the RSS field
and is reported in the receive descriptor when the RXCSUM.PCSD bit is cleared. If the RXCSUM.IPPCSE
is set, the Packet checksum is aimed to accelerate checksum calculation of fragmented UDP packets.
Please refer to Section 7.1.7.2 for a detailed explanation. If RXCSUM.IPPCSE is cleared (the default
value), the checksum calculation that is reported in the Rx Packet checksum field is the unadjusted 16-
bit one’s complement of the packet.

The packet checksum is the 16-bit one's complement of the received packet, starting from the byte
indicated by RXCSUM.PCSS (zero corresponds to the first byte of the packet), after stripping. For
packets with a VLAN header, the packet checksum includes the header if VLAN striping is not enabled
by the CTRL.VME. If a VLAN header strip is enabled, the packet checksum and the starting offset of the
packet checksum exclude the VLAN header due to masking of VLAN header. For example, for an
Ethernet II frame encapsulated as an 802.3ac VLAN packet and CTRL.VME is set and with
RXCSUM.PCSS set to 14, the packet checksum would include the entire encapsulated frame, excluding
the 14-byte Ethernet header (DA, SA, type/length) and the 4-byte q-tag. The packet checksum does
not include the Ethernet CRC if the RCTL.SECRC bit is set.

Software must make the required offsetting computation (to remove the bytes that should not have
been included and to include the pseudo-header) prior to comparing the packet checksum against the
TCP checksum stored in the packet.

Ethernet Controller I211 —Inline Functions

176

Note: The RXCSUM.PCSS value should point to a field that is before or equal to the IP header start.
Otherwise the IP header checksum or TCP/UDP checksum is not calculated correctly.

For supported packet/frame types, the entire checksum calculation can be off loaded to the I211. If
RXCSUM.IPOFLD is set to 1b, the I211 calculates the IPv4 checksum and indicates a pass/fail indication
to software via the IPv4 Checksum Error bit (RDESC.IPE) in the Error field of the receive descriptor.
Similarly, if RXCSUM.TUOFLD is set to 1b, the I211 calculates the TCP or UDP checksum and indicates a
pass/fail condition to software via the TCP/UDP Checksum Error bit (RDESC.L4E). These error bits are
valid when the respective status bits indicate the checksum was calculated for the packet (RDESC.IPCS
and RDESC.L4CS, respectively).

If neither RXCSUM.IPOFLD nor RXCSUM.TUOFLD are set, the Checksum Error bits (IPE and L4E) are 0b
for all packets.

Supported frame types:

• Ethernet II
• Ethernet SNAP

Table 7-18. Supported Receive Checksum Capabilities

Packet Type Hardware IP
Checksum Calculation

Hardware TCP/
UDP Checksum

Calculation

Hardware SCTP
CRC Calculation

IPv4 packets. Yes Yes Yes

IPv6 packets. No (n/a) Yes Yes

IPv6 packet with next header options:
• Hop-by-hop options
• Destinations options (without Home option)
• Destinations options (with Home option)
• Routing (with Segments Left zero)
• Routing (with Segments Left > zero)
• Fragment

No (n/a)
No (n/a)
No (n/a)
No (n/a)
No (n/a)
No (n/a)

Yes
Yes
No
Yes
No
No

Yes

IPv4 tunnels:
• IPv4 packet in an IPv4 tunnel.
• IPv6 packet in an IPv4 tunnel.

Yes (External - as if L3
only)
Yes (IPv4)

No
Yes1

1. The IPv6 header portion can include supported extension headers as described in the “IPv6 packet with next header options” row.

No
Yes

IPv6 tunnels:
• IPv4 packet in an IPv6 tunnel.
• IPv6 packet in an IPv6 tunnel.

No
No

No
No

No
No

Packet is an IPv4 fragment. Yes No2

2. UDP checksum of first fragment is supported.

No

Packet is greater than 1518, 1522 or 1526 bytes (LPE=1b)3.

3. Depends on number of VLAN tags.

Yes Yes Yes

Packet has 802.3ac tag. Yes Yes Yes

IPv4 packet has IP options
(IP header is longer than 20 bytes).

Yes Yes Yes

Packet has TCP or UDP options. Yes Yes Yes

IP header’s protocol field contains a protocol number other
than TCP or UDP or SCTP. Yes No No

Inline Functions—Ethernet Controller I211

177

7.1.7.1 Filters Details

Table 7-18 lists general details about what packets are processed. In more detail, the packets are
passed through a series of filters to determine if a receive checksum is calculated:

7.1.7.1.1 MAC Address Filter

This filter checks the MAC destination address to be sure it is valid (such as IA match, broadcast,
multicast, etc.). The receive configuration settings determine which MAC addresses are accepted. See
the various receive control configuration registers such as RCTL (RCTL.UPE, RCTL.MPE, RCTL.BAM),
MTA, RAL, and RAH.

7.1.7.1.2 SNAP/VLAN Filter

This filter checks the next headers looking for an IP header. It is capable of decoding Ethernet II,
Ethernet SNAP, and IEEE 802.3ac headers. It skips past any of these intermediate headers and looks
for the IP header. The receive configuration settings determine which next headers are accepted. See
the various receive control configuration registers such as RCTL (RCTL.VFE), VET, and VFTA.

7.1.7.1.3 IPv4 Filter

This filter checks for valid IPv4 headers. The version field is checked for a correct value (4).

IPv4 headers are accepted if they are any size greater than or equal to five (Dwords). If the IPv4
header is properly decoded, the IP checksum is checked for validity. The RXCSUM.IPOFLD bit must be
set for this filter to pass.

7.1.7.1.4 IPv6 Filter

This filter checks for valid IPpv6 headers, which are a fixed size and have no checksum. The IPv6
extension headers accepted are: hop-by-hop, destination options, and routing. The maximum size next
header accepted is 16 Dwords (64 bytes).

7.1.7.1.5 IPv6 Extension Headers

IPv4 and TCP provide header lengths, which enable hardware to easily navigate through these headers
on packet reception for calculating checksum and CRCs, etc. For receiving IPv6 packets; however,
there is no IP header length to help hardware find the packet's ULP (such as TCP or UDP) header. One
or more IPv6 extension headers might exist in a packet between the basic IPv6 header and the ULP
header. The hardware must skip over these extension headers to calculate the TCP or UDP checksum
for received packets.

The IPv6 header length without extensions is 40 bytes. The IPv6 field Next Header Type indicates what
type of header follows the IPv6 header at offset 40. It might be an upper layer protocol header such as
TCP or UDP (Next Header Type of 6 or 17, respectively), or it might indicate that an extension header
follows. The final extension header indicates with its Next Header Type field the type of ULP header for
the packet.

IPv6 extension headers have a specified order. However, destinations must be able to process these
headers in any order. Also, IPv6 (or IPv4) might be tunneled using IPv6, and thus another IPv6 (or
IPv4) header and potentially its extension headers might be found after the extension headers.

Ethernet Controller I211 —Inline Functions

178

The IPv4 Next Header Type is at byte offset nine. In IPv6, the first Next Header Type is at byte offset
six.

All IPv6 extension headers have the Next Header Type in their first eight bits. Most have the length in
the second eight bits (Offset Byte[1]) as listed in Table 7-19:

Table 7-20 lists the encoding of the Next Header Type field and information on determining each
header type's length. The IPv6 extension headers are not otherwise processed by the I211 so their
details are not covered here.

Notes:
1. Hop-by-hop options header is only found in the first Next Header Type of an IPv6 header.
2. When a No Next Header type is encountered, the rest of the packet should not be processed.
3. Encapsulated security payload - the I211 cannot offload packets with this header type.

Note that the I211 hardware acceleration does not support all IPv6 extension header types (refer to
Table 7-18).

7.1.7.1.6 UDP/TCP Filter

This filter checks for a valid UDP or TCP header. The prototype next header values are 0x11 and 0x06,
respectively. The RXCSUM.TUOFLD bit must be set for this filter to pass.

Table 7-19. Typical IPv6 Extended Header Format (Traditional Representation)

0 1 2 3 4 5 6 7
1

8 9 0 1 2 3 4 5
2 3

6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Next Header Type Length

Table 7-20. Header Type Encoding and Lengths

Header Next Header Type
Header Length
(Units are Bytes Unless Otherwise
Specified)

IPv6 6 Always 40 bytes

IPv4 4
Offset Bits[7:4]
Unit = 4 bytes

TCP 6
Offset Byte[12].Bits[7:4]
Unit = 4 bytes

UDP 17 Always 8 bytes

Hop by Hop Options 0 (Note 1) 8+Offset Byte[1]

Destination Options 60 8+Offset Byte[1]

Routing 43 8+Offset Byte[1]

Fragment 44 Always 8 bytes

Authentication 51 8+4*(Offset Byte[1])

Encapsulating Security Payload 50 Note 3

No Next Header 59 Note 2

Inline Functions—Ethernet Controller I211

179

7.1.7.2 Receive UDP Fragmentation Checksum

The I211 might provide receive fragmented UDP checksum offload. The I211 should be configured in
the following manner to enable this mode:

The RXCSUM.PCSD bit should be cleared. The Fragment Checksum and IP Identification fields are
mutually exclusive with the RSS hash. When the RXCSUM.PCSD bit is cleared, Fragment Checksum and
IP Identification are active instead of RSS hash.

The RXCSUM.IPPCSE bit should be set. This field enables the IP payload checksum enable that is
designed for the fragmented UDP checksum.

The RXCSUM.PCSS field must be zero. The packet checksum start should be zero to enable auto-start
of the checksum calculation. Table 7-21 lists the exact description of the checksum calculation.

Table 7-21 also lists the outcome descriptor fields for the following incoming packets types:

Note: When the software device driver computes the 16-bit ones complement, the sum on the
incoming packets of the UDP fragments, it should expect a value of 0xFFFF. Refer to
Section 7.1.7 for supported packet formats.

7.1.7.3 SCTP Offload

If a receive packet is identified as SCTP, the I211 checks the CRC32 checksum of this packet if the
RXCSUM.CRCOFL bit is set to 1b and identifies this packet as SCTP. Software is notified on the
execution of the CRC check via the L4I bit in the Extended Status field of the Rx descriptor and is
notified on detection of a CRC error via the L4E bit in the Extended Error field of the RX descriptor. The
detection of a SCTP packet is indicated via the SCTP bit in the packet Type field of the Rx descriptor.
The following SCTP packet format is expected to enable support of the SCTP CRC check:

Table 7-21. Descriptor Fields

Incoming Packet Type Fragment Checksum (if
RXCSUM.PCSD is cleared) UDPV UDPCS / L4CS /L4I

Non IP Packet Packet checksum 0b 0b / 0b /0b

IPv6 Packet Packet checksum 0b Depends on transport
header.

Non fragmented IPv4 packet Packet checksum 0b Depends on transport
header.

Fragmented IPv4, when not first
fragment

The unadjusted one’s complement
checksum of the IP payload. 0b 1b / 0b / 0b

Fragmented IPv4, for the first
fragment

Same as above 1 if the UDP header
checksum is valid (not
zero)

1b / 0b / 0b

Ethernet Controller I211 —Inline Functions

180

Table 7-22. SCTP Header

7.2 Transmit Functionality

7.2.1 Packet Transmission

Output packets to be transmitted are created using pointer-length pairs constituting a descriptor chain
(descriptor based transmission). Software forms transmit packets by assembling the list of pointer-
length pairs, storing this information in one of the transmit descriptor rings, and then updating the
adequate on-chip transmit tail pointer. The transmit descriptors and buffers are stored in host memory.
Hardware typically transmits the packet only after it has completely fetched all the packet data from
host memory and stored it into the on-chip transmit FIFO (store and forward architecture). This permits
TCP or UDP checksum computation and avoids problems with PCIe under-runs. Another transmit
feature of the I211 is TCP/UDP segmentation. The hardware has the capability to perform packet
segmentation on large data buffers offloaded from the Network Stack. This feature is discussed in detail
in Section 7.2.4.

In addition, the I211 supports SCTP offloading for transmit requests. See section Section 7.2.5.3 for
details about SCTP.

Table 1-11 provides a high level description of all data/control transformation steps needed for sending
Ethernet packets to the line.

7.2.1.1 Transmit Data Storage

Data is stored in buffers pointed to by the descriptors. The data can be aligned to arbitrary byte
boundary with the maximum size per descriptor limited only to the maximum allowed packet size (9728
bytes). A packet typically consists of two (or more) buffers, one (or more) for the header and one for
the actual data. Each buffer is referenced by a different descriptor. Some software implementations
might copy the header(s) and packet data into one buffer and use only one descriptor per transmitted
packet.

7.2.1.2 On-Chip Transmit Buffers

The I211 allocates by default a 24 KB on-chip packet buffer. The buffers are used to store packets until
they are transmitted on the line. Actual on-chip transmit buffer allocated is controlled by the TXPBSIZE
register.

7.2.1.3 On-Chip descriptor Buffers

The I211 contains a 24 descriptor cache for each transmit queue used to reduce the latency of packet
processing and to optimize the usage of the PCIe bandwidth by fetching and writing back descriptors in
bursts. The fetch and write-back algorithm are described in Section 7.2.2.5 and Section 7.2.2.6.

0 1 2 3 4 5 6 7
 1

8 9 0 1 2 3 4 5
 2

6 7 8 9 0 1 2 3
3

4 5 6 7 8 9 0 1

Source Port Destination Port

Verification Tag

Checksum

Chunks 1...n

Inline Functions—Ethernet Controller I211

181

7.2.1.4 Transmit Contexts

The I211 provides hardware checksum offload and TCP/UDP segmentation facilities. These features
enable TCP and UDP packet types to be handled more efficiently by performing additional work in
hardware, thus reducing the software overhead associated with preparing these packets for
transmission. Part of the parameters used by these features is handled though context descriptors.

A context descriptor refers to a set of device registers loaded or accessed as a group to provide a
particular function. The I211 supports 2x4 context descriptor sets (two per queue) on-chip. The
transmit queues can contain transmit data descriptors (similar to the receive queue) as well as transmit
context descriptors.

The contexts are queue specific and one context cannot be reused from one queue to another. This
differs from the method used in previous devices that supported a pool of contexts to be shared
between queues.

A transmit context descriptor differs from a data descriptor as it does not point to packet data. Instead,
this descriptor provides the ability to write to the on-chip context register sets that support the transmit
checksum offloading and the segmentation features of the I211.

The I211 supports one type of transmit context. This on-chip context is written with a transmit context
descriptor DTYP=2 and is always used as context for transmit data descriptor DTYP=3.

The IDX field contains an index to one of the two queue contexts. Software must track what context is
stored in each IDX location.

Each advanced data descriptor that uses any of the advanced offloading features must refer to a
context.

Contexts can be initialized with a transmit context descriptor and then used for a series of related
transmit data descriptors. The context, for example, defines the checksum and offload capabilities for a
given type of TCP/IP flow. All packets of this type can be sent using this context.

Software is responsible for ensuring that a context is only overwritten when it is no longer needed.
Hardware does not include any logic to manage the on-chip contexts; it is completely up to software to
populate and then use the on-chip context table.

Note: Software should not queue more than two context descriptors in sequence without an
intervening data descriptor, to achieve adequate performance.

Each context defines information about the packet sent including the total size of the MAC header
(TDESC.MACLEN), the maximum amount of payload data that should be included in each packet
(TDESC.MSS), UDP or TCP header length (TDESC.L4LEN), IP header length (TDESC.IPLEN), and
information about what type of protocol (TCP, IP, etc.) is used. Other than TCP, IP (TDESC.TUCMD),
most information is specific to the segmentation capability.

Because there are dedicated on-chip resources for contexts, they remain constant until they are
modified by another context descriptor. This means that a context can be used for multiple packets (or
multiple segmentation blocks) unless a new context is loaded prior to each new packet. Depending on
the environment, it might be unnecessary to load a new context for each packet. For example, if most
traffic generated from a given node is standard TCP frames, this context could be setup once and used
for many frames. Only when some other frame type is required would a new context need to be loaded
by software. This new context could use a different index or the same index.

Ethernet Controller I211 —Inline Functions

182

This same logic can also be applied to the TCP/UDP segmentation scenario, though the environment is
a more restrictive one. In this scenario, the host is commonly asked to send messages of the same
type, TCP/IP for instance, and these messages also have the same Maximum Segment Size (MSS). In
this instance, the same context could be used for multiple TCP messages that require hardware
segmentation.

7.2.2 Transmit Descriptors

The I211 supports legacy descriptors and the I211 advanced descriptors.

Legacy descriptors are intended to support legacy drivers to enable fast platform power up and to
facilitate debug.

In addition, the I211 supports two types of advanced transmit descriptors:

1. Advanced Transmit Context Descriptor, DTYP = 0010b.
2. Advanced Transmit Data Descriptor, DTYP = 0011b.

Note: DTYP values 0000b and 0001b are reserved.

The transmit data descriptor (both legacy and advanced) points to a block of packet data to be
transmitted. The advanced transmit context descriptor does not point to packet data. It contains
control/context information that is loaded into on-chip registers that affect the processing of packets for
transmission. The following sections describe the descriptor formats.

7.2.2.1 Legacy Transmit Descriptor Format

Legacy descriptors are identified by having bit 29 of the descriptor (TDESC.DEXT) set to 0b. In this
case, the descriptor format is defined as shown in Table 7-23. Note that the address and length must
be supplied by software. Also note that bits in the command byte are optional, as is the CSO field.

Note: For frames that span multiple descriptors, the VLAN, CSO, CMD.VLE, CMD.IC, and CMD.IFCS
are valid only in the first descriptors and are ignored in the subsequent ones.

7.2.2.1.1 Buffer Address (64)

Physical address of a data buffer in host memory that contains a portion of a transmit packet.

Table 7-23. Transmit Descriptor (TDESC) Fetch Layout - Legacy Mode

63 48 47 40 39 36 35 32 31 24 23 16 15 0

0 Buffer Address [63:0]

8 VLAN Reserved Reserved STA CMD CSO Length

Table 7-24. Transmit Descriptor (TDESC) Write-Back Layout - Legacy Mode

63 48 47 40 39 36 35 32 31 24 23 16 15 0

0 Reserved Reserved

8 VLAN Reserved Reserved STA CMD CSO Length

Inline Functions—Ethernet Controller I211

183

7.2.2.1.2 Length

Length (TDESC.LENGTH) specifies the length in bytes to be fetched from the buffer address provided.

The maximum length associated with any single legacy descriptor is 9728 bytes.

Descriptor length(s) might be limited by the size of the transmit FIFO. All buffers comprising a single
packet must be able to be stored simultaneously in the transmit FIFO. For any individual packet, the
sum of the individual descriptors' lengths must be below 9728 bytes.

Note: The maximum allowable packet size for transmits can change, based on the value written to
the DMA TX Max Allowable packet size (DTXMXPKTSZ) register.

Note: Descriptors with zero length (null descriptors) transfer no data. Null descriptors can only
appear between packets and must have their EOP bits set.

Note: If the TCTL.PSP bit is set, the total length of the packet transmitted, not including FCS should
be at least 17 bytes. If bit is cleared the total length of the packet transmitted, not including
FCS should be at least 60 bytes.

7.2.2.1.3 Checksum Offset and Start - CSO

A Checksum Offset (TDESC.CSO) field indicates where, relative to the start of the packet, to insert a
TCP checksum if this mode is enabled.

CSO is in a unit of bytes and must be in the range of data provided to the I211 in the descriptors. For
short packets that are not padded by software, CSO must be in the range of the unpadded data length,
not the eventual padded length (64 bytes).

CSO must be set to the location of TCP checksum in the packet. Checksum calculation is not done if
CSO is out of range. This occurs if (CSO > length - 1).

In the case of an 802.1Q header, the offset values depend on the VLAN insertion enable (VLE) bit. If it
is not set (VLAN tagging included in the packet buffers), the offset values should include the VLAN
tagging. If this bit is set (VLAN tagging is taken from the packet descriptor), the offset values should
exclude the VLAN tagging.

Note: UDP checksum calculation is not supported by the legacy descriptors. When using legacy
descriptors the I211 is not aware of the L4 type of the packet and thus, does not support the
translation of a checksum result of 0x0000 to 0xFFFF needed to differentiate between an UDP
packet with a checksum of zero and an UDP packet without checksum.

Because the CSO field is eight bits wide, it puts a limit on the location of the checksum to 255 bytes
from the beginning of the packet.

Hardware adds the checksum to the field at the offset indicated by the CSO field. A value of zero
corresponds to the first byte in the packet.

7.2.2.1.4 Command Byte - CMD

The CMD byte stores the applicable command and has the fields shown in Figure 7-25.

Table 7-25. Transmit Command (TDESC.CMD) Layout

7 6 5 4 3 2 1 0

RSV VLE DEXT Rsv RS IC IFCS EOP

Ethernet Controller I211 —Inline Functions

184

• RSV (bit 7) - Reserved
• VLE (bit 6) - VLAN Insertion Enable (See Table 7-26).
• DEXT (bit 5) - Descriptor Extension (0 for legacy mode)
• Reserved (bit 4) - Reserved
• RS (bit 3) - Report Status
• IC (bit 2) - Insert Checksum
• IFCS (bit 1) - Insert FCS
• EOP (bit 0) - End of Packet

VLE: Indicates that the packet is a VLAN packet. For example, hardware should add the VLAN
EtherType and an802.1Q VLAN tag to the packet.

RS: Signals the hardware to report the status information. This is used by software that does in-
memory checks of the transmit descriptors to determine which ones are done. For example, if software
queues up 10 packets to transmit, it can set the RS bit in the last descriptor of the last packet. If
software maintains a list of descriptors with the RS bit set, it can look at them to determine if all
packets up to (and including) the one with the RS bit set have been buffered in the output FIFO.
Looking at the status byte and checking the Descriptor Done (DD) bit enables this operation. If DD is
set, the descriptor has been processed. Refer to Table 7-27 for the layout of the status field.

IC: If set, requests hardware to add the checksum of the data from CSS to the end of the packet at the
offset indicated by the CSO field.

IFCS: When set, hardware appends the MAC FCS at the end of the packet. When cleared, software
should calculate the FCS for proper CRC check. There are several cases in which software must set
IFCS:

• Transmitting a short packet while padding is enabled by the TCTL.PSP bit.
• Checksum offload is enabled by the IC bit in the TDESC.CMD.
• VLAN header insertion enabled by the VLE bit in the TDESC.CMD.

EOP: When set, indicates this is the last descriptor making up the packet. Note that more than one
descriptor can be used to form a packet.

Note: VLE, IFCS, CSO, and IC must be set correctly only in the first descriptor of each packet. In
previous silicon generations, some of these bits were required to be set in the last descriptor
of a packet.

7.2.2.1.5 Status – STA

Table 7-26. VLAN Tag Insertion Decision Table

VLE Action

0b Send generic Ethernet packet.

1b Send 802.1Q packet; VLAN data comes from the VLAN field of the TX descriptor.

Table 7-27. Transmit Status (TDESC.STA) Layout

3 2 1 0

Reserved DD

Inline Functions—Ethernet Controller I211

185

7.2.2.1.6 DD (Bit 0) - Descriptor Done Status

The DD bit provides the transmit status, when RS is set in the command: DD indicates that the
descriptor is done and is written back after the descriptor has been processed.

Note: When head write back is enabled (TDWBAL[n].Head_WB_En = 1), there is no write-back of
the DD bit to the descriptor. When using legacy Tx descriptors, Head writeback should not be
enabled (TDWBAL[n].Head_WB_En = 0).

7.2.2.1.7 VLAN

The VLAN field is used to provide the 802.1Q/802.1ac tagging information. The VLAN field is valid only
on the first descriptor of each packet when the VLE bit is set. The rule for VLAN tag is to use network
ordering. The VLAN field is placed in the transmit descriptor in the following manner:

• VLAN ID - the 12-bit tag indicating the VLAN group of the packet.
• Canonical Form Indication (CFI) - Set to zero for Ethernet packets.
• PRI - indicates the priority of the packet.

Note: The VLAN tag is sent in network order (also called big endian).

7.2.2.2 Advanced Transmit Context Descriptor

7.2.2.2.1 IPLEN (9)

IP header length. If an offload is requested, IPLEN must be greater than or equal to 20 and less than or
equal to 511.

7.2.2.2.2 MACLEN (7)

This field indicates the length of the MAC header. When an offload is requested (either TSE or IXSM or
TXSM is set), MACLEN must be larger than or equal to 14 and less than or equal to 127. This field
should include only the part of the L2 header supplied by the software device driver and not the parts
added by hardware. Table 7-30 lists the value of MACLEN in the different cases.

Table 7-28. VLAN Field (TDESC.VLAN) Layout

15 13 12 11 0

PRI CFI VLAN ID

Table 7-29. Transmit Context Descriptor (TDESC) Layout - (Type = 0010b)

63 57 56 32 31 16 15 9 8 0

0 Reserved LaunchTime VLAN MACLEN IPLEN

63 48 47 40 39 38 36 35 30 29 28 24 23 20 19 9 8 0

8 MSS L4LEN RSV1 IDX Reserved DEXT RSV1

1. RSV - Reserved

DTYP TUCMD Reserved

Ethernet Controller I211 —Inline Functions

186

VLAN (16) - 802.1Q VLAN tag to be inserted in the packet during transmission. This VLAN tag is
inserted and needed only when a packet using this context has its DCMD.VLE bit set. This field should
include the entire 16-bit VLAN field including the CFI and Priority fields as listed in Table 7-28.

Note: The VLAN tag is sent in network order.

7.2.2.2.3 LaunchTime (25)

The LaunchTime field is only used in Qav mode when a queue is configured as SR queue. The
LaunchTime value is used to

1. calculate the fetch time - this time defines the time to fetch the packet from the host to the packet
buffer, and

2. define the launch time - the time to transmit a packet from the packet buffer.

The LaunchTime is a 25 bit field defined in 32 nsec units (Launch time = LaunchTime * 32). The Launch
time is compared against the SYSTIML register ignoring the SYSTIMH value. It means that the Launch
time is defined relative to the fraction of a second of the SYSTIM.

• The Launch time is defined as "expired" if it is greater or equal to the SYSTIML.
• The Launch time is defined as "greater" than SYSTIML if it is in the range of [SYSTIML … SYSTIML +

0.5 sec).
• It is defined as "smaller" than SYSTIML if it is in the range of [SYSTIML - 0.5 sec … SYSTIML).

Notes: The operations "SYSTIML + 0.5 sec" and "SYSTIML - 0.5 sec" are modulo 1 sec.
For meaningful operation, the Launch time should never be set to larger value than SYSTIML
+ 0.5sec. Otherwise, the Launch time might be misinterpreted.
The LaunchTime parameter is a relative time to the LaunchOffset parameter in the
LAUNCH_OS0 register. So, the actual Launch time equals to 32 * (LaunchOffset +
LaunchTime).

7.2.2.2.4 TUCMD (11)

Table 7-30. MACLEN Values

SNAP Regular VLAN External VLAN MACLEN

No By hardware or no VLAN No 14

No By hardware or no VLAN Yes 18

No By software No 18

No By software Yes 22

Yes By hardware or no VLAN No 22

Yes By hardware or no VLAN Yes 26

Yes By software No 26

Yes By software Yes 30

Table 7-31. Transmit Command (TDESC.TUCMD) Layout

10 4 3 2 1 0

Reserved L4T IPV4 SNAP

Inline Functions—Ethernet Controller I211

187

• RSV (bit 10:4) - Reserved
• L4T (bit 3:2) - L4 Packet TYPE (00b: UDP; 01b: TCP; 10b: SCTP; 11b: Reserved)
• IPV4 (bit 1) - IP Packet Type: When 1b, IPv4; when 0b, IPv6
• SNAP (bit 0) - SNAP indication

7.2.2.2.5 DTYP(4)

Always 0010b for this type of descriptor.

7.2.2.2.6 DEXT(1)

Descriptor Extension (1b for advanced mode).

7.2.2.2.7 IDX (3)

Index into the hardware context table where this context is stored. In the I211 the 2 available register
context sets per queue are accessed using the LSB bit and the two MSB bits are reserved and should
always be 0.

Note: In Qav mode for the SR queues a valid context descriptor should be placed ahead of any
timed packet pointed by a data descriptor and the IDX field is ignored.

7.2.2.2.8 L4LEN (8)

Layer 4 header length. If TSE is set in the data descriptor pointing to this context, this field must be
greater than or equal to 12 and less than or equal to 255. Otherwise, this field is ignored.

7.2.2.2.9 MSS (16)

Controls the Maximum Segment Size (MSS). This specifies the maximum TCP payload segment sent
per frame, not including any header or trailer. The total length of each frame (or section) sent by the
TCP/UDP segmentation mechanism (excluding Ethernet CRC) as follows:

Total length is equal to:

MACLEN + 4(if VLE set) + IPLEN + L4LEN + MSS

The one exception is the last packet of a TCP/UDP segmentation, which is typically shorter.

MSS is ignored when DCMD.TSE is not set.

Note: The headers lengths must meet the following:

MACLEN + IPLEN + L4LEN <= 512

Note: The MSS value should be larger than 0 and the maximum MSS value should not exceed 9216
bytes (9KB) length.

Ethernet Controller I211 —Inline Functions

188

The context descriptor requires valid data only in the fields used by the specific offload options.
Table 7-32 lists the required valid fields according to the different offload options.

7.2.2.3 Advanced Transmit Data Descriptor

Note: For frames that span multiple descriptors, all fields apart from DCMD.EOP, DCMD.RS,
DCMD.DEXT, DTALEN, Address and DTYP are valid only in the first descriptor and are ignored
in the subsequent ones.

7.2.2.3.1 Address (64) / DMA Time Stamp

Address: Physical address of a data buffer in host memory that contains a portion of a transmit packet
provided by the software.

DMA Time Stamp: When enabled by the 1588_STAT_EN flag in the TQAVCTRL register, the DMA Time
Stamp is valid and the TS_STAT flag in the STA field is set. Otherwise, this field is undefined and the
TS_STAT flag in the STA field is cleared. The DMA Time Stamp reports the time on which the descriptor
is written back to host memory. In order to minimize the time gap between DMA completion and
descriptor write back, the software could either use the RS bit or set the WTHRESH parameter in the
TXDCTL[n] register (of the queue) to zero. The DMA Time Stamp only part of the time (in the SYSTIM
registers) as follows. Therefore, the software should read the SYSTIMH register (once every ~512 sec)
in order to keep track of the complete time.

Table 7-32. Valid Field in Context vs. Required Offload

Required Offload Valid Fields in Context

TSE TXSM IXSM VLAN1

1. VLAN field is required only if the VLE bit in Tx descriptor is set.

L4LEN IPLEN MACLEN MSS L4T IPV4

1b2

2. If TSE is set, TXSM must be set to 1b.

1b X3

3. X - don’t care.

VLE Yes Yes Yes Yes Yes Yes

0b 1b X2 VLE No Yes Yes No Yes Yes

0b 0b 1b VLE No Yes Yes No No Yes

0b 0b 0b No context required unless VLE is set.

Table 7-33. Advanced Transmit Data Descriptor (TDESD) Layout - (Type = 0011b)
0 Address[63:0]

8 PAYLEN POPTS RSV1 IDX STA DCMD DTYP MAC RSV1

1. RSV - Reserved

DTALEN

63 46 45 40 39 38 36 35 32 31 24 23 20 19 18 17 16 15 0

Table 7-34. Advanced Tx Descriptor Write-back Format
0 DMA Time Stamp

8 Reserved STA Reserved

63 36 35 32 31 0

Inline Functions—Ethernet Controller I211

189

• DMA Time Stamp bits 31:0 get the value of SYSTIML register
• DMA Time Stamp bits 41:32 get the value of the 10 LS bits of the SYSTIMH register
• DMA Time Stamp bits 63:42 are set to zero

7.2.2.3.2 DTALEN (16)

Length in bytes of data buffer at the address pointed to by this specific descriptor.

Note: If the TCTL.PSP bit is set, the total length of the packet transmitted, not including FCS, should
be at least 17 bytes. If bit is cleared the total length of the packet transmitted, not including
FCS should be at least 60 bytes.

Note: The maximum allowable packet size for transmits is based on the value written to the DMA TX
Max Allowable packet size (DTXMXPKTSZ) register. Default value is 9,728 bytes.

7.2.2.3.3 MAC (2)

• 1STEP_1588 (bit 1) - Sample IEEE1588 Timestamp and post it in the transmitted packet at the
offset defined by the 1588_Offset field in the TSYNCTXCTL register.

• 2STEP_1588 (bit 1) - Sample IEEE1588 Timestamp at packet transmission in the TXSTMP registers.

Note: The two flags 1STEP_1588 and 2STEP_1588 are mutually.

7.2.2.3.4 DTYP (4)

0011b is the value for this descriptor type.

7.2.2.3.5 DCMD (8)

• TSE (bit 7) - TCP/UDP Segmentation Enable
• VLE (bit 6) - VLAN Packet Enable
• DEXT (bit 5) - Descriptor Extension (1b for advanced mode)
• Reserved (bit 4)
• RS (bit 3) - Report Status
• Reserved (bit 2)
• IFCS (bit 1) - Insert FCS

Table 7-35. Transmit Data (TDESD.MAC) Layout

1 0

2STEP_1588 1STEP_1588

Table 7-36. Transmit Data (TDESD.DCMD) Layout

7 6 5 4 3 2 1 0

TSE VLE DEXT Reserved RS Reserved IFCS EOP

Ethernet Controller I211 —Inline Functions

190

• EOP (bit 0) - End Of Packet

TSE indicates a TCP/UDP segmentation request. When TSE is set in the first descriptor of a TCP packet,
hardware must use the corresponding context descriptor in order to perform TCP segmentation. The
type of segmentation applied is defined according to the TUCMD.L4T field in the context descriptor.

Note: It is recommended that TCTL.PSP be enabled when TSE is used since the last frame can be
shorter than 60 bytes - resulting in a bad frame if TCTL.PSP is disabled.

VLE indicates that the packet is a VLAN packet and hardware must add the VLAN EtherType and an
802.1Q VLAN tag to the packet.

DEXT must be 1b to indicate advanced descriptor format (as opposed to legacy).

RS signals hardware to report the status information. This is used by software that does in-memory
checks of the transmit descriptors to determine which ones are done. For example, if software queues
up 10 packets to transmit, it can set the RS bit in the last descriptor of the last packet. If software
maintains a list of descriptors with the RS bit set, it can look at them to determine if all packets up to
(and including) the one with the RS bit set have been buffered in the output FIFO. Looking at the status
byte and checking the DD bit do this. If DD is set, the descriptor has been processed. Refer to the next
section for the layout of the status field.

Note: Descriptors with zero length transfer no data.

IFCS, when set, hardware appends the MAC FCS at the end of the packet. When cleared, software
should calculate the FCS for proper CRC check. There are several cases in which the hardware changes
the packet, and thus the software must set IFCS:

• Transmitting a short packet while padding is enabled by the TCTL.PSP bit.
• Checksum offload is enabled by the either the TXSM or IXSM bits in the TDESD.POPTS field.
• VLAN header insertion enabled by the VLE bit in the TDESD.DCMD descriptor field when the

VMVIR[n].VLANA register field is 0.
• TCP/UDP segmentation offload enabled by TSE bit in the TDESD.DCMD.

EOP indicates whether this is the last buffer for an incoming packet.

7.2.2.3.6 STA (4)

• Rsv (bits 2-3) - Reserved
• TS_STAT (bit 1) - DMA Timestamp is provided in the DMA Time Stamp field. It is enabled by the

1588_STAT_EN flag in the TQAVCTRL register.
• DD (bit 0) - Descriptor Done

7.2.2.3.7 IDX (3)

Index into the hardware context table to indicate which context should be used for this request. If no
offload is required, this field is not relevant and no context needs to be initiated before the packet is
sent. See Table 7-32 for details on type of transmit packet offloads that require a context reference.

7.2.2.3.8 POPTS (6)

Inline Functions—Ethernet Controller I211

191

• Reserved (bits 5:2)
• TXSM (bit 1) - Insert L4 Checksum
• IXSM (bit 0) - Insert IP Checksum

TXSM, when set to 1b, L4 checksum must be inserted. In this case, TUCMD.L4T in the context
descriptor indicates whether the checksum is TCP, UDP, or SCTP.

When DCMD.TSE in TDESD is set, TXSM must be set to 1b.

If this bit is set, the packet should at least contain a TCP header.

IXSM, when set to 1b, indicates that IP checksum must be inserted. For IPv6 packets this bit must be
cleared.

If the DCMD.TSE bit is set in data descriptor, and TUCMD.IPV4 is set in context descriptor, POPTS.IXSM
must be set to 1b as well.

If this bit is set, the packet should at least contain an IP header.

7.2.2.3.9 PAYLEN (18)

PAYLEN indicates the size (in byte units) of the data buffer(s) in host memory for transmission. In a
single send packet, PAYLEN defines the entire packet size fetched from host memory. It does not
include the fields that hardware adds such as: optional VLAN tagging, Ethernet CRC or Ethernet
padding. When TCP or UDP segmentation offload is enabled (DCMD.TSE is set), PAYLEN defines the
TCP/UDP payload size fetched from host memory.

Note: When a packet spreads over multiple descriptors, all the descriptor fields are only valid in the
first descriptor of the packet, except for RS, which is always checked, DTALEN that reflects
the size of the buffer in the current descriptor and EOP, which is always set at last descriptor
of the series.

7.2.2.4 Transmit Descriptor Ring Structure

The transmit descriptor ring structure is shown in Figure 7-9. A set of hardware registers maintains
each transmit descriptor ring in the host memory. New descriptors are added to the queue by software
by writing descriptors into the circular buffer memory region and moving the tail pointer associated
with that queue. The tail pointer points to one entry beyond the last hardware owned descriptor.
Transmission continues up to the descriptor where head equals tail at which point the queue is empty.

Descriptors passed to hardware should not be manipulated by software until the head pointer has
advanced past them.

Table 7-37. Transmit Data (TDESD.POPTS) Layout

5 2 1 0

Reserved TXSM IXSM

Ethernet Controller I211 —Inline Functions

192

The shaded boxes in the figure represent descriptors that are not currently owned by hardware that
software can modify.

The transmit descriptor ring is described by the following registers:

• Transmit Descriptor Base Address register (TDBA 0-3):
This register indicates the start address of the descriptor ring buffer in the host memory; this 64-bit
address is aligned on a 16-byte boundary and is stored in two consecutive 32-bit registers.
Hardware ignores the lower four bits.

• Transmit Descriptor Length register (TDLEN 0-3):
This register determines the number of bytes allocated to the circular buffer. This value must be
zero modulo 128.

• Transmit Descriptor Head register (TDH 0-3):
This register holds a value that is an offset from the base and indicates the in-progress descriptor.
There can be up to 64 KB descriptors in the circular buffer. Reading this register returns the value of
head corresponding to descriptors already loaded in the output FIFO. This register reflects the
internal head of the hardware write-back process including the descriptor in the posted write pipe
and might point further ahead than the last descriptor actually written back to the memory.

• Transmit Descriptor Tail register (TDT 0-3):
This register holds a value, which is an offset from the base, and indicates the location beyond the
last descriptor hardware can process. This is the location where software writes the first new
descriptor.
The driver should not handle to the I211 descriptors that describe a partial packet. Consequently,
the number of descriptors used to describe a packet can not be larger than the ring size.

Figure 7-9. Transmit Descriptor Ring Structure

 Circular Buffer

Head

Base + Size

Base

Transmit
Queue

Tail

Inline Functions—Ethernet Controller I211

193

• Tx Descriptor Completion Write–Back Address High/Low Registers (TDWBAH/TDWBAL 0-3):
These registers hold a value that can be used to enable operation of head write-back operation.
When TDWBAL.Head_WB_En is set and the RS bit is set in the Tx descriptor, following
corresponding data upload into packet buffer, the I211 writes the Transmit Descriptor Head value
for this queue to the 64 bit address specified by the TDWBAH and TDWBAL registers. The
Descriptor Head value is an offset from the base, and indicates the descriptor location hardware
processed and software can utilize for new Transmit packets. See Section 7.2.3 for additional
information.

The base register indicates the start of the circular descriptor queue and the length register indicates
the maximum size of the descriptor ring. The lower seven bits of length are hard wired to 0b. Byte
addresses within the descriptor buffer are computed as follows: address = base + (ptr * 16), where ptr
is the value in the hardware head or tail register.

The size chosen for the head and tail registers permit a maximum of 65536 (64 KB) descriptors, or
approximately 16 KB packets for the transmit queue given an average of four descriptors per packet.

Once activated, hardware fetches the descriptor indicated by the hardware head register. The hardware
tail register points one descriptor beyond the last valid descriptor. Software can read and detect which
packets have already been processed by hardware as follows:

• Read the head register to determine which packets (those logically before the head) have been
transferred to the on-chip FIFO or transmitted. Note that this method is not recommended as races
between the internal update of the head register and the actual write-back of descriptors might
occur.

• Read the value of the head as stored at the address pointed by the TDWBAH/TDWBAL pair.
• Track the DD bits in the descriptor ring.

All the registers controlling the descriptor rings behavior should be set before transmit is enabled, apart
from the tail registers which are used during the regular flow of data.

Note: Software can determine if a packet has been sent by either of three methods: setting the RS
bit in the transmit descriptor command field or by performing a PIO read of the transmit head
register, or by reading the head value written by the I211 to the address pointed by the
TDWBAL and TDWBAH registers (see Section 7.2.3 for details). Checking the transmit
descriptor DD bit or head value in memory eliminates a potential race condition. All descriptor
data is written to the I/O bus prior to incrementing the head register, but a read of the head
register could pass the data write in systems performing I/O write buffering. Updates to
transmit descriptors use the same I/O write path and follow all data writes. Consequently,
they are not subject to the race.

In general, hardware prefetches packet data prior to transmission. Hardware typically updates the
value of the head pointer after storing data in the transmit FIFO.

7.2.2.5 Transmit Descriptor Fetching

When the TXDCTL[n].ENABLE bit is set and the on-chip descriptor cache is empty, a fetch happens as
soon as any descriptors are made available (Host increments the TDT[n] tail pointer). The descriptor
processing strategy for transmit descriptors is essentially the same as for receive descriptors except
that a different set of thresholds are used. The number of on-chip transmit descriptors per queue is 24.
When there is an on-chip descriptor buffer empty, a descriptor fetch happens as soon as any
descriptors are made available (host writes to the tail pointer). If several on-chip transmit descriptor
queues needs to fetch descriptors, descriptors from queues that are more starved are fetched. If a
number of queues have a starvation level, highest indexed queue is served first and so forth, down to
the lowest indexed queue.

Ethernet Controller I211 —Inline Functions

194

Note: The starvation level of a queue corresponds to the number of descriptors above the prefetch
threshold (TXDCTL[n].PTHRESH) that are already in the internal queue. The queue is more
starved if there are less descriptors in the internal transmit descriptor cache. Comparing
starvation level might be done roughly, not at the single descriptor level of resolution.

A queue is considered empty for the transmit descriptor fetch algorithm as long as:

• There is still no complete packet (single or large send) in its corresponding internal queue.
• There is no descriptor already in its way from system memory to the internal cache.
• The internal corresponding internal descriptor cache is not full.

Each time a descriptor fetch request is sent for an empty queue, the maximum available number of
descriptor is requested, regardless of cache alignment issues.

When the on-chip buffer is nearly empty (below TXDCTL[n].PTHRESH), a prefetch is performed each
time enough valid descriptors (TXDCTL[n].HTHRESH) are available in host memory and no other DMA
activity of greater priority is pending (descriptor fetches and write-backs or packet data transfers).

When the number of descriptors in host memory is greater than the available on-chip descriptor
storage, the I211 might elect to perform a fetch that is not a multiple of cache-line size. Hardware
performs this non-aligned fetch if doing so results in the next descriptor fetch being aligned on a cache-
line boundary. This enables the descriptor fetch mechanism to be more efficient in the cases where it
has fallen behind software.

Note: The I211 NEVER fetches descriptors beyond the descriptor tail pointer.

7.2.2.6 Transmit Descriptor Write-Back

The descriptor write-back policy for transmit descriptors is similar to that of the receive descriptors
when the TXDCTL[n].WTHRESH value is not 0x0. In this case, all descriptors are written back
regardless of the value of their RS bit.

When the TXDCTL[n].WTHRESH value is 0x0, since transmit descriptor write-backs do not happen for
every descriptor, only transmit descriptors that have the RS bit set are written back.

Any descriptor write-back includes the full 16 bytes of the descriptor.

Since the benefit of delaying and then bursting transmit descriptor write-backs is small at best, it is
likely that the threshold is left at the default value (0x0) to force immediate write-back of transmit
descriptors with their RS bit set and to preserve backward compatibility.

Descriptors are written back in one of three cases:

• TXDCTL[n].WTHRESH = 0x0 and a descriptor which has RS set is ready to be written back.
• The corresponding EITR counter has reached zero.

Note: When a packet spreads over multiple descriptors, all the descriptor fields are only valid in the
first descriptor of the packet, except for RS, which is always checked, DTALEN that reflects
the size of the buffer in the current descriptor and EOP, which is always set at last descriptor
of the series.

7.2.2.7 Transmit Descriptor Ring Structure
• TXDCTL[n].WTHRESH > 0x0 and TXDCTL[n].WTHRESH descriptors have accumulated.

Inline Functions—Ethernet Controller I211

195

For the first condition, write-backs are immediate. This is the default operation and is backward
compatible with previous Intel Ethernet controllers.

The other two conditions are only valid if descriptor bursting is enabled (Section 8.11.15). In the
second condition, the EITR counter is used to force timely write-back of descriptors. The first packet
after timer initialization starts the timer. Timer expiration flushes any accumulated descriptors and sets
an interrupt event (TXDW).

For the last condition, if TXDCTL[n].WTHRESH descriptors are ready for write-back, the write-back is
performed.

An additional mode in which transmit descriptors are not written back at all and the head pointer of the
descriptor ring is written instead as described in Section 7.2.3.

Note: When transmit ring is smaller than internal cache size (24 descriptors) then at least one full
packet should be placed in the ring and TXDCTL[n].WTHRESH value should be less than ring
size. If TXDCTL[n].WTHRESH is 0x0 (transmit RS mode) then at least one descriptor should
have the RS bit set inside the ring.

7.2.3 Transmit Completions Head Write Back

In legacy hardware, transmit requests are completed by writing the DD bit to the transmit descriptor
ring. This causes cache thrash since both the software device driver and hardware are writing to the
descriptor ring in host memory. Instead of writing the DD bits to signal that a transmit request
completed, hardware can write the contents of the descriptor queue head to host memory. The
software device driver reads that memory location to determine which transmit requests are complete.
In order to improve the performance of this feature, the software device driver might program DCA
registers to configure which CPU is processing each TX queue to allow pre-fetching of the head write
back value from the right cache.

7.2.3.1 Description

The head counter is reflected in a memory location that is allocated by software, for each queue.

Head write back occurs if TDWBAL[n].Head_WB_En is set for this queue and the RS bit is set in the Tx
descriptor, following corresponding data upload into packet buffer. If the head write-back feature is
enabled, the I211 ignores TXDCTL[n].WTHRESH and takes in account only descriptors with the RS bit
set (as if the TXDCTL[n].WTHRESH field was set to 0x0). In addition, the head write-back occurs upon
EITR expiration for queues where the WB_on_EITR bit in TDWBAL[n] is set.

Software can also enable coalescing of the head write-back operations to reduce traffic on the PCIe bus,
by programming the TXDCTL.HWBTHRESH field to a value greater than zero. In this case, head write-
back operation occurs only after the internal pending write-back count is greater than the
TXDCTL[n].HWBTHRESH value.

The software device driver has control on this feature through Tx queue 0-3 head write-back address,
low (TDWBAL[n]) and high (TDWBAH[n]) registers thus supporting 64-bit address access. See registers
description in Section 8.11.16 and Section 8.11.17.

The 2 low register's LSB bits of the TDWBAL[n] register hold the control bits.

1. The Head_WB_En bit enables activation of the head write back feature. When
TDWBAL[n].Head_WB_En is set to 1 no TX descriptor write-back is executed for this queue.

Ethernet Controller I211 —Inline Functions

196

2. The WB_on_EITR bit enables head write upon EITR expiration. When Head write back operation is
enabled (TDWBAL[n].Head_WB_En = 1) setting the TDWBAL[n].WB_on_EITR bit to 1b enables
placing an upper limit on delay of head write-back operation.

The 30 upper bits of the TDWBAL[n] register hold the lowest 32 bits of the head write-back address,
assuming that the two last bits are zero. The TDWBAH[n] register holds the high part of the 64-bit
address.

Note: Hardware writes a full Dword when writing this value, so software should reserve enough
space for each head value.
If software enables Head Write-Back, it must also disable PCI Express Relaxed Ordering on
the write-back transactions. This is done by disabling bit 11 in the TXCTL register for each
active transmit queue. See Section 8.12.2.
The I211 might update the Head with values that are larger then the last Head pointer, which
holds a descriptor with the RS bit set; however, the value always points to a free descriptor
(descriptor that is not longer owned by the I211).

Note: Software should program TDWBAL[n], TDWBAH[n] registers when queue is disabled
(TXDCTL[n].Enable = 0).

7.2.4 TCP/UDP Segmentation

Hardware TCP segmentation is one of the offloading options supported by the Windows* and Linux*
TCP/IP stack. This is often referred to as TCP Segmentation Offloading or TSO. This feature enables the
TCP/IP stack to pass to the network device driver a message to be transmitted that is bigger than the
Maximum Transmission Unit (MTU) of medium. It is then the responsibility of the software device driver
and hardware to divide the TCP message into MTU size frames that have appropriate layer 2 (Ethernet),
3 (IP), and 4 (TCP) headers. These headers must include sequence number, checksum fields, options
and flag values as required. Note that some of these values (such as the checksum values) are unique
for each packet of the TCP message and other fields such as the source IP address are constant for all
packets associated with the TCP message.

The I211 supports also UDP segmentation for embedded applications, although this offload is not
supported by the regular Windows* and Linux* stacks. Any reference in this section to TCP
segmentation, should be considered as referring to both TCP and UDP segmentation.

Padding (TCTL.PSP) must be enabled in TCP segmentation mode, since the last frame might be shorter
than 60 bytes, resulting in a bad frame if PSP is disabled.

The offloading of these mechanisms from the software device driver to the I211 saves significant CPU
cycles. Note that the software device driver shares the additional tasks to support these options.

7.2.4.1 Assumptions

The following assumptions apply to the TCP segmentation implementation in the I211:

• The RS bit operation is not changed.
• Interrupts are set after data in buffers pointed to by individual descriptors is transferred (DMA'd) to

hardware.

7.2.4.2 Transmission Process

The transmission process for regular (non-TCP segmentation packets) involves:

• The protocol stack receives from an application a block of data that is to be transmitted.

Inline Functions—Ethernet Controller I211

197

• The protocol stack calculates the number of packets required to transmit this block based on the
MTU size of the media and required packet headers.

For each packet of the data block:

• Ethernet, IP and TCP/UDP headers are prepared by the stack.
• The stack interfaces with the software device driver and commands it to send the individual packet.
• The software device driver gets the frame and interfaces with the hardware.
• The hardware reads the packet from host memory (via DMA transfers).
• The software device driver returns ownership of the packet to the Network Operating System (NOS)

when hardware has completed the DMA transfer of the frame (indicated by an interrupt).

The transmission process for the I211 TCP segmentation offload implementation involves:

• The protocol stack receives from an application a block of data that is to be transmitted.
• The stack interfaces to the software device driver and passes the block down with the appropriate

header information.
• The software device driver sets up the interface to the hardware (via descriptors) for the TCP

segmentation context.

Hardware DMA's (transfers) the packet data and performs the Ethernet packet segmentation and
transmission based on offset and payload length parameters in the TCP/IP context descriptor including:

• Packet encapsulation
• Header generation and field updates including IPv4, IPV6, and TCP/UDP checksum generation
• The software device driver returns ownership of the block of data to the NOS when hardware has

completed the DMA transfer of the entire data block (indicated by an interrupt).

7.2.4.2.1 TCP Segmentation Data Fetch Control

To perform TCP Segmentation in the I211, the DMA must be able to fit at least one packet of the
segmented payload into available space in the on-chip Packet Buffer. The DMA does various
comparisons between the remaining payload and the Packet Buffer available space, fetching additional
payload and sending additional packets as space permits.

To support interleaving between descriptor queues at Ethernet frame resolution inside TSO requests,
the frame header pointed to by the so called header descriptors are reread from system memory by
hardware for every LSO segment. The I211 stores in an internal cache only the header’s descriptors
instead of the header’s content.

To limit the internal cache size software should not spread the L3/L4 header (TCP, UDP, IPV4 or IPV6)
on more than 4 descriptors. In the last header buffer it’s allowed to mix header and data. This limitation
stands for up to Layer4 header included, and for IPv4 or IPv6 indifferently.

7.2.4.2.2 TCP Segmentation Write-Back Modes

Ethernet Controller I211 —Inline Functions

198

Since the TCP segmentation mode uses the buffers that contains the L3/L4 header multiple times, there
are some limitations on the usage of different combinations of writeback and buffer release methods in
order to guarantee the header buffer’s availability until the entire packet is processed. These limitations
are listed in Table 7-38.

7.2.4.3 TCP Segmentation Performance

Performance improvements for a hardware implementation of TCP Segmentation off-load include:

• The stack does not need to partition the block to fit the MTU size, saving CPU cycles.
• The stack only computes one Ethernet, IP, and TCP header per segment, saving CPU cycles.
• The Stack interfaces with the device driver only once per block transfer, instead of once per frame.
• Larger PCIe bursts are used which improves bus efficiency (such as lowering transaction overhead).
• Interrupts are easily reduced to one per TCP message instead of one per packet.
• Fewer I/O accesses are required to command the hardware.

7.2.4.4 Packet Format

Typical TCP/IP transmit window size is 8760 bytes (about 6 full size frames). Today the average size on
corporate Intranets is 12-14 KB, and normally the maximum window size allowed is 64KB (unless
Windows Scaling - RFC 1323 is used). A TCP message can be as large as 256 KB and is generally

Table 7-38. Write Back Options For Large Send

WTHRESH RS HEAD Write
Back Enable Hardware Behavior Software Expected Behavior for TSO

packets.

0
Set in EOP
descriptors
only

Disable
Hardware writes back
descriptors with RS bit set
one at a time.

Software can retake ownership of all
descriptors up to last descriptor with DD bit
set.

0 Set in any
descriptors Disable

Hardware writes back
descriptors with RS bit set
one at a time.

Software can retake ownership of entire
packets (EOP bit set) up to last descriptor with
DD bit set.

0 Not set at all Disable
Hardware does not write
back any descriptor (since
RS bit is not set)

Software should poll the TDH register. The
TDH register reflects the last descriptor that
software can take ownership of.1

1. Note that polling of the TDH register is a valid method only when the RS bit is never set, otherwise race conditions between
software and hardware accesses to the descriptor ring can occur.

0 Not set at all Enable

Hardware writes back the
head pointer only at EITR
expire event reflecting the
last descriptor that software
can take ownership of.

Software might poll the TDH register or use
the head value written back at EITR expire
event.
The TDH register reflects the last descriptor
that software can take ownership of.

>0 Don't care Disable
Hardware writes back all the
descriptors in bursts and set
all the DD bits.

Software can retake ownership of entire
packets up to last descriptor with both DD and
EOP bits set.
Note: The TDH register reflects the last
descriptor that software can take ownership
of1.

Don't care
Set in EOP
descriptors
only

Enable
Hardware writes back the
Head pointer per each
descriptor with RS bit set.2

2. At EITR expire event, the Hardware writes back the head pointer reflecting the last descriptor that software can take ownership of.

Software can retake ownership of all
descriptors up to the descriptor pointed by the
head pointer read from system memory (by
interrupt or polling).

Don't care Set in any
descriptors Enable

Hardware writes back the
Head pointer per each
descriptor with RS bit set.

This mode is illegal since software won't
access the descriptor, it cannot tell when the
pointer passed the EOP descriptor.

Inline Functions—Ethernet Controller I211

199

fragmented across multiple pages in host memory. The I211 partitions the data packet into standard
Ethernet frames prior to transmission according to the requested MSS. The I211 supports calculating
the Ethernet, IP, TCP, and UDP headers, including checksum, on a frame-by-frame basis.

Frame formats supported by the I211 include:

• Ethernet 802.3
• IEEE 802.1Q VLAN (Ethernet 802.3ac)
• Ethernet Type 2
• Ethernet SNAP
• IPv4 headers with options
• IPv6 headers with extensions
• TCP with options
• UDP with options.

VLAN tag insertion might be handled by hardware

Note: UDP (unlike TCP) is not a “reliable protocol”, and fragmentation is not supported at the UDP
level. UDP messages that are larger than the MTU size of the given network medium are
normally fragmented at the IP layer. This is different from TCP, where large TCP messages can
be fragmented at either the IP or TCP layers depending on the software implementation. The
I211 has the ability to segment UDP traffic (in addition to TCP traffic), however, because UDP
packets are generally fragmented at the IP layer, the I211's “TCP Segmentation” feature is
not normally useful to handle UDP traffic.

7.2.4.5 TCP/UDP Segmentation Indication

Software indicates a TCP/UDP Segmentation transmission context to the hardware by setting up a TCP/
IP Context Transmit Descriptor (see Section 7.2.2). The purpose of this descriptor is to provide
information to the hardware to be used during the TCP segmentation off-load process.

Setting the TSE bit in the TDESD.DCMD field to 1b indicates that this descriptor refers to the TCP
Segmentation context (as opposed to the normal checksum off loading context). This causes the
checksum off loading, packet length, header length, and maximum segment size parameters to be
loaded from the Context descriptor into the device.

The TCP Segmentation prototype header is taken from the packet data itself. Software must identity
the type of packet that is being sent (IPv4/IPv6, TCP/UDP, other), calculate appropriate checksum off
loading values for the desired checksum, and calculate the length of the header which is pre-appended.
The header might be up to 240 bytes in length.

Table 7-39. TCP/IP or UDP/IP Packet Format Sent by Host
L2/L3/L4 Header Data

 Ethernet IPv4/IPv6 TCP/UDP DATA (full TCP message)

Table 7-40. TCP/IP or UDP/IP Packet Format Sent by the I211

 L2/L3/L4 Header
(updated)

Data (first
MSS) FCS ...

 L2/L3/L4
Header

(updated)

Data (Next
MSS) FCS ...

Ethernet Controller I211 —Inline Functions

200

Once the TCP Segmentation context has been set, the next descriptor provides the initial data to
transfer. This first descriptor(s) must point to a packet of the type indicated. Furthermore, the data it
points to might need to be modified by software as it serves as the prototype header for all packets
within the TCP Segmentation context. The following sections describe the supported packet types and
the various updates which are performed by hardware. This should be used as a guide to determine
what must be modified in the original packet header to make it a suitable prototype header.

The following summarizes the fields considered by the driver for modification in constructing the
prototype header.

IP Header

For IPv4 headers:

• Identification Field should be set as appropriate for first packet to be sent
• Header Checksum should be zeroed out unless some adjustment is needed by the driver

TCP Header

• Sequence Number should be set as appropriate for first packet of send (if not already)
• PSH, and FIN flags should be set as appropriate for LAST packet of send
• TCP Checksum should be set to the partial pseudo-header sum as follows (there is a more detailed

discussion of this is Section 7.2.4.6):

UDP Header

• Checksum should be set as in TCP header, above

The following sections describe the updating process performed by the hardware for each frame sent
using the TCP Segmentation capability.

7.2.4.6 Transmit Checksum Offloading with TCP/UDP Segmentation

The I211 supports checksum off-loading as a component of the TCP Segmentation off-load feature and
as a standalone capability. Section 7.2.5 describes the interface for controlling the checksum off-
loading feature. This section describes the feature as it relates to TCP Segmentation.

The I211 supports IP and TCP header options in the checksum computation for packets that are derived
from the TCP Segmentation feature.

Table 7-41. TCP Partial Pseudo-Header Sum for IPv4
IP Source Address

IP Destination Address

Zero Layer 4 Protocol ID Zero

Table 7-42. TCP Partial Pseudo-Header Sum for IPv6
IPv6 Source Address

IPv6 Final Destination Address

Zero

Zero Next Header

Inline Functions—Ethernet Controller I211

201

Note: The I211 is capable of computing one level of IP header checksum and one TCP/UDP header
and payload checksum. In case of multiple IP headers, the driver needs to compute all but
one IP header checksum. The I211 calculates check sums on the fly on a frame-by-frame
basis and inserts the result in the IP/TCP/UDP headers of each frame. TCP and UDP checksum
are a result of performing the checksum on all bytes of the payload and the pseudo header.

Two specific types of checksum are supported by the hardware in the context of the TCP Segmentation
off-load feature:

• IPv4 checksum
• TCP checksum

See Section 7.2.5 for description of checksum off loading of a single-send packet.

Each packet that is sent via the TCP segmentation off-load feature optionally includes the IPv4
checksum and either the TCP checksum.

All checksum calculations use a 16-bit wide one's complement checksum. The checksum word is
calculated on the outgoing data.

Table 7-44lists the conditions of when checksum off loading can/should be calculated.

7.2.4.7 TCP/UDP/IP Headers Update

IP/TCP or IP/UDP header is updated for each outgoing frame based on the IP/TCP header prototype
which hardware DMA's from the first descriptor(s). The checksum fields and other header information
are later updated on a frame-by-frame basis. The updating process is performed concurrently with the
packet data fetch.

Table 7-43. Supported Transmit Checksum Capabilities

Packet Type Hardware IP Checksum
Calculation

Hardware TCP/UDP Checksum
Calculation

IP v4 packets Yes Yes

IP v6 packets
(no IP checksum in IPv6)

NA Yes

Packet is greater than 1518, 1522 or 1526 bytes;
(LPE=1b)1

1. Depends on number of VLAN tags.

Yes Yes

Packet has 802.3ac tag Yes Yes

Packet has IP options
(IP header is longer than 20 bytes)

Yes Yes

Packet has TCP or UDP options Yes Yes

IP header’s protocol field contains a protocol # other
than TCP or UDP. Yes No

Table 7-44. Conditions for Checksum Offloading

Packet Type IPv4 TCP/UDP Reason

Non TSO Yes No IP Raw packet (non TCP/UDP protocol)

Yes Yes TCP segment or UDP datagram with checksum off-load

No No Non-IP packet or checksum not offloaded

TSO Yes Yes For TSO, checksum off-load must be done

Ethernet Controller I211 —Inline Functions

202

The following sections define what fields are modified by hardware during the TCP Segmentation
process by the I211.

Note: Placing incorrect values in the Context descriptors might cause failure of Large Send. The
indication of Large Send failure can be checked in the TSCTC statistics register.

7.2.4.7.1 TCP/UDP/IP Headers for the First Frames

The hardware makes the following changes to the headers of the first packet that is derived from each
TCP segmentation context.

MAC Header (for SNAP)

• Type/Len field = MSS + MACLEN + IPLEN + L4LEN - 14 - 4 (if VLAN added by Software)

IPv4 Header

• IP Identification: Value in the IPv4 header of the prototype header in the packet data itself
• IP Total Length = MSS + L4LEN + IPLEN
• IP Checksum

IPv6 Header

• Payload Length = MSS + L4LEN + IPV6_HDR_extension1

TCP Header

• Sequence Number: The value is the Sequence Number of the first TCP byte in this frame.
• The flag values of the first frame are set by ANDing the flag word in the pseudo header with the

DTXTCPFLGL.TCP_flg_first_seg register field. The default value of the
DTXTCPFLGL.TCP_flg_first_seg are set so that the FIN flag and the PSH flag are cleared in the first
frame.

• TCP Checksum

UDP Header

• UDP Length = MSS + L4LEN
• UDP Checksum

7.2.4.7.2 TCP/UDP/IP Headers for the Subsequent Frames

The hardware makes the following changes to the headers for subsequent packets that are derived as
part of a TCP segmentation context:

Number of bytes left for transmission = PAYLEN - (N * MSS). Where N is the number of frames that
have been transmitted.

MAC Header (for SNAP Packets)

Type/Len field = MSS + MACLEN + IPLEN + L4LEN - 14 - 4 (if VLAN added by Software)

IPv4 Header

• IP Identification: incremented from last value (wrap around based on 16 bit-width)
• IP Total Length = MSS + L4LEN + IPLEN

1. IPV6_HDR_extension is calculated as IPLEN - 40 bytes.

Inline Functions—Ethernet Controller I211

203

• IP Checksum

IPv6 Header

• Payload Length = MSS + L4LEN + IPV6_HDR_extension1

TCP Header

• Sequence Number update: Add previous TCP payload size to the previous sequence number value.
This is equivalent to adding the MSS to the previous sequence number.

• The flag values of the subsequent frames are set by ANDing the flag word in the pseudo header
with the DTXTCPFLGL.TCP_Flg_mid_seg register field. The default value of the
DTXTCPFLGL.TCP_Flg_mid_seg are set so that if the FIN flag and the PSH flag are cleared in these
frames.

• TCP Checksum

UDP Header

• UDP Length = MSS + L4LEN
• UDP Checksum

7.2.4.7.3 TCP/UDP/IP Headers for the Last Frame

The hardware makes the following changes to the headers for the last frame of a TCP segmentation
context:

Last frame payload bytes = PAYLEN - (N * MSS)

MAC Header (for SNAP Packets)

• Type/Len field = Last frame payload bytes + MACLEN + IPLEN + L4LEN - 14 - 4 (if VLAN added by
Software)

IPv4 Header

• IP Total Length = last frame payload bytes + L4LEN + IPLEN
• IP Identification: incremented from last value (wrap around based on 16 bit-width)
• IP Checksum

IPv6 Header

• Payload Length = last frame payload bytes + L4LEN + IPV6_HDR_extension1

TCP Header

• Sequence Number update: Add previous TCP payload size to the previous sequence number value.
This is equivalent to adding the MSS to the previous sequence number.

• The flag values of the last frames are set by ANDing the flag word in the pseudo header with the
DTXTCPFLGH.TCP_Flg_lst_seg register field. The default value of the DTXTCPFLGH.TCP_Flg_lst_seg
are set so that if the FIN flag and the PSH flag are set in the last frame.

• TCP Checksum

UDP Header

• UDP Length = Last frame payload bytes + L4LEN
• UDP Checksum

1. IPV6_HDR_extension is calculated as IPLEN - 40 bytes.

Ethernet Controller I211 —Inline Functions

204

7.2.4.8 Data Flow

The flow used by the I211 to do TCP segmentation is as follows:

1. Get a descriptor with a request for a TSO off-load of a TCP packet.
2. First Segment processing:

a. Fetch all the buffers containing the header as calculated by the MACLEN, IPLEN and L4LEN fields.
Save the addresses and lengths of the buffers containing the header (up to 4 buffers). The
header content is not saved.

b. Fetch data up to the MSS from subsequent buffers & calculate the adequate checksum(s).
c. Update the Header accordingly and update internal state of the packet (next data to fetch and

TCP SN).
d. Send the packet to the network.
e. If total packet was sent, go to step 4. else continue.

3. Next segments
a. Wait for next arbitration of this queue.
b. Fetch all the buffers containing the header from the saved addresses. Subsequent reads of the

header might be done with a no snoop attribute.
c. Fetch data up to the MSS or end of packet from subsequent buffers & calculate the adequate

checksum(s).
d. Update the Header accordingly and update internal state of the packet (next data to fetch and

TCP SN).
e. If total packet was sent, request is done, else restart from step 3.

4. Release all buffers (update head pointer).

Note: Descriptors are fetched in a parallel process according to the consumption of the buffers.

7.2.5 Checksum Offloading in Non-Segmentation Mode

The previous section on TCP Segmentation off-load describes the IP/TCP/UDP checksum off loading
mechanism used in conjunction with TCP Segmentation. The same underlying mechanism can also be
applied as a standalone feature. The main difference in normal packet mode (non-TCP Segmentation) is
that only the checksum fields in the IP/TCP/UDP headers need to be updated.

Before taking advantage of the I211's enhanced checksum off-load capability, a checksum context
must be initialized. For the normal transmit checksum off-load feature this is performed by providing
the device with a Descriptor with TSE = 0b in the TDESD.DCMD field and setting either the TXSM or
IXSM bits in the TDESD.POPTS field. Setting TSE = 0b indicates that the normal checksum context is
being set, as opposed to the segmentation context. For additional details on contexts, refer to
Section 7.2.2.4.

Note: Enabling the checksum off loading capability without first initializing the appropriate
checksum context leads to unpredictable results. CRC appending (TDESC.CMD.IFCS) must be
enabled in TCP/IP checksum mode, since CRC must be inserted by hardware after the
checksum has been calculated.

As mentioned in Section 7.2.2, it is not necessary to set a new context for each new packet. In many
cases, the same checksum context can be used for a majority of the packet stream. In this case, some
performance can be gained by only changing the context on an as needed basis or electing to use the
off-load feature only for a particular traffic type, thereby avoiding the need to read all context
descriptors except for the initial one.

Inline Functions—Ethernet Controller I211

205

Each checksum operates independently. Insertion of the IP and TCP checksum for each packet are
enabled through the Transmit Data Descriptor POPTS.TSXM and POPTS.IXSM fields, respectively.

7.2.5.1 IP Checksum

Three fields in the Transmit Context Descriptor (TDESC) set the context of the IP checksum off loading
feature:

• TUCMD.IPv4
• IPLEN
• MACLEN

TUCMD.IPv4 = 1b specifies that the packet type for this context is IPv4, and that the IP header
checksum should be inserted. TUCMD.IPv4 = 0b indicates that the packet type is IPv6 (or some other
protocol) and that the IP header checksum should not be inserted.

MACLEN specifies the byte offset from the start of the DMA'd data to the first byte to be included in the
checksum, the start of the IP header. The minimal allowed value for this field is 12. Note that the
maximum value for this field is 127. This is adequate for typical applications.

Note: The MACLEN + IPLEN value needs to be less than the total DMA length for a packet. If this is
not the case, the results are unpredictable.

IPLEN specifies the IP header length. Maximum allowed value for this field is 511 Bytes.

MACLEN + IPLEN specify where the IP checksum should stop. This is limited to the first 127 + 511
bytes of the packet and must be less than or equal to the total length of a given packet. If this is not
the case, the result is unpredictable.

The 16-bit IPv4 Header Checksum is placed at the two bytes starting at MACLEN + 10.

As mentioned in Section 7.2.2.2, Transmit Contexts, it is not necessary to set a new context for each
new packet. In many cases, the same checksum context can be used for a majority of the packet
stream. In this case, some performance can be gained by only changing the context on an as needed
basis or electing to use the off-load feature only for a particular traffic type, thereby avoiding all context
descriptor reads except for the initial one.

7.2.5.2 TCP/UDP Checksum

Three fields in the Transmit Context Descriptor (TDESC) set the context of the TCP/UDP checksum off
loading feature:

• MACLEN
• IPLEN
• TUCMD.L4T

TUCMD.L4T = 01b specifies that the packet type is TCP, and that the 16-bit TCP header checksum
should be inserted at byte offset MACLEN + IPLEN +16. TUCMD.L4T = 00b indicates that the packet is
UDP and that the 16-bit checksum should be inserted starting at byte offset MACLEN + IPLEN + 6.

IPLEN + MACLEN specifies the byte offset from the start of the DMA'd data to the first byte to be
included in the checksum, the start of the TCP header. The minimal allowed value for this sum is 32/42
for UDP or TCP respectively.

Ethernet Controller I211 —Inline Functions

206

Note: The IPLEN + MACLEN + L4LEN value needs to be less than the total DMA length for a packet.
If this is not the case, the results are unpredictable.

The TCP/UDP checksum always continues to the last byte of the DMA data.

Note: For non-TSO, software still needs to calculate a full checksum for the TCP/UDP pseudo-
header. This checksum of the pseudo-header should be placed in the packet data buffer at the
appropriate offset for the checksum calculation.

7.2.5.3 SCTP CRC Offloading

For SCTP packets, a CRC32 checksum offload is provided.

Three fields in the Transmit Context Descriptor (TDESC) set the context of the STCP checksum off
loading feature:

• MACLEN
• IPLEN
• TUCMD.L4T

TUCMD.L4T = 10b specifies that the packet type is SCTP, and that the 32-bit STCP CRC should be
inserted at byte offset MACLEN + IPLEN + 8.

IPLEN + MACLEN specifies the byte offset from the start of the DMA'd data to the first byte to be
included in the checksum, the start of the STCP header. The minimal allowed value for this sum is 26.

The SCTP CRC calculation always continues to the last byte of the DMA data.

The SCTP total L3 payload size (TDESCD.PAYLEN - IPLEN - MACLEN) should be a multiple of 4 bytes
(SCTP padding not supported).

Notes:
1. TSO is not available for SCTP packets.
2. The CRC field of the SCTP header must be set to zero prior to requesting a CRC calculation offload.

7.2.5.4 Checksum Supported Per Packet Types

Table 7-45 lists which checksum is supported per packet type.

Note: TSO is not supported for packet types for which IP checksum and TCP checksum can not be
calculated.

Inline Functions—Ethernet Controller I211

207

7.2.6 Multiple Transmit Queues

The number of transmit queues is 4, to support Qav functionality or to support load balancing between
CPUs.

If there are more CPUs cores than queues, then one queue might be used to service more than one
CPU.

For transmission process, each thread might place a queue in the host memory of the CPU it is tied to.

The I211 supports assigning either high or low priority to each transmit queue. High priority is assigned
to by setting the TXDCTL[n].priority bit to 1b. When high priority is assigned to a specific transmit
queue, the I211 always prioritizes transmit data fetch DMA accesses, before servicing transmit data
fetch of lower priority transmit queues.

Note: Throughput of low priority transmit queues can be significantly impacted if high priority
queues utilize the DMA resources fully.

Table 7-45. Checksum Per Packet Type

Packet Type Hardware IP Checksum
Calculation

Hardware TCP/UDP/SCTP
Checksum Calculation

IPv4 packets Yes Yes

IPv6 packets No (n/a) Yes

IPv6 packet with next header options:
• Hop-by-Hop options
• Destinations options
• Routing (w len 0b)
• Routing (w len >0b)
• Fragment
• Home option

No (n/a)
No (n/a)
No (n/a)
No (n/a)
No (n/a)
No (n/a)

Yes
Yes
Yes
No
No
No

IPv4 tunnels:
• IPv4 packet in an IPv4 tunnel
• IPv6 packet in an IPv4 tunnel

Either IP or TCP/SCTP1
Either IP or TCP/SCTP1

Either IP or TCP/SCTP 1

Either IP or TCP/SCTP1

1. For the tunneled case, the driver might do only the TCP checksum or IPv4 checksum. If TCP checksum is desired, the driver should
define the IP header length as the combined length of both IP headers in the packet. If an IPv4 checksum is required, the IP header
length should be set to the IPv4 header length.

IPv6 tunnels:
• IPv4 packet in an IPv6 tunnel
• IPv6 packet in an IPv6 tunnel

No
No

Yes
Yes

Packet is an IPv4 fragment Yes No

Packet is greater than 1518, 1522 or 1526 bytes;
(LPE=1b)2

2. Depends on number of VLAN tags.

Yes Yes

Packet has 802.3ac tag Yes Yes

Packet has TCP or UDP options Yes Yes

IP header’s protocol field contains protocol # other
than TCP or UDP. Yes No

Ethernet Controller I211 —Inline Functions

208

7.3 Interrupts

7.3.1 Interrupt Modes

The I211 supports the following interrupt modes:

• PCI legacy interrupts or MSI - selected when GPIE.Multiple_MSIX is 0b
• MSI-X when GPIE.Multiple_MSIX is 1b.

7.3.1.1 MSI-X and Vectors

MSI-X defines a separate optional extension to basic MSI functionality. Compared to MSI, MSI-X
supports a larger maximum number of vectors, the ability for software to control aliasing when fewer
vectors are allocated than requested, plus the ability for each vector to use an independent address and
data value, specified by a table that resides in Memory Space. However, most of the other
characteristics of MSI-X are identical to those of MSI. For more information on MSI-X, refer to the PCI
Local Bus Specification, Revision 3.0.

MSI-X maps each of the I211 interrupt causes into an interrupt vector that is conveyed by the I211 as
a posted-write PCIe transaction. Mapping of an interrupt cause into an MSI-X vector is determined by
system software (a device driver) through a translation table stored in the MSI-X Allocation registers.
Each entry of the allocation registers defines the vector for a single interrupt cause.

7.3.2 Mapping of Interrupt Causes

There are 10 extended interrupt causes that exist in the I211:

1. 8 traffic causes — 4 Tx, 4 Rx.
2. TCP timer
3. Other causes — Summarizes legacy interrupts into one extended cause.

The way the I211 exposes causes to the software is determined by the interrupt mode described in the
text that follows.

Mapping of interrupts causes is different in each of the interrupt modes and is described in the following
sections of this chapter.

Note: If only one MSI-X vector is allocated by the operating system, then the driver might use the
non MSI-X mapping method even in MSI-X mode.

7.3.2.1 Legacy and MSI Interrupt Modes

In legacy and MSI modes, an interrupt cause is reflected by setting a bit in the EICR register. This
section describes the mapping of interrupt causes, like a specific Rx queue event or a Link Status
Change event, to bits in the EICR register.

Mapping of queue-related causes is accomplished through the IVAR register. Each possible queue
interrupt cause (each Rx or Tx queue) is allocated an entry in the IVAR, and each entry in the IVAR
identifies one bit in the EICR register among the bits allocated to queue interrupt causes. It is possible
to map multiple interrupt causes into the same EICR bit.

In this mode, different queue related interrupt causes can be mapped to the first 4 bits of the EICR
register.

Inline Functions—Ethernet Controller I211

209

Interrupt causes related to non-queue causes are mapped into the ICR legacy register; each cause is
allocated a separate bit. The sum of all causes is reflected in the Other Cause bit in EICR. Figure 7-10
shows the allocation process.

The following configuration and parameters are involved:

• The IVAR[3:0] entries map 4 Tx queues and 4 Rx queues into the EICR[3:0] bits.
• The IVAR_MISC that maps non-queue causes is not used.
• The EICR[30] bit is allocated to the TCP timer interrupt cause.
• The EICR[31] bit is allocated to the other interrupt causes summarized in the ICR register.
• A single interrupt vector is provided.

Table 7-46 lists the different interrupt causes into the IVAR registers.

7.3.2.2 MSI-X Mode

In MSI-X mode the I211 can request up to 5 vectors.

In MSI-X mode, an interrupt cause is mapped into an MSI-X vector. This section describes the mapping
of interrupt causes, like a specific RX queue event or a Link Status Change event, to MSI-X vectors.

Figure 7-10. Cause Mapping in Legacy Mode

Table 7-46. Cause Allocation in the IVAR Registers - MSI and Legacy Mode

Interrupt Entry Description

Rx_i INT_Alloc[2*i] (i =
0..3)

Receive queues i - Associates an interrupt occurring in the Rx queue i with a corresponding
bit in the EICR register.

Tx_i INT_Alloc[2*i+1]
(i = 0..3)

Transmit queues i- Associates an interrupt occurring in the Tx queue i with a corresponding
bit in the EICR register.

Cause 0

Cause 7

R
S

V

Single Vector

Other

TCP timer

.

.

.

0

30
31

Queue
Related
causes

Other
causes

IVAR[0]

IVAR[1]

IVAR[2]

IVAR[3]

ICR

EICR
Reflect
Causes

7

Ethernet Controller I211 —Inline Functions

210

Mapping is accomplished through the IVAR register. Each possible cause for an interrupt is allocated an
entry in the IVAR, and each entry in the IVAR identifies one MSI-X vector. It is possible to map multiple
interrupt causes into the same MSI-X vector.

The EICR also reflects interrupt vectors. The EICR bits allocated for queue causes reflect the MSI-X
vector (bit 2 is set when MSI-X vector 2 is used). Interrupt causes related to non-queue causes are
mapped into the ICR (as in the legacy case). The MSI-X vector for all such causes is reflected in the
EICR.

The following configuration and parameters are involved:

• The IVAR[3:0] registers map 4 Tx queues and 4 Rx queues events to up to 23 interrupt vectors
• The IVAR_MISC register maps a TCP timer and other events to 2 MSI-X vectors

Figure 7-11 shows the allocation process.

Table 7-47 lists which interrupt cause is represented by each entry in the MSI-X Allocation registers.
The software has access to 10 mapping entries to map each cause to one of the 5 MSI-x vectors.

Figure 7-11. Cause Mapping in MSI-X Mode

Table 7-47. Cause Allocation in the IVAR Registers

Interrupt Entry Description

Rx_i INT_Alloc[2*i] (i =
0..3)

Receive queues i - Associates an interrupt occurring in the RX queue i with a corresponding
entry in the MSI-X Allocation registers.

Tx_i INT_Alloc[2*i+1]
(i = 0..3)

Transmit queues i- Associates an interrupt occurring in the TX queues i with a
corresponding entry in the MSI-X Allocation registers.

TCP timer INT_Alloc[8] TCP Timer - Associates an interrupt issued by the TCP timer with a corresponding entry in
the MSI-X Allocation registers.

Other cause INT_Alloc[9] Other causes - Associates an interrupt issued by the other causes with a corresponding
entry in the MSI-X Allocation registers.

IV
A

R

0

24

31

0

Interrupt causes
(queues)

MSI-X
Vector

3

E
IC

R

Interrupt causes (Other)

IVAR_Misc

RSV

MSI-X
Vector

Inline Functions—Ethernet Controller I211

211

7.3.3 Legacy Interrupt Registers

The interrupt logic consists of the registers listed in Table 7-48 and Table 7-49, plus the registers
associated with MSI/MSI-X signaling. Table 7-48 lists the use of the registers in legacy mode and
Table 7-48 lists the use of the registers when using the extended interrupts functionality

7.3.3.1 Interrupt Cause Register (ICR)

7.3.3.1.1 Legacy Mode

In Legacy mode, ICR is used as the sole interrupt cause register. Upon reception of an interrupt, the
interrupt handling routine can read this register in order to find out what are the causes of this
interrupt.

7.3.3.1.2 Advanced Mode

Table 7-48. Interrupt Registers - Legacy Mode

Register Acronym Function

Interrupt Cause ICR Records interrupt conditions.

Interrupt Cause Set ICS Allows software to set bits in the ICR.

Interrupt Mask Set/Read IMS Sets or reads bits in the interrupt mask.

Interrupt Mask Clear IMC Clears bits in the interrupt mask.

Interrupt Acknowledge Auto-
mask IAM Under some conditions, the content of this register is copied to the mask

register following read or write of ICR.

Table 7-49. Interrupt Registers - Extended Mode

Register Acronym Function

Extended Interrupt Cause EICR Records interrupt causes from receive and transmit queues. An interrupt
is signaled when unmasked bits in this register are set.

Extended Interrupt Cause Set EICS Allows software to set bits in the Interrupt Cause register.

Extended Interrupt Mask Set/
Read EIMS Sets or read bits in the interrupt mask.

Extended Interrupt Mask Clear EIMC Clears bits in the interrupt mask.

Extended Interrupt Auto Clear EIAC Allows bits in the EICR to be cleared automatically following an MSI-X
interrupt without a read or write of the EICR.

Extended Interrupt
Acknowledge Auto-mask EIAM

This register is used to decide which masks are cleared in the extended
mask register following read or write of EICR or which masks are set
following a write to EICS. In MSI-X mode, this register also controls which
bits in EIMC are cleared automatically following an MSI-X interrupt.

Interrupt Cause ICR Records interrupt conditions for special conditions - a single interrupt from
all the conditions of ICR is reflected in the “other” field of the EICR.

Interrupt Cause Set ICS Allows software to set bits in the ICR.

Interrupt Mask Set/Read IMS Sets or reads bits in the other interrupt mask.

Interrupt Mask Clear IMC Clears bits in the Other interrupt mask.

Interrupt Acknowledge Auto-
mask IAM Under some conditions, the content of this register is copied to the mask

register following read or write of ICR.

General Purpose Interrupt
Enable GPIE Controls different behaviors of the interrupt mechanism.

Ethernet Controller I211 —Inline Functions

212

In advanced mode, this register captures the interrupt causes not directly captured by the EICR. These
are infrequent management interrupts and error conditions.

Note that when EICR is used in advanced mode, the Rx /Tx related bits in ICR should be masked.

ICR bits are cleared on register read. If GPIE.NSICR = 0b, then the clear on read occurs only if no bit is
set in the IMS register or at least one bit is set in the IMS register and there is a true interrupt as
reflected in the ICR.INTA bit.

7.3.3.2 Interrupt Cause Set Register (ICS)

This register allows software to set bits in the ICR register. Writing a 1b in an ICS bit causes the
corresponding bit in the ICR register to be set. Used usually to re-arm interrupts the software device
driver didn't have time to handle in the current interrupt routine.

7.3.3.3 Interrupt Mask Set/Read Register (IMS)

An interrupt is enabled if its corresponding mask bit in this register is set to 1b, and disabled if its
corresponding mask bit is set to 0b. A PCIe interrupt is generated whenever one of the bits in this
register is set, and the corresponding interrupt condition occurs. The occurrence of an interrupt
condition is reflected by having a bit set in the Interrupt Cause Register (ICR).

Reading this register returns which bits have an interrupt mask set.

A particular interrupt might be enabled by writing a 1b to the corresponding mask bit in this register.
Any bits written with a 0b are unchanged. Thus, if software desires to disable a particular interrupt
condition that had been previously enabled, it must write to the Interrupt Mask Clear (IMC) Register,
rather than writing a 0b to a bit in this register.

7.3.3.4 Interrupt Mask Clear Register (IMC)

Software blocks interrupts by clearing the corresponding mask bit. This is accomplished by writing a 1b
to the corresponding bit in this register. Bits written with 0b are unchanged (their mask status does not
change).

7.3.3.5 Interrupt Acknowledge Auto-mask register (IAM)

An ICR read or write has the side effect of writing the contents of this register to the IMC register to
auto-mask additional interrupts from the ICR bits in the locations where the IAM bits are set. If
GPIE.NSICR = 0b, then the copy of this register to the IMC register occurs only if at least one bit is set
in the IMS register and there is a true interrupt as reflected in the ICR.INTA bit.

7.3.3.6 Extended Interrupt Cause Registers (EICR)

7.3.3.6.1 MSI/INT-A Mode (GPIE.Multiple_MSIX = 0b)

This register records the interrupts causes, to provide Software with information on the interrupt
source.

The interrupt causes include:

Inline Functions—Ethernet Controller I211

213

1. The Receive and Transmit queues — Each queue (either Tx or Rx) can be mapped to one of the 4
interrupt causes bits (RxTxQ) available in this register according to the mapping in the IVAR
registers

2. Indication for the TCP timer interrupt.
3. Legacy and other indications — When any interrupt in the Interrupt Cause register is active.

Writing a 1b clears the corresponding bit in this register. Reading this register auto-clears all bits.

7.3.3.6.2 MSI-X Mode (GPIE.Multiple_MSIX = 1b)

This register records the interrupt vectors currently emitted. In this mode only the first 5 bits are valid.

For all the subsequent registers, in MSI-X mode, each bit controls the behavior of one vector.

Bits in this register can be configured to auto-clear when the MSI-X interrupt message is sent, in order
to minimize driver overhead when using MSI-X interrupt signaling.

Writing a 1b clears the corresponding bit in this register. Reading this register does not clear any bits.

7.3.3.7 Extended Interrupt Cause Set Register (EICS)

This register enables the software device driver to set EICR bits. Writing a 1b in a EICS bit causes the
corresponding bit in the EICR register to be set. Used usually to re-arm interrupts that the software
didn't have time to handle in the current interrupt routine.

7.3.3.8 Extended Interrupt Mask Set and Read Register (EIMS) & Extended
Interrupt Mask Clear Register (EIMC)

Interrupts appear on PCIe only if the interrupt cause bit is a one and the corresponding interrupt mask
bit is a one. Software blocks assertion of an interrupt by clearing the corresponding bit in the mask
register. The cause bit stores the interrupt event regardless of the state of the mask bit. Different Clear
(EIMC) and set (EIMS) registers make this register more “thread safe” by avoiding a read-modify-write
operation on the mask register. The mask bit is set for each bit written as a one in the set register
(EIMS) and cleared for each bit written as a one in the clear register (EIMC). Reading the set register
(EIMS) returns the current mask register value.

7.3.3.9 Extended Interrupt Auto Clear Enable Register (EIAC)

Each bit in this register enables clearing of the corresponding bit in EICR following interrupt generation.
When a bit is set, the corresponding bit in the EICR register is automatically cleared following an
interrupt. This feature should only be used in MSI-X mode.

When used in conjunction with MSI-X interrupt vector, this feature allows interrupt cause recognition,
and selective interrupt cause, without requiring software to read or write the EICR register; therefore,
the penalty related to a PCIe read or write transaction is avoided.

 See section 7.3.4 for additional information on the interrupt cause reset process.

Ethernet Controller I211 —Inline Functions

214

7.3.3.10 Extended Interrupt Auto Mask Enable Register (EIAM)

Each bit set in this register enables clearing of the corresponding bit in the extended mask register
following read or write-to-clear to EICR. It also enables setting of the corresponding bit in the extended
mask register following a write-to-set to EICS.

This mode is provided in case MSI-X is not used, and therefore auto-clear through EIAC register is not
available.

In MSI-X mode, the driver software might set the bits of this register to select mask bits that must be
reset during interrupt processing. In this mode, each bit in this register enables clearing of the
corresponding bit in EIMC following interrupt generation.

7.3.3.11 GPIE Register

There are a few bits in the GPIE register that define the behavior of the interrupt mechanism. The
setting of these bits is different in each mode of operation. Table 7-50lists the recommended setting of
these bits in the different modes:

7.3.4 Clearing Interrupt Causes

The I211 has three methods available to clear EICR bits: Auto-clear, clear-on-write, and clear-on-read.
ICR bits might only be cleared with clear-on-write or clear-on-read.

Table 7-50. Settings for Different Interrupt Modes

Field Bit(s) Initial
Value Description

INT-x/
MSI +
Legacy

INT-x/
MSI +
Extend

MSI-X
Multi
Vector

MSI-X
Single
Vector

NSICR 0 0b

Non Selective Interrupt clear on read: When set,
every read of the ICR register clears the ICR
register. When this bit is cleared, an ICR register
read causes the ICR register to be cleared only if
an actual interrupt was asserted or IMS = 0x0.

0b1

1. In systems where interrupt sharing is not expected, the NSICR bit can be set by legacy drivers also.

As this register affects the way the hardware interprets write operations to other interrupt control
registers, it should be set to the correct mode before accessing other interrupt control registers.

1b 1b 1b

Multiple_
MSIX 4 0b

Multiple_MSI-X - multiple vectors:
0b = non-MSI-X or MSI-X with 1 vector IVAR
maps Rx/Tx causes to 4 EICR bits, but MSIX[0]
is asserted for all.
1b = MSIX mode, IVAR maps Rx/Tx causes to 5
EICR bits.
When set, the EICR register is not clear on read.

0b 0b 1b 0b

EIAME 30 0b

EIAME: When set, upon firing of an MSI-X
message, mask bits set in EIAM associated with
this message are cleared. Otherwise, EIAM is
used only upon read or write of EICR/EICS
registers.

0b 0b 1b 1b

PBA_
support

31 0b

PBA support: When set, setting one of the
extended interrupts masks via EIMS causes the
PBA bit of the associated MSI-X vector to be
cleared. Otherwise, the I211 behaves in a way
that supports legacy INT-x interrupts.
Should be cleared when working in INT-x or MSI
mode and set in MSI-X mode.

0b 0b 1b 1b

Inline Functions—Ethernet Controller I211

215

7.3.4.1 Auto-Clear

In systems that support MSI-X, the interrupt vector allows the interrupt service routine to know the
interrupt cause without reading the EICR. With interrupt moderation active, software load from
spurious interrupts is minimized. In this case, the software overhead of a I/O read or write can be
avoided by setting appropriate EICR bits to auto-clear mode by setting the corresponding bits in the
Extended Interrupt Auto-clear Enable Register (EIAC).

When auto-clear is enabled for an interrupt cause, the EICR bit is set when a cause event mapped to
this vector occurs. When the EITR Counter reaches zero, the MSI-X message is sent on PCIe. Then the
EICR bit is cleared and enabled to be set by a new cause event. The vector in the MSI-X message
signals software the cause of the interrupt to be serviced.

It is possible that in the time after the EICR bit is cleared and the interrupt service routine services the
cause, for example checking the transmit and receive queues, that another cause event occurs that is
then serviced by this ISR call, yet the EICR bit remains set. This results in a “spurious interrupt”.
Software can detect this case, for example if there are no entries that require service in the transmit
and receive queues, and exit knowing that the interrupt has been automatically cleared. The use of
interrupt moderations through the EITR register limits the extra software overhead that can be caused
by these spurious interrupts.

7.3.4.2 Write to Clear

In the case where the driver wishes to configure itself in MSI-X mode to not use the “auto-clear”
feature, it might clear the EICR bits by writing to the EICR register. Any bits written with a 1b is
cleared. Any bits written with a 0b remain unchanged.

7.3.4.3 Read to Clear

The EICR and ICR registers are cleared on a read.

Note: The driver should never do a read-to-clear of the EICR when in MSI-X mode, since this might
clear interrupt cause events which are processed by a different interrupt handler (assuming
multiple vectors).

7.3.5 Interrupt Moderation

An interrupt is generated upon receiving of incoming packets, as throttled by the EITR registers (see
Section 8.7.14). There is an EITR register per MSI-X vector.

In MSI-X mode, each active bit in EICR can trigger the interrupt vector it is allocated to. Following the
allocation, the EITR corresponding to the MSI-X vector is tied to one or more bits in EICR.

When multi vector MSI-X is not activated, the interrupt moderation is controlled by register EITR[0].

Software can use EITR to limit the rate of delivery of interrupts to the host CPU. This register provides
a guaranteed inter-interrupt delay between interrupts asserted by the network controller, regardless of
network traffic conditions.

The following formula converts the inter-interrupt interval value to the common 'interrupts/sec.'
performance metric:

interrupts/sec = (1 * 10-6sec x interval)-1

Ethernet Controller I211 —Inline Functions

216

Note: In the I211 the interval granularity is 1 s so some of the LSB bits of the interval are used for
the low latency interrupt moderation.

For example, if the interval is programmed to 125d, the network controller guarantees the CPU is not
interrupted by the network controller for at least 125 s from the last interrupt. In this case, the
maximum observable interrupt rate from the adapter should not exceed 8000 interrupts/sec.

Inversely, inter-interrupt interval value can be calculated as:

inter-interrupt interval = (1 * 10-6 sec x interrupt/sec)-1

The optimal performance setting for this register is system and configuration specific.

The Extended Interrupt Throttle Register should default to zero upon initialization and reset. It loads in
the value programmed by the software after software initializes the device.

When software wants to force an immediate interrupt, for example after setting a bit in the EICR with
the Extended Interrupt Cause Set register, a value of 0 can be written to the Counter to generate an
interrupt immediately. This write should include re-writing the Interval field with the desired constant,
as it is used to reload the Counter immediately for the next throttling interval.

The I211 implements interrupt moderation to reduce the number of interrupts software processes. The
moderation scheme is based on the EITR (Interrupt Throttle Register). Each time an interrupt event
happens, the corresponding bit in the EICR is activated. However, an interrupt message is not sent out

Inline Functions—Ethernet Controller I211

217

on the PCIe interface until the EITR counter assigned to that EICR bit has counted down to zero. As
soon as the interrupt is issued, the EITR counter is reloaded with its initial value and the process
repeats again. The interrupt flow should follow Figure 7-12.

EITR is designed to guarantee the total number of interrupts per second so for cases where the I211 is
connected to a network with low traffic load, if the EITR counter counted down to zero and no interrupt
event has happened, then the EITR counter is not re-armed but stays at zero. Thus, the next interrupt
event triggers an interrupt immediately. That scenario is illustrated as Case B that follows.

Figure 7-12. Interrupt Throttle Flow Diagram

Start count
down

Assert Interrupt

Counter = 0
?

Load counter
with interval

YesYes

Interrupt
active

?

Yes

No

Counter
written to

0

No

Ethernet Controller I211 —Inline Functions

218

7.3.6 Rate Controlled Low Latency Interrupts (LLI)

There are some types of network traffic for which latency is a critical issue. For these types of traffic,
interrupt moderation hurts performance by increasing latency between the time a packet is received by
hardware and the time it is handled to the host operating system. This traffic can be identified by the 2-
tuple value, in conjunction with Control Bits and specific size. In addition packets with specific Ethernet
types, TCP flag or specific VLAN priority might generate an immediate interrupt.

Low latency interrupts shares the filters used by the queueing mechanism described in Section 7.1.1.
Each of these filters, in addition to the queueing action might also indicate matching packets might
generate immediate interrupt.

If a received packet matches one of these filters, hardware should interrupt immediately, overriding the
interrupt moderation by the EITR counter.

Each time a Low Latency Interrupt is fired, the EITR interval is loaded and down-counting starts again.

The logic of the low latency interrupt mechanism is as follows:

• There are 8 2-tuple filters. The content of each filter is described in Section 7.1.2.4. The immediate
interrupt action of each filter can be enabled or disabled. If one of the filters detects an adequate
packet, an immediate interrupt is issued.

Figure 7-13. Case A: Heavy Load, Interrupts Moderated

Figure 7-14. Light load, Interrupts Immediately on Packet Receive

Pkt Pkt Pkt Pkt Pkt Pkt

ITR delay ITR delay

Intr Intr Intr

Pkt Pkt

EICR
clear

EICR
clear

EICR
clear

Pkt Pkt

ITR delay

Intr IntrEICR
clear

EICR
clear

Inline Functions—Ethernet Controller I211

219

• There are 8 flex filters. The content of each filter is described in Section 7.1.2.5. The immediate
interrupt action of each filter can be enabled or disabled. If one of the filters detects an adequate
packet, an immediate interrupt is issued.

• When VLAN priority filtering is enabled, VLAN packets must trigger an immediate interrupt when
the VLAN Priority is equal to or above the VLAN priority threshold. This is regardless of the status of
the 2-tuple or Flex filters.

• The SYN packets filter defined in Section 7.1.2.6 and the ethernet type filters defined in section
Section 7.1.2.3 might also be used to indicate low latency interrupt conditions.

Note: Immediate interrupts are available only when using advanced receive descriptors and not for
legacy descriptors.

Note: Packets that are dropped or have errors do not cause a Low Latency Interrupt.

7.3.6.1 Rate Control Mechanism

In a network with lots of latency sensitive traffics the Low Latency Interrupt can eliminate the Interrupt
throttling capability by flooding the Host with too many interrupts (more than the Host can handle).

In order to mitigate the above, the I211 supports a credit base mechanism to control the rate of the
Low Latency Interrupts.

Rules:

• The default value of each counter is 0b (no moderation). This also preserves backward
compatibility.

• The counter increments at a configurable rate, and saturates at the maximum value (31d).
— The configurable rate granularity is 4 s (250K interrupt/sec. down to 250K/32 ~ 8K interrupts

per sec.).
• A LLI might be issued as long as the counter value is strictly positive (> zero).

— The credit counter allows bursts of low latency interrupts but the interrupt average are not
more than the configured rate.

• Each time a Low Latency Interrupt is fired the credit counter decrements by one.
• Once the counter reaches zero, a low latency interrupt cannot be fired

— Must wait for the next ITR expired or for the next incrementing of this counter (if the EITR
expired happened first the counter does not decrement).

The EITR and GPIE registers manage rate control of LLI:

• The LL Interval field in the GPIE register controls the rate of credits
• The 5-bit LL Counter field in the EITR register contains the credits

7.3.7 TCP Timer Interrupt

7.3.7.1 Introduction

The TCP Timer interrupt provides an accurate and efficient way for a periodic timer to be implemented
using hardware. The driver would program a timeout value (usual value of 10 ms), and each time the
timer expires, hardware sets a specific bit in the EICR. When an interrupt occurs (due to normal
interrupt moderation schemes), software reads the EICR and discovers that it needs to process timer
events during that DPC.

Ethernet Controller I211 —Inline Functions

220

The timeout should be programmable by the driver, and the driver should be able to disable the timer
interrupt if it is not needed.

7.3.7.2 Description

A stand-alone down-counter is implemented. An interrupt is issued each time the value of the counter
is zero.

The software is responsible for setting initial value for the timer in the TCPTIMER.Duration field. Kick-
starting is done by writing a 1b to the TCPTIMER.KickStart bit.

Following the kick-start, an internal counter is set to the value defined by the TCPTIMER.Duration field.
Then during the count operation, the counter is decreased by one each millisecond. When the counter
reaches zero, an interrupt is issued (see EICR register Section 8.7.3). The counter re-starts counting
from its initial value if the TCPTIMER.Loop field is set.

7.3.8 Setting Interrupt Registers

In each mode, the registers controlling the interrupts should be set in a different way to assure the
right behavior.

7.4 802.1Q VLAN Support
The I211 provides several specific mechanisms to support 802.1Q VLANs:

• Optional adding (for transmits) and stripping (for receives) of IEEE 802.1Q VLAN tags.
• Optional ability to filter packets belonging to certain 802.1Q VLANs.
• Double VLAN Support.

Table 7-51. Registers Settings for Different Interrupt Modes

Field Description INT-x/MSI +
Legacy

INT-x/ MSI +
Extend

MSI-X
Multi vector

MSI-X
Single
vector

IMS Legacy Masks Set1

1. According to the requested causes

Set2

2. Only non traffic causes.

Set2 Set2

IAM Legacy Auto Mask Register Might be set 0x0 0x0 0x0

EIMS Extended Masks Set Other
Cause only. Set1 Set1 Set1

EIAC Extended Auto Clear register 0x0 0x0
At least one 3

3. EIAC or EIAM or both should be set for each cause.

0x0

EIAM Extended Auto Mask Register 0x0 Set1 Set1

EITR[0] Interrupt Moderation register Might be
enabled

Might be
enabled Enable4

4. EITR must be enabled if Auto Mask is disabled. If Auto Mask is enabled, moderation might be disabled for the specific vector.

Enable

EITR[1...n] Extended Interrupt Moderation register Disable Disable Enable4 Disable

GPIE Interrupts configuration See Table 7-50 for details

Inline Functions—Ethernet Controller I211

221

7.4.1 802.1Q VLAN Packet Format

The following diagram compares an untagged 802.3 Ethernet packet with an 802.1Q VLAN tagged
packet:

Note: The CRC for the 802.1Q tagged frame is re-computed, so that it covers the entire tagged
frame including the 802.1Q tag header. Also, max frame size for an 802.1Q VLAN packet is
1522 octets as opposed to 1518 octets for a normal 802.3z Ethernet packet.

7.4.2 802.1Q Tagged Frames

For 802.1Q, the Tag Header field consists of four octets comprised of the Tag Protocol Identifier (TPID)
and Tag Control Information (TCI); each taking 2 octets. The first 16 bits of the tag header makes up
the TPID. It contains the “protocol type” which identifies the packet as a valid 802.1Q tagged packet.

The two octets making up the TCI contain three fields:

• User Priority (UP)
• Canonical Form Indicator (CFI). Should be 0b for transmits. For receives, the device has the

capability to filter out packets that have this bit set. See the CFIEN and CFI bits in the RCTL
described in Section 8.9.1.

• VLAN Identifier (VID)

The bit ordering is as follows:

7.4.3 Transmitting and Receiving 802.1Q Packets

7.4.3.1 Adding 802.1Q Tags on Transmits

Software might command the I211 to insert an 802.1Q VLAN tag on a per packet or per flow basis. If
the VLE bit in the transmit descriptor is set to 1b, then the I211 inserts a VLAN tag into the packet that
it transmits over the wire. 802.1Q tag insertion is done in different ways for legacy and advanced Tx
descriptors:

Table 7-52. Comparing Packets

802.3 Packet #Octets 802.1Q VLAN Packet #Octets

DA 6 DA 6

SA 6 SA 6

Type/Length 2 802.1Q Tag 4

Data 46-1500 Type/Length 2

CRC 4 Data 46-1500

CRC* 4

Table 7-53. TCI Bit Ordering

Octet 1 Octet 2

UP CFI VID

Ethernet Controller I211 —Inline Functions

222

• Legacy Transmit Descriptors:, The Tag Control Information (TCI) of the 802.1Q tag comes from the
VLAN field (see Figure 7-8) of the descriptor. Refer to Table 7-26, for more information regarding
hardware insertion of tags for transmits.

• Advanced Transmit Descriptor: The Tag Control Information (TCI) of the 802.1Q tag comes from
the VLAN Tag field (see Table 7.2.2.2.1) of the advanced context descriptor. The IDX field of the
advanced Tx descriptor should be set to the adequate context.

7.4.3.2 Stripping 802.1Q Tags on Receives

Software might instruct the I211 to strip 802.1Q VLAN tags from received packets. If VLAN stripping is
enabled and the incoming packet is an 802.1Q VLAN packet (its Ethernet Type field matched the VET),
then the I211 strips the 4 byte VLAN tag from the packet, and stores the TCI in the VLAN Tag field (see
Figure 7-4 and See “Receive UDP Fragmentation Checksum) of the receive descriptor.

The I211 also sets the VP bit in the receive descriptor to indicate that the packet had a VLAN tag that
was stripped. If the CTRL.VME bit is not set, the 802.1Q packets can still be received if they pass the
receive filter, but the VLAN tag is not stripped and the VP bit is not set.

VLAN stripping can be enabled using two different modes:

1. By setting the DVMOLR.STRVLAN for the relevant queue.
2. By setting the CTRL.VME bit.

7.4.4 802.1Q VLAN Packet Filtering

VLAN filtering is enabled by setting the RCTL.VFE bit to 1b. If enabled, hardware compares the type
field of the incoming packet to a 16-bit field in the VLAN Ether Type (VET) register. If the VLAN type
field in the incoming packet matches the VET register, the packet is then compared against the VLAN
Filter Table Array (VFTA[127:0]) for acceptance.

The I211 provides exact VLAN filtering for VLAN tags for host traffic.

7.4.4.1 Host VLAN Filtering:

The Virtual LAN ID field indexes a 4096 bit vector. If the indexed bit in the vector is one; there is a
Virtual LAN match. Software might set the entire bit vector to ones if the node does not implement
802.1Q filtering. The register description of the VLAN Filter Table Array is described in detail in
Section 8.9.18.

In summary, the 4096-bit vector is comprised of 128, 32-bit registers. The VLAN Identifier (VID) field
consists of 12 bits. The upper 7 bits of this field are decoded to determine the 32-bit register in the
VLAN Filter Table Array to address and the lower 5 bits determine which of the 32 bits in the register to
evaluate for matching.

7.4.5 Double VLAN Support

The I211 supports a mode where most of the received and sent packet have at least one VLAN tag in
addition to the regular tagging which might optionally be added. This mode is used for systems where
the switches add an additional tag containing switching information.

Note: The only packets that might not have the additional VLAN are local packets that does not
have any VLAN tag.

Inline Functions—Ethernet Controller I211

223

This mode is activated by setting CTRL_EXT.EXT_VLAN bit. The default value of this bit is set according
to the EXT_VLAN (bit 1) in the Initialization Control 3 iNVM word.

The type of the VLAN tag used for the additional VLAN is defined in the VET.VET_EXT field.

7.4.5.1 Transmit Behavior With External VLAN

It is expected that the driver include the external VLAN header as part of the transmit data structure.
Software might post the internal VLAN header as part of the transmit data structure or embedded in the
transmit descriptor (see Section 7.2.2 for details). The I211 does not relate to the external VLAN
header other than the capability of “skipping” it for parsing of inner fields.

Notes:
• If the CTRL_EXT.EXT_VLAN bit is set the VLAN header in a packet that carries a single

VLAN header is treated as the external VLAN.
• If the CTRL_EXT.EXT_VLAN bit is set the I211 expects that any transmitted packet to

have at least the external VLAN added by the software. For those packets where an
external VLAN is not present, any offload that relates to inner fields to the EtherType
might not be provided.

• If the regular VLAN is inserted using the switch based VLAN insertion mechanism or from
the descriptor (see Section 7.4.3.1), and the packet does not contain an external VLAN,
the packet is dropped, and if configured, the queue from which the packet was sent is
disabled.

7.4.5.2 Receive Behavior With External VLAN

When the I211 is working in this mode, it assumes that all packets received have at least one VLAN.

One exception to this rule are flow control PAUSE packets which are not expected to have any VLAN.
Other packets might contain no VLAN, however a received packet that does not contain the first VLAN
is forwarded to the host but filtering and offloads are not applied to this packet.

See Table 7-54 for the supported receive processing functions when the device is set to “Double VLAN”
mode.

Stripping of VLAN is done on the second VLAN if it exists. All the filtering functions of the I211 ignore
the first VLAN in this mode.

The presence of a first VLAN tag is indicated it in the RDESC.STATUS.VEXT bit.

Queue assignment of the Rx packets is not affected by the external VLAN header. It might depend on
the internal VLAN, MAC address or any upper layer content as described in Section 7.1.1.

Table 7-54. Receive Processing in Double VLAN Mode

VLAN Headers Status.VEXT Status.VP Packet Parsing Rx Offload Functions

External and internal 1 1 + +

Internal Only Not supported

V-Ext 1 0 + +

None1

1. A few examples for packets that might not carry any VLAN header might be: Flow control and Priority Flow Control; LACP; LLDP;
GMRP; 802.1x packets

0 0 + (flow control only) -

Ethernet Controller I211 —Inline Functions

224

7.5 Configurable LED Outputs
The I211 implements 3 output drivers intended for driving external LED circuits. Each of the 3 LED
outputs can be individually configured to select the particular event, state, or activity, which is
indicated on that output. In addition, each LED can be individually configured for output polarity as well
as for blinking versus non-blinking (steady-state) indication.

The configuration for LED outputs is specified via the LEDCTL register. Furthermore, the hardware-
default configuration for all the LED outputs, can be specified via iNVM fields, thereby supporting LED
displays configurable to a particular OEM preference.

Each of the 3 LED's might be configured to use one of a variety of sources for output indication. The
MODE bits control the LED source as described in Table 7-55.

The IVRT bits allow the LED source to be inverted before being output or observed by the blink-control
logic. LED outputs are assumed to normally be connected to the negative side (cathode) of an external
LED.

The BLINK bits control whether the LED should be blinked (on for 200ms, then off for 200ms) while the
LED source is asserted. The blink control might be especially useful for ensuring that certain events,
such as ACTIVITY indication, cause LED transitions, which are sufficiently visible by a human eye.

Note: When LED Blink mode is enabled the appropriate LED Invert bit should be set to 0b.
The LINK/ACTIVITY source functions slightly different from the others when BLINK is enabled.
The LED is off if there is no LINK, on if there is LINK and no ACTIVITY, and blinking if there is
LINK and ACTIVITY.

The dynamic LED modes (FILTER_ACTIVITY, LINK/ACTIVITY, COLLISION, ACTIVITY, PAUSED) should
be used with LED Blink mode enabled.

7.5.1 MODE Encoding for LED Outputs

Table 7-55 lists the MODE encoding for LED outputs used to select the desired LED signal source for
each LED output.

Table 7-55. Mode Encoding for LED Outputs

Mode Selected Mode Source Indication

0000b LINK_10/1000 Asserted when either 10 or 1000 Mb/s link is established and
maintained.

0001b LINK_100/1000 Asserted when either 100 or 1000 Mb/s link is established and
maintained.

0010b LINK_UP Asserted when any speed link is established and maintained.

0011b FILTER_ACTIVITY Asserted when link is established and packets are being transmitted
or received that passed MAC filtering.

0100b LINK/ACTIVITY
Asserted when link is established and when there is no transmit or
receive activity. When BLINK, indicates LINK and activity (eIther
receive or transmit)

0101b LINK_10 Asserted when a 10 Mb/s link is established and maintained.

0110b LINK_100 Asserted when a 100 Mb/s link is established and maintained.

0111b LINK_1000 Asserted when a 1000 Mb/s link is established and maintained.

1000b SDP_MODE LED activation is a reflection of the SDP signal. SDP0, SDP1, SDP2
are reflected to LED0, LED1, LED2 respectively.

Inline Functions—Ethernet Controller I211

225

7.6 Memory Error Correction and Detection
The I211 main internal memories are protected by error correcting code or parity bits. Large memories
or critical memories are protected by an error correcting code (ECC). Smaller memories are protected
either with an error correcting code (ECC for critical memories) or by parity.

The I211 reports parity errors in the PEIND register according to the region in which the parity error
occurred (PCIe, DMA, or LAN Port). An interrupt is issued via the ICR.FER bit on occurrence of a parity
error. Parity error interrupt generation per region can be masked via the PEINDM register.

Additional per region granularity in parity or ECC enablement and reporting of parity error or ECC parity
correction occurrence is supported in the following registers:

1. PCIe region:
a. The PCIEERRCTL and PCIEECCCTL registers enable parity checks and ECC parity correction

respectively in the various rams in the PCIe region.
b. The PCIEERRSTS and PCIEECCSTS registers report parity error and ECC parity correction

occurrence in the various rams in the PCIe region. Only parity errors that were not corrected by
the ECC circuitry are reported by asserting the PEIND.pcie_parity_fatal_ind bit and the ICR.FER
bit. Parity errors that were corrected by the internal ECC circuit do not generate an interrupt but
are logged in the PCIEECCSTS register.

2. DMA region:
a. The PBECCSTS register enables ECC parity correction in the various rams in the DMA region.
b. The PBECCSTS register reports occurrence of ECC parity correction events in the various rams

in the DMA region. Only parity errors that were not corrected are reported by setting the
PEIND.dma_parity_fatal_ind bit and the ICR.FER bit. Parity errors that were corrected by the
internal ECC circuitry don’t generate an interrupt but are logged in the PBECCSTS register.

3. LAN Port region:
a. The LANPERRCTL register enables parity checks in the various rams in the LAN Port region.
b. The LANPERRSTS register reports detection of parity errors. The parity errors that were not

corrected are reported via the PEIND.lanport_parity_fatal_ind bit and the ICR.FER bit.

Notes:
1. An interrupt to the Host is generated on occurrence of a fatal memory error if the appropriate mask

bits in the PEINDM register are set and the IMS.FER Mask bit is set.
2. All Parity error checking can be disabled via the GPAR_EN bit in the Initialization Control Word 1

iNVM word (See Section 6.2.2) or by clearing the PCIEERRCTL.GPAR_EN bit (See Section 8.19.4).

1001b FULL_DUPLEX Asserted when the link is configured for full duplex operation (de-
asserted in half-duplex).

1010b COLLISION Asserted when a collision is observed.

1011b ACTIVITY Asserted when link is established and packets are being transmitted
or received.

1100b LINK_10/100 Asserted when either 10 or 100 Mb/s link is established and
maintained.

1101b PAUSED Asserted when the I211’s transmitter is flow controlled.

1110b LED_ON Always high (Asserted)

1111b LED_OFF Always low (De-asserted)

Table 7-55. Mode Encoding for LED Outputs (Continued)

Mode Selected Mode Source Indication

Ethernet Controller I211 —Inline Functions

226

7.6.1 Software Recovery From Parity Error Event

If a parity error was detected in one of the internal control memories of the DMA, PCIe or LAN port
clusters, the consistency of the receive/transmit flow can not be guaranteed any more. In this case the
traffic on the PCIe interface is stopped, since this is considered a fatal error.

To recover from a parity error event software should initiate the following actions depending on the
region in which the parity error occurred.

7.6.1.1 Recovery from PCIe Parity Error Event

To recover from a parity error condition in the PCIe region, the software device driver should:

1. Issue a Device Reset by asserting the CTRL.RST bit.
2. wait at least 3 milliseconds after setting CTRL.RST bit before attempting to check if the bit was

cleared or before attempting to access any other register.
3. Initiate the master disable algorithm as defined in Section 5.2.3.3.
4. Clear the PCIe parity error status bits that were set in the PCIEERRSTS register.
5. Re-initialize the port.

7.6.1.2 Recovery from DMA Parity Error Event

To recover from a parity error condition in the DMA region, the software device driver should issue a
software reset by asserting the CTRL.RST bit as specified in Section 4.3.1 and re-initializing the port.

7.6.1.3 Recovery from LAN Port Parity Error Event

To recover from a parity error condition in the LAN port region, the software device driver should take
the actions depicted in Section 8.19.11 (LANPERRSTS register) according to the ram that failed.

Inline Functions—Ethernet Controller I211

227

7.7 CPU Affinity Features

7.7.1 Direct Cache Access (DCA)

7.7.1.1 DCA Description

Direct Cache Access (DCA) is a method to improve network I/O performance by placing some posted
inbound writes indirectly within CPU cache. DCA requires that memory writes go to host memory and
then the processor prefetch the cache lines specified by the memory write. Through research and
experiments, DCA has been shown to reduce CPU Cache miss rates significantly.

As shown in Figure 7-15, DCA provides a mechanism where the posted write data from an I/O device,
such as an Ethernet NIC, can be placed into CPU cache with a hardware pre-fetch. This mechanism is
initialized upon a power good reset. A software device driver for the I/O device configures the I/O
device for DCA and sets up the appropriate DCA target ID for the device to send data. The device then
encapsulates that information in PCIe TLP headers, in the TAG field, to trigger a hardware pre-fetch by
the MCH /IOH to the CPU cache.

DCA implementation is controlled by separated registers (RXCTL and TXCTL) for each receive and
transmit queue. In addition, a DCA Enable bit can be found in the DCA_CTRL register, and a DCA_ID
register, in order to make visible the function, device, and bus numbers to the driver.

The RXCTL and TXCTL registers can be written by software on the fly and can be changed at any time.
When software changes the register contents, hardware applies changes only after all the previous
packets in progress for DCA have been completed.

Figure 7-15. Diagram of DCA Implementation on FSB System

CPU

Cache

Memory

NIC

MCH

DDMMAA WWrriittee

BBIILL--DDCCAA

MMeemmoorryy WWrriittee

DDCCAA
ttrriiggggeerreedd
HHWW
PPrreeffeettcchh

CCPPUU ddeemmaanndd rreeaadd

Ethernet Controller I211 —Inline Functions

228

However, in order to implement DCA, the I211 has to be aware of the Crystal Beach version used.
Software driver must initialize the I211 to be aware of the Crystal Beach version. A register named
DCA_CTRL is used in order to properly define the system configuration.

There are 2 modes for DCA implementation:

1. Legacy DCA: The DCA target ID is derived from CPU ID.
2. DCA: The DCA target ID is derived from APIC ID.

The software driver selects one of these modes through the DCA_mode register.

The details of both modes are described in the following sections.

7.7.1.2 Details of Implementation

7.7.1.2.1 PCIe Message Format for DCA

Figure 7-16 shows the format of the PCIe message for DCA.

The DCA preferences field has the following formats.

Figure 7-16. PCIe Message Format for DCA

Table 7-56. Legacy DCA Systems

Bits Name Description

0 DCA indication
0b: DCA disabled
1b: DCA enabled

3:1 DCA Target ID The DCA Target ID specifies the target cache for the
data.

7:4 Reserved Reserved

TLP digest

Length specific data

Length specific data

Address [32:2] R

Address [63:32]

Requester ID DCA preferences Last DW BE First DW BE

R
Fmt=

11
Type=00000b R TC Rsv

T
D

E
P

Attr R Length

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Inline Functions—Ethernet Controller I211

229

7.7.2 TLP Process Hints (TPH)

The I211 supports the TPH capability defined in the PCI Express specification (See Section 9.5). It does
not support Extended TPH requests.

On the PCIe link existence of a TLP Process Hint (TPH) is indicated by setting the TH bit in the TLP
header. Using the PCIe TLP Steering Tag (ST) and Processing Hints (PH) fields, the I211 can provide
hints to the root complex about the destination (socket ID) and about data access patterns (locality in
Cache), when executing DMA memory writes or read operations. Supply of TLP Processing Hints
facilitates optimized processing of transactions that target Memory Space.

The I211 supports a steering table with 8 entries in the PCIe TPH capability structure (See
Section 9.5.3.4). The PCIe Steering table can be used by Software to provide Steering Tag information
to the Device via the TXCTL.CPUID and RXCTL.CPUID fields.

To enable TPH usage:

1. For a given function, the TPH Requester Enable bit in the PCIe configuration TPH Requester Control
Register should be set.

2. Appropriate TPH Enable bits in RXCTL or TXCTL registers should be set.
3. Processing hints should be programmed in the DCA_CTRL.Desc_PH and DCA_CTRL.Data_PH

Processing hints (PH) fields.
4. Steering information should be programed in the CPUID fields in the RXCTL and TXCTL registers.

The Processing Hints (PH) and Steering Tags (ST) are set according to the characteristics of the traffic
as described in Table 7-58.

Note: In order to enable TPH usage, all the memory reads are done without setting any of the byte
enable bits.

Note: Per queue, the DCA and TPH features are exclusive. Software can enable either the DCA
feature or the TPH feature for a given queue.

7.7.2.1 Steering Tag and Processing Hint Programming

Table 7-58 lists how the Steering tag (socket ID) and Processing hints are generated and how TPH
operation is enabled for different types of DMA traffic.

Table 7-57. DCA Systems

Bits Name Description

7:0 DCA target ID
0000.0000b: DCA is disabled
Other: Target Core ID derived from APIC ID.

Table 7-58. Steering Tag and Processing Hint Programming

Traffic Type ST Programming PH Value Enable

Transmit descriptor write back or head
write back TXCTL.CPUID1 DCA_CTRL.Desc_PH2 Tx Descriptor Writeback TPH EN field

in TXCTL.

Receive data buffers write RXCTL.CPUID1 DCA_CTRL.Data_PH3 RX Header TPH EN or
Rx Payload TPH EN fields in RXCTL.

Receive descriptor writeback RXCTL.CPUID1 DCA_CTRL.Desc_PH2 RX Descriptor Writeback TPH EN
field in RXCTL.

Ethernet Controller I211 —Inline Functions

230

7.8 Time SYNC (IEEE1588 and IEEE 802.1AS)

7.8.1 Overview

IEEE 1588 addresses the clock synchronization requirements of measurement and control systems. The
protocol supports system-wide synchronization accuracy in the sub-microsecond range with minimal
network and local clock computing resources. The protocol is spatially localized and allows simple
systems to be installed and operate.

The IEEE802.1AS standard specifies the protocol used to ensure that synchronization requirements are
met for time sensitive applications, such as across bridged and Virtual Bridged Local Area Networks
(VBLAN) consisting of LAN media where the transmission delays are almost fixed and symmetrical. For
example, IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during
normal operation and following addition, removal, or failure of network components and network re-
configuration. It specifies the use of IEEE 1588 specifications where applicable.

Activation of the I211 Time Sync mechanism is possible in full duplex mode only. No limitations on wire
speed exist, although wire speed might affect the accuracy. Time Sync protocol is tolerant of dropping
packets as well as missing timestamps.

7.8.2 Flow and Hardware/Software Responsibilities

The operation of a PTP (Precision Time Protocol) enabled network is divided into two stages,
initialization and time synchronization. These stages are described in the sections that follow
emphasizing hardware and software roles.

7.8.2.1 Initialization Phase

At the initialization stage the software on every master enabled node starts by sending Sync packets
that include its clock parameters. Upon reception of a Sync packet a node, the software on any
potential master, compares the received clock parameters to its own parameters. If the received clock
parameters of a peer are better, the software transits to Slave state and stops sending Sync packets.
When in slave state, the software selects a particular master. It compares continuously the received
Sync packet to its selected master. If the received Sync packets belong to a different master with better
clock parameters, the software on the slave switches to the new master. Eventually only one master
(with the best clock parameters) remains active while all other nodes act as slaves listening to that
master. Every node has a defined Sync packet time-out interval. If no Sync packet is received from its
chosen master clock source during the interval the software on the master enabled nodes transit back

Transmit descriptor fetch TXCTL.CPUID4 DCA_CTRL.Desc_PH2 Tx Descriptor Fetch TPH EN
field in TXCTL.

Receive descriptor fetch RXCTL.CPUID2 DCA_CTRL.Desc_PH2 Rx Descriptor fetch TPH EN
field in RXCTL.

Transmit packet read TXCTL.CPUID2 DCA_CTRL.Data_PH3 Tx Packet TPH EN field in TXCTL.

1. the driver should always set bits [7:3] to zero and place Socket ID in bits [2:0].
2. Default is 00b (Bidirectional data structure).
3. Default is 10b (Target).
4. the hints are always zero.

Table 7-58. Steering Tag and Processing Hint Programming

Traffic Type ST Programming PH Value Enable

Inline Functions—Ethernet Controller I211

231

to master state at initialization phase. Note that there are more than one option for the above flow. For
example, one node could be set statically as the master while all other notes are set as slaves listening
to that master.

7.8.2.2 Time Synchronization Phase

There are two phases to the synchronization flow: At the beginning, the slave calibrates its clock to the
master and then it performs the complete synchronization.

7.8.2.2.1 2-step Clocks Calibration Procedure

The master send SYNC packets periodically (in the order of 10 packets per second). These packets are
followed by Follow_UP packets that indicate the transmission time. The slave captures the reception
time of these SYNC packets. Together with the Follow_UP packets the slave holds the SYNC packet
transmission time at the master and its reception time at the slave. The slave calculates the time gap
between consecutive SYNC packets defined by the master clock. It then calibrates itself to get the same
time gap defined by its own clock. During this phase the slave also sets its time to be as close as
possible to the master time (as accurate as the transmission delay and software latencies).

In order to minimize sampling inaccuracy, both master and slave sample the packets transmission and
reception time at a location in the hardware that has as much as possible deterministic delay from the
PHY interface.

Packet processing in the master and the Slave
• The master software indicates the SYNC packet to the hardware by setting the 2STEP_1588 flag in

the Advanced Transmit Data Descriptor. Setting this flag, the hardware samples its transmission
time by the TXSTMP register. The software reads its value and sends the transmission time in a
Follow_Up packet.

• The SYNC packet is received by the slave and its reception time is posted to the “timestamp bytes”
in the packet buffer in host memory. The Follow_Up packet is also received and posted to the
software processing. The software uses these parameters to calculate the time gap between
consecutive packets by its own clock compared to the master clock taking the required corrective
action.

7.8.2.2.2 1-step Clocks Calibration Procedure

The I211 supports the 1-step procedure. In 1-step procedure, the hardware inserts the transmission
time to the sent SYNC packets at the master (as follows). All the rest is the same as the 2-step
procedure described above.

• The software indicates the SYNC packets to the hardware by setting the 1STEP_1588 flag in the
Advanced Transmit Data Descriptor. Setting this flag, the hardware does the following:
— Samples the packet transmission time
— Auto-inserts the packet transmission timestamp at the offset defined by the 1588_Offset field

in the TSYNCTXCTL register
— Insert the Ethernet CRC while including the timestamp in the CRC calculation
— The UDP checksum is not updated by the inserted timestamp. It means that 1-step is limited

for PTP over L2 or PTP over UDP/IPv4 while the UDP checksum is not used (equals to zero).

7.8.2.2.3 2-step Time Synchronization Phase Procedure

Ethernet Controller I211 —Inline Functions

232

The complete synchronization scheme is shown in Figure 7-17. It relies on measured timestamp of
Sync packets transmission and reception by the master and the slave. The scheme is based on the
following two basic assumptions:

• The clocks at both nodes are almost identical (achieved in the first step)
• Transmission delays between the master to the slave and backward are symmetric

The master’s software sends periodically Sync packets to each slave followed by the Follow_Up packet
(as explained in the Clocks Calibration (2-step procedure). The responds back by sending Delay_Req
packets which are sampled by the slave and the master. The master provides back its parameters
which are used by the slave to calibrate its time. Following are the detailed software hardware steps.

Packet processing in the master and the slave
• The master software sends the SYNC packet and Follow_Up packet as described in the Clocks

Calibration (2-step procedure) procedure.
• Processing these packets by the slave is also the same as the Clocks Calibration (2-step procedure)

procedure
• The slave software responds back by sending the Delay_Req packet (for those SYNC packets that

the slave “wish” to respond). The Delay_Req packet is indicated to the hardware by setting the
2STEP_1588 flag in the Advanced Transmit Data Descriptor. The transmission time is extracted
from the TXSTMP register the same as the master processes the transmitted SYNC packets.

• The Master receives the Delay_Req packet and its reception time is posted to the “timestamp
bytes” in the packet buffer in host memory.

• The master software sends back the received timestamp to the slave which has all required
timestamps.

• The slave adjust its time according to the following equation (or a low-pass version of the
equation):

Slave Adjust Time = - [(T2-T1) - (T4-T3)] / 2
While using the following notations:
- T1: Sync packet transmission time in the master (based on master clock)
- T2: Sync packet reception time in the slave (based on slave clock)
- T3: Delay_Request transmission time in the slave (based on slave clock)
- T4: Delay_Request reception time in the master (based on master clock)

Inline Functions—Ethernet Controller I211

233

7.8.2.2.4 1-step Time Synchronization Phase Procedure

Packet processing in the master and the Slave for 1-step procedure is almost identical to the 2-step
procedure as follow:

• The master software sends the SYNC packet while indicating it to the hardware by the 1STEP_1588
flag. Doing so, the hardware inserts the transmission time in the SYNC packet.

• The slave samples the reception time of the SYNC and extract its transmission time at the master.
• From this point the flow is identical to the 2-step procedure.

7.8.2.3 TimeSync Indications in Receive and Transmit Packet Descriptors

Certain indications are transferred between software and hardware regarding PTP packets. These
indications are enabled when the Disable systime bit in the TSAUXC register is cleared. Further more,
transmit timestamping is enabled by the TSYNCTXCTL.EN flag. Received packets for captured time are
identified according to the TSYNCRXCTL.Type and CTRLT and MSGT fields in the TSYNCRXCFG register.

2-step SYNC and Delay_Req packet transmission: The software sets the 2STEP_1588 bit in the
Advanced Transmit Data Descriptor. The hardware samples the transmission time in the TXSTMP
register. The software reads it for every packet and used the transmission time as required.

1-step SYNC packet transmission: On the transmit path the software sets the 1STEP_1588 bit in
the Advanced Transmit Data Descriptor. It should also set previously the 1588_Offset field in the
TSYNCTXCTL register. The hardware samples the transmission time and inserts it in the transmitted
packet at the offset defined by the 1588_Offset field. The software should prepare the space in the
transmitted packet by filling it with zero’s while the hardware replaces these zero’s by the transmission
timestamp. The transmission time stamp is an 80-bit field while the 32 LS bits specify the transmission
time in ns units and the upper 48 bits specify the time in second units. Note that the 1588 timer in the
I211 contains only 32 bits that specify the second units. The additional upper 16 bits are taken from the

Figure 7-17. Sync Flow and Offset Calculation

Sync

Follow_Up (T1)

Delay_Response(T4)

Dely_Req

Master Slave

T1

T2

T3

T4

T0 + delta TT0

Master to Slave
Transmission delay

Slave to Master
Transmission delay

T1, T2, T3 and T4
are sampled by the HWCalculated delta T = [(T2-T1)-(T4-T3)]/2

Ethernet Controller I211 —Inline Functions

234

static SYSTIMTM register which is set by software (expected to be zero at all times). Timestamp
transmission on the wire is as follows: The MS byte of the SYSTIMTM register is transmitted first while
the LS byte of the ns units is transmitted last (as shown in Table 7-64).

Packet reception: PTP packet identification is described in Section 7.8.5. L2 packets that are
identified by the EtherType are indicated by the “packet type” field in the receive descriptor. Those
packets that the hardware samples its reception time are also indicated by the TS or TSIP flags in the
advanced receive descriptors. Selecting between TS or TSIP reporting is controlled by the Timestamp
flag in the SRRCTL[n] register (per receive queue). If the TS flag is set, the packet reception time is
sampled by the hardware in the RXSTMPL/H registers. These registers are locked until the software
reads its value. If the TSIP flag is set, the packet reception time is posted to the packet buffer in host
memory as shown in Section 7.1.6.

7.8.3 Hardware Time Sync Elements

All time sync hardware is initialized as defined in the registers section upon MAC reset. The time sync
logic is enabled if the TSAUXC.Disable systime flag is cleared.

The 1588 logic includes multiple registers larger than 32 bits which are indicated as xxxL (Low portion -
LS) and xxxH (High portion - MS). When software accesses these registers (either read or write) it
should access first the xxxL register (LS) and only then the xxxH register (MS). Accessing the xxxH
might impact the hardware functionality which should be triggered only after both portions of the
register are valid.

7.8.3.1 Capture Timestamp Mechanism

The timestamp logic is located on transmit and receive paths as close as possible to the PHY interface.
The timestamp is captured at the beginning of the packet as shown in the Figure 7-18. These rules
keep the latency between the captured timestamp and transmission time as deterministic as possible.
The 1588 logic is functional at all link speeds; however, the latency parameters characterized at this
time is only for 100 Mb/s. The measured latency parameters in a stand-alone setup are listed in
Table 7-59. When measured against a commercial link partner using an arithmetic mean and
exponential smoothing, a shift of approximately 40 ns is used as listed in Table 7-60.

Table 7-59. Packet Timestamp Sampling Latency at 100 Mb/s (Stand-alone Setup)

Parameter Min/Max
Latency Comment

Tx timestamp to
start of SFD on
MDI

984/1024 ns

Min/max values represent a possible variance over reset or link up/down events. The latency is
measured with minimal PHY FIFO depth by setting bits 15:14 in the PHY TX FIFO register (MAC
Specific Control Register 1 - Page 2, Register 16). Setting the PHY Tx FIFO to other values
increase the delay by an 8-bit time for each increment of the FIFO size.

Start of SDF on
MDI to Rx
timestamp

2148/2228 ns The min/max numbers represent possible jitter due to synchronization between receive and
transmit clock domains.

Inline Functions—Ethernet Controller I211

235

Table 7-60. Packet Timestamp Sampling Latency at 100 Mb/s (Arithmetic Mean and
Exponential Smoothing)

Figure 7-18. Timestamp Point

7.8.3.2 1588 Timer Registers: SYSTIM, TIMADJ and TIMINCA

The SYSTIM is a 96-bit register is composed of: SYSTIMR, SYSTIML and SYSTIMH registers: The
SYSTIMR register holds the sub ns fraction, the SYSTIML register holds the ns fraction and the
SYSTIMH register holds the second fraction of the time (note that the upper two bits of the SYSTIML
register are always zero while the max value of this register is 999,999,999 dec). When synchronized,
the SYSTIM registers defines the absolute time relative to PTP “epoch” which is January 1st 1970
00:00:00 International Atomic Time (TAI).

• Initial Setting - Setting the initial time is done by direct write access to the SYSTIM register.
Software should first set the SYSTIML register and then set the SYSTIMH register. Setting the
SYSTIMR register is meaningless while it represents sub ns units. It is recommended to disable the
timer at programming time as follows:

• Run Time - During run time the SYSTIM timer value in the SYSTIMH, SYSTIML and SYSTIMR
registers, is updated periodically each 8 nS clock cycle according to the following formula:
— Define: INC_TIME = 8 nsec +/- TIMINCA.Incvalue * 2-32 nsec. Add or subtract the

TIMINCA.Incvalue is defined by TIMINCA.ISGN (while 0b means Add and 1b means Subtract)
— Then: SYSTIM = SYSTIM + INC_TIME

• Reading the SYSTIM register by software is done by the following sequence:
— Read the SYSTIMRregister
— Read the SYSTIMLregister
— Read the SYSTIMHregister

• Dynamic update of SYSTIM registers can be done by using the TIMADJ registers by the following
flow. It can also be done by adjusting the INC_TIME as described later in this section. Adjusting the
time by TIMADJ are meant to be used only when the time difference between the master and the
slave are small enough (at least smaller than one 8th of the time between consecutive SYNC
cycles). If this assumption is incorrect, than this process might take longer time than the SYNC

Parameter Average Comment

Tx timestamp to start of SFD on MDI 1044 ns The range (max minus min) values measured for the Tx and Rx latency
parameters are similar to the measured parameters in a stand-alone
setup.Start of SDF on MDI to Rx timestamp 2133 ns

Tx + Rx latency 3177 ns

Ethernet Controller I211 —Inline Functions

236

cycle to take effect. If this is an issue, software might need to set the SYSTIM by direct access as
described in the “Initial Setting” phase:
— Write the Tadjust value and its Sign to the TIMADJ register (the Sign bit indicates if the Tadjust

value should be added or subtracted)
— Following the write access to the TIMADJ register, the hardware repeats the following two steps

at each 8 nsec clock as long as the Tadjust > zero.
• SYSTIM = SYSTIM + INC_TIME +/- 1 nsec. Add or subtract 1 nsec is defined by

TIMADJ.Sign (while 0bmeans Add and 1b means Subtract)
• Tadjust = Tadjust - 1 nsec
• Note that the SYSTIM timer is incremented monotonically at all times. When updating the

SYSTIM by the TIMADJ and concurrent non-zero TIMINCA, the SYSTIM is incremented each
clock by steps in the range of 6.5ns up to 9.5ns units.

— As shown above, the time adjustment might take multiple clocks. Software might write a new
value to the TIMADJ register before the hardware completed the previous adjustment. In such
a case, the new value written by software, overrides the above equation. If such a race is not
desired, the software could check that the previous adjustment is completed by one of the
following methods:
• Wait enough time before accessing the TIMADJ register which guarantees that the previous

update procedure is completed.
• Poll the matched TSICR.TADJ flag which is set by the hardware each time the update

procedure is completed.
• Enable the TADJ interrupt by setting the TADJ flag in the TSIM register and enable timesync

interrupts by setting the Time_Sync flag in the IMS register. The TADJ interrupt indicates
that the hardware completed the adjustment procedure. This method is unlikely to be used
in nominal operation since the expected adjustments are in the sub s range.

• Dynamic update of SYSTIM registers can also be done by updating the INC_TIME. Using INC_TIME,
the time in the slave is updated in a more gradual manner and in most cases it results in a more
accurate timer. INC_TIME should be updated as a function of the required Tadjust and the time gap
between consecutive SYNC cycles that generated this Tadjust value. A possible equation for the
INC_TIME for the next SYNC cycle can be as follows:

INC_TIME (n+1) = INC_TIME (n) * (T4-T1)/(T3-T2) + Factor * (T4 - (T3 + Tdelay)) / Tcycle

while
— All time parameters are expressed in ns units
— INC_TIME = 8 +/- TIMINCA.Incvalue * 2-32 [ns]
— INC_TIME (n) and INC_TIME (n+1) are the INC_TIME used for the current Tcycle and the

calculated INC_TIME that should be used in the next Tcycle, respectively
— Tcycle is the time between consecutive (Sync request + Delay request) cycles
— Tdelay is the transmission delay from the slave to the master. It can be calculated using T1...T4

as follow: Tdelay = [(T2-T1) + (T4-T3)] / 2
— The factor is a parameter that affects the speed of convergence. For a clock frequency of 125

MHz, an optimized factor equals 8. Table 7-66 lists the expected convergence time for some
cases while Tcycle equals 1 second and the slave-to-master clock frequency difference equals
100 ppm.

7.8.3.3 Target Time

The two target time registers TRGTTIML/H0 and TRGTTIML/H1 enable generating a time triggered
event to external hardware using one of the SDP pins according to the setup defined in the TSSDP and
TSAUXC registers (See Section 8.14.13 and Section 8.14.25). Each target time register is structured
the same as the SYSTIML/H registers. If the value of SYSTIML/H is equal or larger than the value of the
TRGTTIML/H registers, a change in level or a pulse is generated on the matched SDP outputs.

Inline Functions—Ethernet Controller I211

237

7.8.3.3.1 SYSTIM Synchronized Level Change Generation on SDP Pins

To generate a level change on one of the SDP pins when System Time (SYSTIM) reaches a pre-defined
value, the driver should do the following:

1. Select a specific SDP pin by setting the TSSDP.TS_SDPx_EN flag to 1b(while ‘x’ is 0, 1, 2 or 3).
2. Assign a target time register to the selected SDP by setting the TSSDP.TS_SDPx_SEL field to 00b or

01b if level change should occur based on TRGTTIML/H0 or TRGTTIML/H1, respectively.
3. Define the selected SDPx pin as output, by setting the appropriate SDPx_IODIR bit (while ‘x’ is 0, 1,

2, or 3) in the CTRL or CTRL_EXT registers.
4. Program the target time TRGTTIML/Hx (while ‘x’ is 0b or 1b) to the required event time.
5. Program the TRGTTIML/Hx to “Level Change” mode by setting the TSAUXC.PLSG bit to 0b and

TSAUXC.EN_TTx bit to 1b (while ‘x’ is 0b or 1b).
6. When the SYSTIML/H registers becomes equal or larger than the selected TRGTTIML/H registers,

the selected SDP changes its output level.

7.8.3.3.2 SYSTIM Synchronized Pulse Generation on SDP Pins

An output pulse can be generated by using one of the target time registers to define the beginning of
the pulse and the other target time registers to define the pulse completion time. To generate a pulse
on one of the SDP pins when System Time (SYSTIM) reaches a pre-defined value, the driver should do
the following:

1. Select a specific SDP pin by setting the TSSDP.TS_SDPx_EN flag to 1b (while ‘x’ is 0, 1, 2 or 3).
2. Select the target time register for the selected SDP that defines the beginning of the output pulse.

It is done by setting the TSSDP.TS_SDPx_SEL field to 00b or 01b if level change should occur when
SYSTIML/H equals TRGTTIML/H0 or TRGTTIML/H1, respectively.

3. Define the selected SDPx pin as output, by setting the appropriate SDPx_IODIR bit (while ‘x’ is 0, 1,
2, or 3) in the CTRL or CTRL_EXT registers.

4. Program the target time TRGTTIML/Hx (while ‘x’ is 0b or 1b) to the required event time. The
registers indicated by the TSSDP.TS_SDPx_SEL define the leading edge of the pulse and the other
ones define the trailing edge of the pulse.

5. Program the TRGTTIML/Hx defined by the TSSDP.TS_SDPx_SEL to “Start of Pulse” mode by setting
the TSAUXC.PLSG bit to 1b and TSAUXC.EN_TTx bit to 1b (while ‘x’ is 0b or 1b). The other
TRGTTIML/Hx register should be set to Level Change mode by setting the TSAUXC.PLSG bit to 0b
and TSAUXC.EN_TTx bit to 1b (while ‘x’ is 0b or 1b).

6. When the SYSTIML/H registers becomes equal or larger than the TRGTTIML/H registers that define
the beginning of the pulse, the selected SDP changes its level. Then, when the SYSTIML/H registers
becomes equal or larger than the other TRGTTIML/H registers (that define the trailing edge of the
pulse), the selected SDP changes its level back.

7.8.3.3.3 Synchronized Output Clock on SDP Pins

The I211 supports driving a programmable Clock on the SDP pins (up to two output clocks). The output
clocks generated are synchronized to the global System time registers (SYSTIM). The Target Time
registers (TRGTTIML/H0 or TRGTTIML/H1) can be used for the clock output generation. To start an
clock output on one of the SDP pins when System Time (SYSTIM) reaches a pre-defined value, the
driver should do the following:

1. Select a specific SDP pin by setting the TSSDP.TS_SDPx_EN flag to 1b (while ‘x’ is 0, 1, 2 or 3).
2. Select the target time register for a selected SDP, by setting the TSSDP.TS_SDPx_SEL field to 10b

or 11b if output clock should occur based on TRGTTIML/H0 or TRGTTIML/H1 respectively.

Ethernet Controller I211 —Inline Functions

238

3. Program the matched FREQOUT0/1 register to define clock half cycle time. Note that in the general
case the maximum supported half cycle time of the synchronized output clock is 70 ms. A slower
output clock can be generated by the Synchronized Level Change scheme described in
Section 7.8.3.3.1. In this option, software should trigger the output level change time periodically
for each clock transition. Slower half cycle time than 70msec can be programmed also as long as
the output clock is synchronized to whole seconds as follow (useful specifically for generating a 1Hz
clock):
a. The clock should start at a programmable time (as described in bullet 5 below)
b. The starting time plus 'n' times the value of the programmed FREQOUT0/1 must be whole

number of seconds (for 'specific' values of 'n')
c. Permitted values for the FREQOUT0/1 register that can meet the above conditions are:

125,000,000 decimal, 250,000,000 decimal and 500,000,000 decimal (equals to 125msec,
250msec and 500msec respectively)

4. Define the selected SDPx pin as output, by setting the appropriate SDPx_IODIR bit (while ‘x’ is 0, 1,
2, or 3) in the CTRL or CTRL_EXT registers.

5. If the output clock should start at a specific time, the TSAUXC.ST0/1 flag should be set to 1b and
the matched TRGTTIML/Hx should be set to the required start time.

6. Enabled the clock operation by setting the relevant TSAUXC.EN_CLK0/1 bit to 1b.

The clock out drives initially a logical ‘0’ level on the selected SDP. If the TSAUXC.ST0/1 flag is cleared,
it happens instantly when setting the TSAUXC.EN_CLK0/1 bit. Otherwise it happens when SYSTIM is
equal or larger than the TRGTTIM. Since then, the hardware repeats endless the following two steps:

7. Increment the used TRGTTIML/Hx by FREQOUT.
8. When SYSTIM is equal or larger than the TRGTTIM, the SDP reverts its output level.

7.8.3.4 Time Stamp Events

Upon a change in the input level of one of the SDP pins that was configured to detect Time stamp
events using the TSSDP register, a time stamp of the system time is captured into one of the two
auxiliary time stamp registers (AUXSTMPL/H0 or AUXSTMPL/H1). Software enables the timestamp of
input event as follow:

1. Define the sampled SDP on AUX time ‘x’ (‘x’ = 0b or 1b) by setting the TSSDP.AUXx_SDP_SEL field
while setting the matched TSSDP.AUXx_TS_SDP_EN bit to 1b.

2. Set also the TSAUXC.EN_TSx bit (‘x’ = 0b or 1b) to 1b to enable “timestamping”.

Following a transition on the selected SDP, the hardware does the following:

1. The SYSTIM registers (low and high) are latched to the selected AUXSTMP registers (low and high)
2. The selected AUTT0 or AUTT1 flags are set in the TSICR register. If the AUTT interrupt is enabled by

the TSIM register and the 1588 interrupts are enabled by the Time_Sync flag in the ICR register
then an interrupt is asserted as well.

After the hardware reports that an event time was latched, the software should read the latched time in
the selected AUXSTMP registers. Software should read first the Low register and only then the High
register. Reading the high register releases the registers to sample a new event.

7.8.4 Time SYNC Interrupts

Time Sync related interrupts can be generated by programming the TSICR and TSIM registers. The
TSICR register logs the interrupt cause and the TSIM register enables masking specific TSICR bits.
Detailed description of the Time Sync interrupt registers can be found in Section 8.15. Occurrence of a
Time Sync interrupt sets the ICR.Time_Sync interrupt bit.

Inline Functions—Ethernet Controller I211

239

7.8.5 PTP Packet Structure

The time sync implementation supports both the 1588 V1 and V2 PTP frame formats. The V1 structure
can come only as UDP payload over IPv4 while the V2 can come over L2 with its Ethertype or as a UDP
payload over IPv4 or IPv6. The 802.1AS uses only the layer 2 V2 format. The PTP frame formats over
L2 and over UDP are listed in the Table 7-61 and Table 7-62. The PTP V1 and V2 message formats are
listed in the Table 7-63 followed by SYNC packet format in Table 7-64. Table 7-65 and Table 7-66 list
the relevant fields that identify the PTP message that are the Control field for V1 message and the
MessageType field for V2 message. Then, Table 7-67 lists the device settings required to identify the
PTP packets.

Table 7-61. PTP Message Over Layer 2
Ethernet (L2) VLAN (Optional) PTP Ethertype PTP message

Table 7-62. PTP Message Over Layer 4
Ethernet (L2) IP (L3) UDP PTP message

Table 7-63. V1 and V2 PTP Message Header

Offset in Bytes V1 Fields V2 Fields

Bits 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0
versionPTP

transport Specific1 messageType

1 Reserved versionPTP

2
version Network message Length

3

4

Subdomain

domain Number

5 Reserved

6
flags

7

8

correctionField

9

10

11

12

13

14

15

16

reserved
17

18

19

Ethernet Controller I211 —Inline Functions

240

Note: Only the fields with the bold italic format colored red are of interest to the hardware.

20 message Type

Source Port Identity

21 Source communication technology

22

Sourceuuid

23

24

25

26

27

28
source port id

29

30
sequenceId sequenceId

31

32 control control

33 reserved Log Message Interval

34
flags

PTP message body. The PTP header plus its
message body must be al least 36 bytes long to be
recognized as a PTP message.35

1. Should be all zero.

Table 7-64. SYNC Message Structure

Offset in Bytes Length in Bytes Fields

0 34 Message Header (as listed in Table 7-63).

34 10

SYNC Timestamp. On 1-step transmission the timestamp is inserted by the hardware:
The first 2 bytes equals to SYSTIMTM.STM while its MS byte is first and its LS byte is last
The next 4 bytes equals to SYSTIMH while its MS byte is first and its LS byte is last
The next 4 bytes equals to SYSTIML while its MS byte is first and its LS byte is last

Table 7-65. Message Decoding for V1 (Control Field at Offset 32)

Enumeration Value

PTP_SYNC_MESSAGE 0

PTP_DELAY_REQ_MESSAGE 1

PTP_FOLLOWUP_MESSAGE 2

PTP_DELAY_RESP_MESSAGE 3

reserved 5–255

Table 7-63. V1 and V2 PTP Message Header (Continued)

Offset in Bytes V1 Fields V2 Fields

Bits 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Inline Functions—Ethernet Controller I211

241

The I211 identifies both L2 and L4 PTP packets for timestamp sampling and defining a specific receive
queue as listed in the Table 7-67.

Table 7-66. Message Decoding for V2 (MessageType Field at Offset 0)

MessageType Message Type Value (hex)

PTP_SYNC_MESSAGE Event 0

PTP_DELAY_REQ_MESSAGE Event 1

PTP_PATH_DELAY_REQ_MESSAGE Event 2

PTP_PATH_DELAY_RESP_MESSAGE Event 3

Unused Event 4-7

PTP_FOLLOWUP_MESSAGE General 8

PTP_DELAY_RESP_MESSAGE General 9

PTP_PATH_DELAY_FOLLOWUP_MESSAGE General A

PTP_ANNOUNCE_MESSAGE General B

PTP_SIGNALLING_MESSAGE General C

Unused General E-F

Table 7-67. Enabling Receive Timestamp

Functionality Register Field Setting Options

Enable receive timestamp TSYNCRXCTL En En = 1b (must be set in all the following options).

Sampled V1 Control value TSYNCRXCFG CTRLT The CTRLT defined the recognized V1 Control field. This field
must be defined if V1 packets recognition is required.

Sampled V2 MessageType value TSYNCRXCFG MSGT The MSGT defined the recognized V2 MessageType field. This
field must be defined if V2 packets recognition is required.

Enable all packets for
timestamp TSYNCRXCTL Type

Type equals to 100b enables sampling all packets. Useful only
when posting the timestamp to the packet buffer in host
memory, enabled per queue by the SRRCTL[n].Timestamp.

Enable L2 1588 packets for
timestamp sampling

TSYNCRXCTL Type

Type equals to 000b or 010b enable V2 packets with
MessageType equals to MSGT as well as DELAY_REQ and
DELAY_RESP packets.
Type equals to 101b enable all V2 packets with Message Type
bit 3 zero (means any event packets)

ETQF[n] EType
Filter enable

The EType on one of the enabled ETQF registers (Filter enable
is ‘1’) should be set to the 1588 EtherType (equals to 0x88F7)

Enable 1588 packets over UDP
for timestamp sampling

TSYNCRXCTL Type

Type equals to 001b enables V1 packets with Control field
equals to CTRLT parameter
Type equals to 010b enables V2 packets with MessageType
fields equals to MSGT parameter as well as DELAY_REQ and
DELAY_RESP packets.
Type equals to 101b enables all V2 packets with Message Type
bit 3 zero (which means any event packets)

TTQF[n] Protocol
1588 time stamp

Defines a UDP protocol (Protocol field = 17 dec).
The “1588 time stamp” flag is active

IMIR[n] Destination Port
PORT_BP

Define PTP event messages (Destination Port = 319 dec) and
the PORT_BP is cleared

Ethernet Controller I211 —Inline Functions

242

7.9 Statistic Counters
The I211 supports different statistic counters as described in Section 8.16. The statistic counters can be
used to create statistic reports as required by different standards. The I211 statistic counters allow
support for the following standards:

• IEEE 802.3 clause 30 management – DTE section.
• NDIS 6.0 OID_GEN_STATISTICS.
• RFC 2819 – RMON Ethernet statistics group.
• Linux Kernel (version 2.6) net_device_stats

The following section describes the match between the internal the I211 statistic counters and the
counters requested by the different standards.

7.9.1 IEEE 802.3 Clause 30 Management

The I211 supports the Basic and Mandatory Packages defined in clause 30 of the IEEE 802.3
specification. Table 7-68 lists the matching between the internal statistics and the counters requested
by these packages.

In addition, part of the recommended package is also implemented as listed in Table 7-69.

Define specific receive queue for
the L2 1588 packets ETQF[n] Rx Queue

Queue Enable
Setting the “Queue Enable” on the same ETQF register as
above, the receive queue is defined by the “Rx Queue” field.

Define specific receive queue for
1588 packets over UDP TTQF[n] Rx Queue

Queue Enable
Setting the “Queue Enable” on the same TTQF register as
above, the receive queue is defined by the “Rx Queue” field.

Table 7-68. IEEE 802.3 Mandatory Package Statistics

Mandatory Package Capability I211 Counter Notes and Limitations

FramesTransmittedOK GPTC The I211 doesn’t include flow control packets.

SingleCollisionFrames SCC

MultipleCollisionFrames MCC

FramesReceivedOK GPRC The I211 doesn’t include flow control packets.

FrameCheckSequenceErrors CRCERRS

AlignmentErrors ALGNERRC

Table 7-69. IEEE 802.3 Recommended Package Statistics

Recommended package capability I211 Counter Notes and Limitations

OctetsTransmittedOK GOTCH/GOTCL The I211 counts also the DA/SA/LT/CRC as part of the octets. The
I211 doesn’t count Flow control packets.

FramesWithDeferredXmissions DC

LateCollisions LATECOL

FramesAbortedDueToXSColls ECOL

Table 7-67. Enabling Receive Timestamp

Functionality Register Field Setting Options

Inline Functions—Ethernet Controller I211

243

Part of the optional package is also implemented as described in Table 7-72.

7.9.2 OID_GEN_STATISTICS

The I211 supports the part of the OID_GEN_STATISTICS as defined by Microsoft* NDIS 6.0
specification. Table 7-70 lists the matching between the internal statistics and the counters requested
by this structure.

FramesLostDueToIntMACXmitError HTDMPC The I211 counts the excessive collisions in this counter, while 802.3
increments no other counters, while this counter is incremented

CarrierSenseErrors TNCRS

The I211 doesn’t count cases of CRS de-assertion in the middle of
the packet. However, such cases are not expected when the internal
PHY is used.
In The I211 this counter is not operational in 100 Mbps half duplex
mode.

OctetsReceivedOK TORL+TORH The I211 counts also the DA/SA/LT/CRC as part of the octets.
Doesn’t count Flow control packets.

FramesLostDueToIntMACRcvError RNBC

SQETestErrors N/A

MACControlFramesTransmitted N/A

MACControlFramesReceived N/A

UnsupportedOpcodesReceived FCURC

PAUSEMACCtrlFramesTransmitted XONTXC + XOFFTXC

PAUSEMACCtrlFramesReceived XONRXC +
XOFFRXC

Table 7-70. Microsoft* OID_GEN_STATISTICS

OID entry I211 Counters Notes

ifInDiscards; CRCERRS + RLEC + RXERRC +
MPC + RNBC + ALGNERRC

ifInErrors; CRCERRS + RLEC + RXERRC +
ALGNERRC

ifHCInOctets; GORCL/GOTCL

ifHCInUcastPkts; GPRC - MPRC - BPRC

ifHCInMulticastPkts; MPRC

ifHCInBroadcastPkts; BPRC

ifHCOutOctets; GOTCL/GOTCH

ifHCOutUcastPkts; GPTC - MPTC - BPTC

ifHCOutMulticastPkts; MPTC

ifHCOutBroadcastPkts; BPTC

ifOutErrors; ECOL + LATECOL

ifOutDiscards; ECOL

ifHCInUcastOctets; N/A

ifHCInMulticastOctets; N/A

ifHCInBroadcastOctets; N/A

ifHCOutUcastOctets; N/A

ifHCOutMulticastOctets; N/A

ifHCOutBroadcastOctets; N/A

Table 7-69. IEEE 802.3 Recommended Package Statistics (Continued)

Ethernet Controller I211 —Inline Functions

244

7.9.3 RMON

The I211 supports the part of the RMON Ethernet statistics group as defined by IETF RFC 2819.
Table 7-71 lists the matching between the internal statistics and the counters requested by this group.

7.9.4 Linux net_device_stats

The I211 supports part of the net_device_stats as defined by Linux Kernel version 2.6 (defined in
<linux/netdevice.h>). Table 7-72 lists the matching between the internal statistics and the counters
requested by this structure.

Table 7-71. RMON Statistics

RMON statistic I211 Counters Notes

etherStatsDropEvents MPC + RNBC

etherStatsOctets TOTL + TOTH

etherStatsPkts TPR

etherStatsBroadcastPkts BPRC

etherStatsMulticastPkts MPRC The I211 doesn’t count FC packets

etherStatsCRCAlignErrors CRCERRS + ALGNERRC

 etherStatsUndersizePkts RUC

etherStatsOversizePkts ROC

etherStatsFragments RFC Should count bad aligned fragments as well

etherStatsJabbers RJC Should count bad aligned jabbers as well

etherStatsCollisions COLC

etherStatsPkts64Octets PRC64 RMON counts bad packets as well

etherStatsPkts65to127Octets PRC127 RMON counts bad packets as well

etherStatsPkts128to255Octets PRC255 RMON counts bad packets as well

etherStatsPkts256to511Octets PRC511 RMON counts bad packets as well

etherStatsPkts512to1023Octets PRC1023 RMON counts bad packets as well

etherStatsPkts1024to1518Octets PRC1522 RMON counts bad packets as well

Table 7-72. Linux net_device_stats

net_device_stats field I211 Counters Notes

rx_packets GPRC The I211 doesn’t count flow controls - can be accounted for by
using the XONRXC and XOFFRXC counters

tx_packets GPTC The I211 doesn’t count flow controls - can be accounted for by
using the XONTXC and XOFFTXC counters

rx_bytes GORCL + GORCH

tx_bytes GOTCL + GOTCH

rx_errors CRCERRS + RLEC + RXERRC +
ALGNERRC

tx_errors ECOL + LATECOL

rx_dropped N/A

tx_dropped N/A

multicast MPTC

collisions COLC

rx_length_errors RLEC

Inline Functions—Ethernet Controller I211

245

rx_over_errors N/A

rx_crc_errors CRCERRS

rx_frame_errors ALGNERRC

rx_fifo_errors HRMPC + Sum (RQDPC)

rx_missed_errors MPC

tx_aborted_errors ECOL

tx_carrier_errors N/A

tx_fifo_errors N/A

tx_heartbeat_errors N/A

tx_window_errors LATECOL

rx_compressed N/A

tx_compressed N/A

Table 7-72. Linux net_device_stats (Continued)

net_device_stats field I211 Counters Notes

Ethernet Controller I211 —Inline Functions

246

7.9.5 Statistics Hierarchy

The following diagram shows the relations between the packet flow and the different statistic counters.

Figure 7-21. Flow Statistics

L2 filtering

Errors

Error packets
SYMERRS

SCVPC
ALGNERRC
CRCERRS
LENERRS

Good packets received
GPRC, BPRC, MPRC

Manageability filtering

Manageability
only packets

MNGPRC

Queues
Drop of queues

S(RQDPC[7:0])

Packets received by host
RPTHC,

Packet Received by host from BMC
B2OGPRC

Total Packet Received
TPR

Flow control detection
Flow control packets

XONRXC
XOFFRXC

Packet buffer full
Missed packet

MPC

Manageability
Rx

BMC 2 OS
traffic

B2OSPC

MAC errors
(excessive collisions

Link down)

GPTC (Only if Tx is enabled)

Manageability
Traffic out

MNGPTC

Packets Sent by host
HGPTC,

Packets Sent to BMC
O2BSPC

Total Packet Sent
TPT

Flow control packets
Flow control packets

XONTXC
XOFFTXC

MAC drops
HTDPMC

OS to BMC packets

OOB Receive

BMNGPRC

O2BGPTC

OOB Transmit

BMNGPTC

Manageability
Tx

MNG Drop packets (Tx)
BMTPDC

MNG Drop Packet (Rx)
BMRPDC

MC

Host

Network

Packet Buffer
Drop of queues

S(TQDPC[7:0])

Programming Interface — Ethernet Controller I211

249

8.0 Programming Interface

8.1 Introduction
This section details the programmer visible state inside the I211. In some cases, it describes hardware
structures invisible to software in order to clarify a concept. The I211's address space is mapped into
four regions with PCI Base Address registers described in Section 9.3.11. These regions are listed in
Table 8-1.

The internal register/memory space is described in the following sections. The PHY registers are
accessed through the MDIO interface.

8.1.1 Memory, I/O Address and Configuration Decoding

8.1.1.1 Memory-Mapped Access to Internal Registers and Memories

The internal registers and memories might be accessed as direct memory-mapped offsets from the
base address register (BAR0 or BAR 0/1; refer to Section 9.3.11). Refer to Section 8.1.3 for the
appropriate offset for each specific internal register.

8.1.1.2 Memory-Mapped Access to MSI-X Tables

The MSI-X tables can be accessed as direct memory-mapped offsets from the base address register
(BAR3; refer to Section 9.3.11). Refer to Section 8.1.3 for the appropriate offset for each specific
internal MSI-X register.

8.1.1.3 I/O-Mapped Access to Internal Registers and Memories

To support pre-boot operation (prior to the allocation of physical memory base addresses), all internal
registers and memories can be accessed using I/O operations. I/O accesses are supported only if an I/
O Base Address is allocated and mapped (BAR2; refer to Section 9.3.11), the BAR contains a valid
(non-zero value), and I/O address decoding is enabled in the PCIe configuration.

Table 8-1. Address Space Regions

Addressable Content How Mapped Size of Region

Internal registers and memories I/O window mapped 32 bytes1

1. The internal registers and memories can be accessed though I/O space indirectly as explained in the sections that follow.

MSI-X (optional) Direct memory-mapped 16 KB

Ethernet Controller I211 — Programming Interface

250

When an I/O BAR is mapped, the I/O address range allocated opens a 32-byte window in the system I/
O address map. Within this window, two I/O addressable registers are implemented: IOADDR and
IODATA. The IOADDR register is used to specify a reference to an internal register or memory, and
then the IODATA register is used as a window to the register or memory address specified by IOADDR:

8.1.1.3.1 IOADDR (I/O Offset 0x00)

The IOADDR register must always be written as a Dword access. Writes that are less than 32 bits are
ignored. Reads of any size return a Dword of data; however, the chipset or CPU might only return a
subset of that Dword.

For software programmers, the IN and OUT instructions must be used to cause I/O cycles to be used on
the PCIe bus. Because writes must be to a 32-bit quantity, the source register of the OUT instruction
must be EAX (the only 32-bit register supported by the OUT command). For reads, the IN instruction
can have any size target register, but it is recommended that the 32-bit EAX register be used.

Because only a particular range is addressable, the upper bits of this register are hard coded to zero.
Bits 31 through 20 cannot be written to and are always read back as 0b.

At hardware reset (LAN_PWR_GOOD) or PCI reset, this register value resets to 0x00000000. Once
written, the value is retained until the next write or reset.

8.1.1.3.2 IODATA (I/O Offset 0x04)

The IODATA register must always be written as a Dword access when the IOADDR register contains a
value for the internal register and memories (for example, 0x00000-0x1FFFC). In this case, writes that
are less than 32 bits are ignored.

Reads to IODATA of any size returns a Dword of data. However, the chipset or CPU might only return a
subset of that Dword.

For software programmers, the IN and OUT instructions must be used to cause I/O cycles to be used on
the PCIe bus. Where 32-bit quantities are required on writes, the source register of the OUT instruction
must be EAX (the only 32-bit register supported by the OUT command).

Writes and reads to IODATA when the IOADDR register value is in an undefined range (0x20000-
0xFFFFFFFC) should not be performed. Results cannot be determined.

Notes: There are no special software timing requirements on accesses to IOADDR or IODATA. All
accesses are immediate, except when data is not readily available or acceptable. In this case,
the I211 delays the results through normal bus methods (for example, split transaction or
transaction retry).

Table 8-2. IOADDR and IODATA in I/O Address Space

Offset Abbreviation Name RW Size

0x00 IOADDR
Internal register, internal memory, or Flash location address.
0x00000-0x1FFFF – Internal registers and memories.
0x20000-0xFFFFFFFF – Undefined.

RW 4 bytes

0x04 IODATA
Data field for reads or writes to the internal register, internal
memory, or Flash location as identified by the current value in
IOADDR. All 32 bits of this register can be read or written to.

RW 4 bytes

0x08 ‚Äì 0x1F Reserved Reserved. RO 4 bytes

Programming Interface — Ethernet Controller I211

251

Because a register/memory read or write takes two I/O cycles to complete, software must
provide a guarantee that the two I/O cycles occur as an atomic operation. Otherwise, results
can be non-deterministic from the software viewpoint.
Software should access CSRs via I/O address space or configuration address space but should
not use both mechanisms at the same time.

8.1.1.3.3 Undefined I/O Offsets

I/O offsets 0x08 through 0x1F are considered to be reserved offsets with the I/O window. Dword reads
from these addresses returns 0xFFFF; writes to these addresses are discarded.

8.1.1.4 Configuration Access to Internal Registers and Memories

To support legacy pre-boot 16-bit operating environments without requiring I/O address space, the
I211 enables accessing CSRs via configuration address space by mapping the IOADDR and IODATA
registers into configuration address space. The registers mapping in this case is listed in Table 8-3.

Note: To enable CSR access via configuration address space the CSR_conf_en iNVM bit should be
set.

Software writes data to an internal CSR via configuration space in the following manner:

1. CSR address is written to the IOADDR register where:
a. Bit 31 (IOADDR.Configuration IO Access Enable) of the IOADDR register should be set to 1b.
b. Bits 30:0 of IOADDR should hold the actual address of the internal register or memory being

written to.
2. Data to be written is written into the IODATA register.

— The IODATA register is used as a window to the register or memory address specified by
IOADDR register. As a result, the data written to the IODATA register is written into the CSR
pointed to by bits 30:0 of the IOADDR register.

3. IOADDR.Configuration IO Access Enable is cleared, to avoid un-intentional CSR read operations
(that might cause a clear by read) by other applications scanning the configuration space.

Software reads data from an internal CSR via configuration space in the following manner:

1. CSR address is written to the IOADDR register where:
a. Bit 31 (IOADDR.Configuration IO Access Enable) of the IOADDR register should be set to 1b.
b. Bits 30:0 of IOADDR should hold the actual address of the internal register or memory being

read.
2. CSR value is read from the IODATA register.

Table 8-3. IOADDR and IODATA in Configuration Address Space

Configuration
Address Abbreviation Name RW Size

0x98 IOADDR
Internal register or internal memory location address.
0x00000-0x1FFFF– Internal registers and memories.
0x20000-0x7FFFFF – Undefined.

RW 4 bytes

0x9C IODATA
Data field for reads or writes to the internal register or internal memory
location as identified by the current value in IOADDR. All 32 bits of this
register can be read or written to.

RW 4 bytes

Ethernet Controller I211 — Programming Interface

252

a. The IODATA register is used as a window to the register or memory address specified by IOADDR
register. As a result the data read from the IODATA register is the data of the CSR pointed to by
bits 30:0 of the IOADDR register

3. IOADDR.Configuration IO Access Enable is cleared, to avoid un-intentional CSR read operations
(that might cause a clear by read) by other applications scanning the configuration space.

Notes:
— In the event that the CSR_conf_en bit in the PCIe Init Configuration 2 iNVM word is

cleared, accesses to the IOADDR and IODATA registers via the configuration address
space are ignored and have no effect on the register and the CSRs referenced by the
IOADDR register. In this case, any read access to these registers returns a value of 0b.

— When Function is in D3 state Software should not attempt to access CSRs via the
IOADDR and IODATA configuration registers.

— To enable CSR access via configuration space, Software should set bit 31 to 1b
(IOADDR.Configuration IO Access Enable) of the IOADDR register. Software should clear
bit 31 of the IOADDR register after completing CSR access to avoid an unintentional
clear-by-read operation or by another application scanning the configuration address
space.

— Bit 31 of the IOADDR register (IOADDR.Configuration IO Access Enable) has no effect
when initiating access via I/O address space.

— Software should access CSRs via I/O address space or configuration address space but
should not use both mechanisms at the same time.

8.1.2 Register Conventions

All registers in the I211 are defined to be 32 bits and should be accessed as 32-bit double-words;
however, there are some exceptions to this rule:

— Register pairs where two 32-bit registers make up a larger logical size.
— Accesses to memory (via Expansion ROM space, secondary BAR space, or the I/O space) might be

byte, word or double word accesses.

Reserved bit positions: Some registers contain certain bits that are marked as reserved. These bits
should never be set to a value of 1b by software. Reads from registers containing reserved bits might
return indeterminate values in the reserved bit-positions unless read values are explicitly stated. When
read, these reserved bits should be ignored by software.

Reserved and/or undefined addresses: any register address not explicitly declared in this specification
should be considered to be reserved, and should not be written to. Writing to reserved or undefined
register addresses might cause indeterminate behavior. Reads from reserved or undefined
configuration register addresses might return indeterminate values unless read values are explicitly
stated for specific addresses.

Initial values: most registers define the initial hardware values prior to being programmed. In some
cases, hardware initial values are undefined and is listed as such via the text undefined, unknown, or X.
Such configuration values might need to be set via iNVM configuration or via software in order for
proper operation to occur; this need is dependent on the function of the bit. Other registers might cite
a hardware default, which is overridden by a higher-precedence operation. Operations that might
supersede hardware defaults might include a valid iNVM load, completion of a hardware operation (such
as hardware auto-negotiation), or writing of a different register whose value is then reflected in another
bit.

Programming Interface — Ethernet Controller I211

253

For registers that should be accessed as 32-bit double words, partial writes (less than a 32- bit double
word) do not take effect (the write is ignored). Partial reads returns all 32 bits of data regardless of
the byte enables.

Note: Partial reads to Read-on-Clear (ICR) registers can have unexpected results since all 32 bits
are actually read regardless of the byte enables. Partial reads should not be done.
All statistics registers are implemented as 32-bit registers. Though some logical statistics
registers represent counters in excess of 32 bits in width, registers must be accessed using
32-bit operations (for example, independent access to each 32-bit field). When reading 64
bits statistics registers, the least significant 32-bit register should be read first.

Refer to the special notes for VLAN Filter Table, Multicast Table Arrays and Packet Buffer Memory,
which appear in the specific register definitions.

The I211 register fields are assigned one of the attributes listed in Table 8-4.

PHY registers use a special nomenclature to define the read/write mode of individual bits in each
register (see Table 8-5).

Table 8-4. I211 Register Field Attributes

Attribute Description

RW Read-Write field: Register bits are read-write and can be either set or cleared by software to the desired state.

RWM Read-Write Modified field: Register bits are read-write and can be either set or cleared by software to the desired
state. However, the value of this field might be modified by the hardware to reflect a status change.

RO Read-only register: Register bits are read-only and should not be altered by software. Register bits might be
initialized by hardware mechanisms such as pin strapping or reflect a status of the hardware state.

ROM Read-only Modified field: Register bits are read-only and will be either set or cleared by software upon read
operation. However, the value of this field might be modified by the hardware to reflect a status change.

R/W1C Read-only status, Write-1-to-clear status register: Register bits indicate status when read, a set bit indicating a
status event can be cleared by writing a 1b. Writing a 0b to R/W1C bit has no effect.

Rsv Reserved. Write 0b to these fields and ignore read.

RC Read-only status, Read-to-clear status register: Register bits indicate status when read, a set bit indicating a status
event is cleared by reading it.

SC Self Clear field: a command field that is self clearing. These field are read as zero after the requested operation is
done.

WO Write only field: a command field that can not be read, These field read values are undefined.

RC/W Read-Write status, Read-to-clear status register: Read-to-clear status register. Register bits indicate status when
read. Register bits are read-write and can be either set or cleared by software to the desired state.

RC/W1C
Read-only status, Write-1-to-clear status register: Read-to-clear status register. Register bits indicate status when
read, a set bit indicating a status event can be cleared by writing a 1b or by reading the register. Writing a 0b to RC/
W1C bit has no effect.

RS Read Set ‚Äì This is the attribute used for Semaphore bits. These bits are set by read in case the previous values
were 0b. In this case the read value is 0b; otherwise the read value is 1b. Cleared by a write of 0b.

R/W1 Read, Write-1 only register. Once a 1b has been written on a bit, the bit cannot be cleared to 0b.

Table 8-5. PHY Register Nomenclature

Register Mode Description

LH Latched High. Event is latched and erased when read.

LL Latched Low. Event is latched and erased when read. For example, Link Loss is latched when the PHY
Control Register bit 2 = 0b. After read, if the link is good, the PHY Control Register bit 2 is set to 1b.

RO Read Only.

R/W Read and Write.

Ethernet Controller I211 — Programming Interface

254

Note: For all binary equations appearing in the register map, the symbol “|” is equivalent to a binary
OR operation.

8.1.2.1 Registers Byte Ordering

This section defines the structure of registers that contain fields carried over the network. Some
examples are L2, L3 and L4 fields.

The following example is used to describe byte ordering over the wire (hex notation):

Last First

...,06, 05, 04, 03, 02, 01, 00

Each byte is sent with the LSbit first. That is, the bit order over the wire for this example is

Last First
..., 0000 0011, 0000 0010, 0000 0001, 0000 0000

The general rule for register ordering is to use host ordering (also called little Endian). Using the
previous example, a 6-byte fields (MAC address) is stored in a CSR in the following manner:

Byte 3 Byte 2 Byte 1 Byte0
DW address (N) 0x03 0x02 0x01 0x00
DW address (N+4) 0x05 0x04

The following exceptions use network ordering (also called big Endian). Using the previous example, a
16-bit field (EtherType) is stored in a CSR in the following manner:

Byte 3 Byte 2 Byte 1 Byte0
(DW aligned) 0x00 0x01
or
(Word aligned) 0x00 0x01

The following exceptions use network ordering:

All ETherType fields. For example, the VET EXT field in the VET register, the EType field in the ETQF
register, the EType field in the METF register.

Note: The normal notation as it appears in text books, etc. is to use network ordering. For example,
a MAC address of 00-A0-C9-00-00-00. The order on the network is 00, then A0, then C9, etc;
however, the host ordering presentation would be:

Byte 3 Byte 2 Byte 1 Byte0

SC Self-Clear. The bit is set, automatically executed, and then reset to normal operation.

CR Clear after Read. For example, 1000BASE-T Status Register bits 7:0 (Idle Error Counter).

Update Value written to the register bit does not take effect until software PHY reset is executed.

Table 8-5. PHY Register Nomenclature (Continued)

Register Mode Description

Programming Interface — Ethernet Controller I211

255

DW address (N) 00 C9 A0 00
DW address (N+4) 00 00

8.1.3 Register Summary

All the I211's non-PCIe configuration registers, except for the MSI-X register, are listed in Table 8-6.
These registers are ordered by grouping and are not necessarily listed in order that they appear in the
address space.

Table 8-6. Register Summary

Offset Alias Offset Abbreviation Name RW

General

0x0000 0x0004 CTRL Device Control Register RW

0x0008 N/A STATUS Device Status Register RO

0x0018 N/A CTRL_EXT Extended Device Control Register RW

0x0020 N/A MDIC MDI Control Register RW

0x0028 N/A FCAL Flow Control Address Low RO

0x002C N/A FCAH Flow Control Address High RO

0x0030 N/A FCT Flow Control Type RW

0x0034 N/A CONNSW Copper Switch Control RW

0x0038 N/A VET VLAN Ether Type RW

0x0E04 N/A MDICNFG MDC/MDIO Configuration Register RW

0x0170 N/A FCTTV Flow Control Transmit Timer Value RW

0x0E00 N/A LEDCTL LED Control Register RW

0x1028 N/A I2CCMD SFP I2C Command RW

0x102C N/A I2CPARAMS SFP I2C Parameter RW

0x1040 N/A WDSTP Watchdog Setup Register RW

0x1044 N/A WDSWSTS Watchdog Software RW

0x1048 N/A FRTIMER Free Running Timer RWM

0x104C N/A TCPTimer TCP Timer RW

0x5B70 N/A DCA_ID DCA Requester ID Information Register RO

0x5B50 N/A SWSM Software Semaphore Register RW

0x5B54 N/A FWSM Firmware Semaphore Register RWM

0x5B5C N/A SW_FW_SYNC Software-Firmware Synchronization RWM

0x0E38 N/A IPCNFG Internal PHY Configuration RW

0x0E14 N/A PHPM PHY Power Management RW

iNVM-Security Registers

0x12010 0x00010 EEC EEPROM-Mode Control Register RW

0x12030 N/A EEMNGCTL Manageability EEPROM-Mode Control Register RW

0x12120 -
0x1221C N/A INVM_DATA[0 - 63] iNVM Data Register R/W1

0x12220 -
0x1229C N/A INVM_LOCK[0 -31] iNVM Lock Register R/W1

0x12324 N/A INVM_PROTECT iNVM Protect Register RW

Interrupts

Ethernet Controller I211 — Programming Interface

256

0x1500 0x00C0 ICR Interrupt Cause Read RC/W1C

0x1504 0x00C8 ICS Interrupt Cause Set WO

0x1508 0x00D0 IMS Interrupt Mask Set/Read RW

0x150C 0x00D8 IMC Interrupt Mask Clear WO

0x1510 0x00E0 IAM Interrupt Acknowledge Auto Mask RW

0x1520 N/A EICS Extended Interrupt Cause Set WO

0x1524 N/A EIMS Extended Interrupt Mask Set/Read RWM

0x1528 N/A EIMC Extended Interrupt Mask Clear WO

0x152C N/A EIAC Extended Interrupt Auto Clear RW

0x1530 N/A EIAM Extended Interrupt Auto Mask RW

0x1580 N/A EICR Extended Interrupt Cause Read RC/W1C

0x1700 -
0x170C N/A IVAR Interrupt Vector Allocation Registers RW

0x1740 N/A IVAR_MISC Interrupt Vector Allocation Registers - MISC RW

0x1680 -
0x16A0 N/A EITR Extended Interrupt Throttling Rate 0 - 4 RW

0x1514 N/A GPIE General Purpose Interrupt Enable RW

0x5B68 N/A PBACL MSI-X PBA Clear R/W1C

Receive

0x0100 N/A RCTL Rx Control RW

0x2160 0x0168 FCRTL0 Flow Control Receive Threshold Low RW

0x2168 0x0160 FCRTH0 Flow Control Receive Threshold High RW

0x2404 N/A RXPBSIZE Rx Packet Buffer Size RW

0x2460 N/A FCRTV Flow Control Refresh Timer Value RW

0xC000 0x0110,
0x2800 RDBAL[0] Rx Descriptor Base Low Queue 0 RW

0xC004 0x0114,
0x2804 RDBAH[0] Rx Descriptor Base High Queue 0 RW

0xC008 0x0118,
0x2808 RDLEN[0] Rx Descriptor Ring Length Queue 0 RW

0xC00C 0x280C SRRCTL[0] Split and Replication Receive Control Register Queue 0 RW

0xC010 0x0120,
0x2810 RDH[0] Rx Descriptor Head Queue 0 RO

0xC018 0x0128,
0x2818 RDT[0] Rx Descriptor Tail Queue 0 RW

0xC028 0x02828 RXDCTL[0] Receive Descriptor Control Queue 0 RW

0xC014 0x2814 RXCTL[0] Receive Queue 0 DCA CTRL Register RW

0xC040 + 0x40
* (n-1)

0x2900+
0x100 * (n-
1)

RDBAL[1 - 3] Rx Descriptor Base Low Queue 1 - 3 RW

0xC044 + 0x40
* (n-1)

0x2904 +
0x100 * (n-
1)

RDBAH[1 - 3] Rx Descriptor Base High Queue 1 - 3 RW

0xC048 + 0x40
* (n-1)

0x2908 +
0x100 * (n-
1)

RDLEN[1 - 3] Rx Descriptor Ring Length Queue 1 - 3 RW

0xC04C + 0x40
* (n-1)

0x290C +
0x100 * (n-
1)

SRRCTL[1 - 3] Split and Replication Receive Control Register Queue 1 - 3 RW

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Programming Interface — Ethernet Controller I211

257

0xC050 + 0x40
* (n-1)

0x2910 +
0x100 * (n-
1)

RDH[1 - 3] Rx Descriptor Head Queue 1 - 3 RO

0xC058 + 0x40
* (n-1)

0x2918 +
0x100 * (n-
1)

RDT[1 - 3] Rx Descriptor Tail Queue 1 - 3 RW

0xC068 + 0x40
* (n-1)

0x2928 +
0x100 * (n-
1)

RXDCTL[1 - 3] Receive Descriptor Control Queue 1 - 3 RW

0xC054 + 0x40
* (n-1)

0x2914 +
0x100 * (n-
1)

RXCTL[1 - 3] Receive Queue 1 - 3 DCA CTRL Register RW

0x5000 N/A RXCSUM Receive Checksum Control RW

0x5004 N/A RLPML Receive Long packet maximal length RW

0x5008 N/A RFCTL Receive Filter Control Register RW

0x5200- 0x53FC 0x0200-
0x03FC MTA[127:0] Multicast Table Array (n) RW

0x5400 + 8*n 0x0040 +
8*n RAL[0-15] Receive Address Low (15:0) RW

0x5404 + 8 *n 0x0044 + 8
*n RAH[0-15] Receive Address High (15:0) RW

0x5480 –
0x549C N/A PSRTYPE[3:0] Packet Split Receive type (n) RW

0x5600-0x57FC 0x0600-
0x07FC VFTA[127:0] VLAN Filter Table Array (n) RW

0x5818 N/A MRQC Multiple Receive Queues Command RW

0x5C00-0x5C7C N/A RETA Redirection Table RW

0x5C80-0x5CA4 N/A RSSRK RSS Random Key Register RW

0xC038 +
0x40*n N/A DVMOLR[0 - 3] DMA VM Offload Register[0-3] RW

Transmit

0x0400 N/A TCTL Tx Control RW

0x0404 N/A TCTL_EXT Tx Control Extended RW

0x0410 N/A TIPG Tx IPG RW

0x041C N/A RETX_CTL Retry Buffer Control RW

0x3404 N/A TXPBSIZE Transmit Packet Buffer Size RW

0x359C N/A DTXTCPFLGL DMA Tx TCP Flags Control Low RW

0x35A0 N/A DTXTCPFLGH DMA Tx TCP Flags Control High RW

0x3540 N/A DTXMXSZRQ DMA Tx Max Total Allow Size Requests RW

0x355C N/A DTXMXPKTSZ DMA Tx Max Allowable Packet Size RW

0x3590 N/A DTXCTL DMA Tx Control RW

0x35A4 N/A DTXBCTL DMA Tx Behavior Control RW

0xE000 0x0420,
0x3800 TDBAL[0] Tx Descriptor Base Low 0 RW

0xE004 0x0424,
0x3804 TDBAH[0] Tx Descriptor Base High 0 RW

0xE008 0x0428,
0x3808 TDLEN[0] Tx Descriptor Ring Length 0 RW

0xE010 0x0430,
0x3810 TDH[0] Tx Descriptor Head 0 RO

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Ethernet Controller I211 — Programming Interface

258

0xE018 0x0438,
0x3818 TDT[0] Tx Descriptor Tail 0 RW

0xE028 0x3828 TXDCTL[0] Transmit Descriptor Control Queue 0 RW

0xE014 0x3814 TXCTL[0] Tx DCA CTRL Register Queue 0 RW

0xE038 0x3838 TDWBAL[0] Transmit Descriptor WB Address Low Queue 0 RW

0xE03C 0x383C TDWBAH[0] Transmit Descriptor WB Address High Queue 0 RW

0xE040 + 0x40
* (n-1)

0x3900 +
0x100 * (n-
1)

TDBAL[1-3] Tx Descriptor Base Low Queue 1 - 3 RW

0xE044 + 0x40
* (n-1)

0x3904 +
0x100 * (n-
1)

TDBAH[1-3] Tx Descriptor Base High Queue 1 - 3 RW

0xE048 + 0x40
* (n-1)

0x3908 +
0x100 * (n-
1)

TDLEN[1-3] Tx Descriptor Ring Length Queue 1 - 3 RW

0xE050 + 0x40
* (n-1)

0x3910 +
0x100 * (n-
1)

TDH[1-3] Tx Descriptor Head Queue 1 - 3 RO

0xE058 + 0x40
* (n-1)

0x3918 +
0x100 * (n-
1)

TDT[1-3] Tx Descriptor Tail Queue 1 - 3 RW

0xE068 + 0x40
* (n-1)

0x3928 +
0x100 * (n-
1)

TXDCTL[1-3] Transmit Descriptor Control 1 - 3 RW

0xE054 + 0x40
* (n-1)

0x3914 +
0x100 * (n-
1)

TXCTL[1-3] Tx DCA CTRL Register Queue 1 - 3 RW

0xE078 + 0x40
* (n-1)

0x3938 +
0x100 * (n-
1)

TDWBAL[1-3] Transmit Descriptor WB Address Low Queue 1 - 3 RW

0xE07C + 0x40
* (n-1)

0x393C +
0x100 * (n-
1)

TDWBAH[1-3] Transmit Descriptor WB Address High Queue 1 - 3 RW

Filters

0x5CB0 + 4*n N/A ETQF[0 - 7] EType Queue Filter 0 - 7 RW

0x5A80 + 4*n N/A IMIR[0 - 7] Immediate Interrupt Rx 0 - 7 RW

0x5AA0 + 4*n N/A IMIREXT[0 - 7] Immediate Interrupt Rx Extended 0 - 7 RW

0x5AC0 N/A IMIRVP Immediate Interrupt Rx VLAN Priority RW

0x59E0 + 4*n N/A TTQF[0 - 7] Two-Tuple Queue Filter 0 - 7 RW

0x55FC N/A SYNQF SYN Packet Queue Filter RW

Per Queue Statistics

0xC030 + 0x40
* n

0x2830 +
0x100 * n RQDPC[0 - 3] Receive Queue Drop Packet Count Register 0 - 3 RW

0xE030 + 0x40
* n N/A TQDPC[0 - 3] Transmit Queue Drop Packet Count Register 0 - 3 RW

0x10010 +
0x100*n N/A PQGPRC[0 - 3] Per Queue Good Packets Received Count RO

0x10014 +
0x100*n N/A PQGPTC[0 - 3] Per Queue Good Packets Transmitted Count RO

0x10018 +
0x100*n N/A PQGORC[0 - 3] Per Queue Good Octets Received Count RO

0x10034 +
0x100*n N/A PQGOTC[0 - 3] Per Queue Octets Transmitted Count RO

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Programming Interface — Ethernet Controller I211

259

0x10038 +
0x100*n N/A PQMPRC[0 - 3] Per Queue Multicast Packets Received Count RO

Statistics

0x4000 N/A CRCERRS CRC Error Count RC

0x4004 N/A ALGNERRC Alignment Error Count RC

0x4008 N/A SYMERRS Symbol Error Count RC

0x400C N/A RXERRC Rx Error Count RC

0x4010 N/A MPC Missed Packets Count RC

0x4014 N/A SCC Single Collision Count RC

0x4018 N/A ECOL Excessive Collisions Count RC

0x401C N/A MCC Multiple Collision Count RC

0x4020 N/A LATECOL Late Collisions Count RC

0x4028 N/A COLC Collision Count RC

0x4030 N/A DC Defer Count RC

0x4034 N/A TNCRS Transmit - No CRS RC

0x403C N/A HTDPMC Host Transmit Discarded Packets by MAC Count RC

0x4040 N/A RLEC Receive Length Error Count RC

0x4048 N/A XONRXC XON Received Count RC

0x404C N/A XONTXC XON Transmitted Count RC

0x4050 N/A XOFFRXC XOFF Received Count RC

0x4054 N/A XOFFTXC XOFF Transmitted Count RC

0x4058 N/A FCRUC FC Received Unsupported Count RC

0x405C N/A PRC64 Packets Received (64 Bytes) Count RC

0x4060 N/A PRC127 Packets Received (65-127 Bytes) Count RC

0x4064 N/A PRC255 Packets Received (128-255 Bytes) Count RC

0x4068 N/A PRC511 Packets Received (256-511 Bytes) Count RC

0x406C N/A PRC1023 Packets Received (512-1023 Bytes) Count RC

0x4070 N/A PRC1522 Packets Received (1024-1522 Bytes) RC

0x4074 N/A GPRC Good Packets Received Count RC

0x4078 N/A BPRC Broadcast Packets Received Count RC

0x407C N/A MPRC Multicast Packets Received Count RC

0x4080 N/A GPTC Good Packets Transmitted Count RC

0x4088 N/A GORCL Good Octets Received Count (Lo) RC

0x408C N/A GORCH Good Octets Received Count (Hi) RC

0x4090 N/A GOTCL Good Octets Transmitted Count (Lo) RC

0x4094 N/A GOTCH Good Octets Transmitted Count (Hi) RC

0x40A0 N/A RNBC Receive No Buffers Count RC

0x40A4 N/A RUC Receive Under Size Count RC

0x40A8 N/A RFC Receive Fragment Count RC

0x40AC N/A ROC Receive Oversize Count RC

0x40B0 N/A RJC Receive Jabber Count RC

0x40C0 N/A TORL Total Octets Received (Lo) RC

0x40C4 N/A TORH Total Octets Received (Hi) RC

0x40C8 N/A TOTL Total Octets Transmitted (Lo) RC

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Ethernet Controller I211 — Programming Interface

260

0x40CC N/A TOTH Total Octets Transmitted (Hi) RC

0x40D0 N/A TPR Total Packets Received RC

0x40D4 N/A TPT Total Packets Transmitted RC

0x40D8 N/A PTC64 Packets Transmitted (64 Bytes) Count RC

0x40DC N/A PTC127 Packets Transmitted (65-127 Bytes) Count RC

0x40E0 N/A PTC255 Packets Transmitted (128-256 Bytes) Count RC

0x40E4 N/A PTC511 Packets Transmitted (256-511 Bytes) Count RC

0x40E8 N/A PTC1023 Packets Transmitted (512-1023 Bytes) Count RC

0x40EC N/A PTC1522 Packets Transmitted (1024-1522 Bytes) Count RC

0x40F0 N/A MPTC Multicast Packets Transmitted Count RC

0x40F4 N/A BPTC Broadcast Packets Transmitted Count RC

0x40F8 N/A TSCTC TCP Segmentation Context Transmitted Count RC

0x4100 N/A IAC Interrupt Assertion Count RC

0x4104 N/A RPTHC Rx Packets to Host Count RC

0x4148 N/A TLPIC EEE Tx LPI Count RC

0x414C N/A RLPIC EEE Rx LPI Count RC

0x4118 N/A HGPTC Host Good Packets Transmitted Count RC

0x4120 N/A RXDMTC Rx Descriptor Minimum Threshold Count RC

0x4128 N/A HGORCL Host Good Octets Received Count (Lo) RC

0x412C N/A HGORCH Host Good Octets Received Count (Hi) RC

0x4130 N/A HGOTCL Host Good Octets Transmitted Count (Lo) RC

0x4134 N/A HGOTCH Host Good Octets Transmitted Count (Hi) RC

0x4138 N/A LENERRS Length Errors Count Register RC

Wake Up and Proxying

0x5800 N/A WUC Wake Up Control RW

0x5808 N/A WUFC Wake Up Filter Control RW

0x5810 N/A WUS Wake Up Status R/W1C

0x5F60 N/A PROXYFC Proxying Filter Control RW

0x5F64 N/A PROXYS Proxying Status R/W1C

0x5838 N/A IPAV IP Address Valid RW

0x5840- 0x5858 N/A IP4AT IPv4 Address Table RW

0x5880- 0x588F N/A IP6AT IPv6 Address Table RW

0x5900 N/A WUPL Wake Up Packet Length RO

0x5A00- 0x5A7C N/A WUPM Wake Up Packet Memory RO

0x9000-0x93FC N/A FHFT Flexible Host Filter Table Registers RW

0x9A00-0x9DFC N/A FHFT_EXT Flexible Host Filter Table Registers Extended RW

0x5590 N/A PROXYFCEX Proxy Filter Control Extended RW

0x5594 N/A PROXYEXS Proxy Extended Status R/W1C

0x5500-0x557C N/A WFUTPF[31:0] Wake Flex UDP TCP Port Filter RW

0x5580 N/A RFUTPF Range Flex UDP TCP Port Filter RW

0x5584 N/A RWPFC Range Wake Port Filter Control RW

0x5588 N/A WFUTPS Wake Filter UDP TCP Status R/W1C

0x558C N/A WCS Wake Control Status R/W1C

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Programming Interface — Ethernet Controller I211

261

0x8F40 N/A HIBBA Host Interface Buffer Base Address RW

0x8F44 N/A HIBMAXOFF Host Interface Buffer Maximum Offset RO

PCIe

0x5B00 N/A GCR PCIe Control Register RW

0x5B10 N/A GSCL_1 PCIe Statistics Control #1 RW

0x5B14 N/A GSCL_2 PCIe Statistics Control #2 RW

0x5B90 -
0x5B9C N/A GSCL_5_8 PCIe Statistics Control Leaky Bucket Timer RW

0x5B20 N/A GSCN_0 PCIe Counter Register #0 RW

0x5B24 N/A GSCN_1 PCIe Counter Register #1 RW

0x5B28 N/A GSCN_2 PCIe Counter Register #2 RW

0x5B2C N/A GSCN_3 PCIe Counter Register #3 RW

0x5B30 N/A FACTPS Function Active and Power State RW

0x5B64 N/A MREVID Mirrored Revision ID RO

0x5B6C N/A GCR_EXT PCIe Control Extended Register RW

0x5B74 N/A DCA_CTRL DCA Control Register RW

0x5B88 N/A PICAUSE PCIe Interrupt Cause R/W1C

0x5B8C N/A PIENA PCIe Interrupt Enable RW

0x5BFC N/A BARCTRL PCIe BAR Control RW

0x5BF4 N/A RR2DCDELAY Read Request To Data Completion Delay Register RC

0x5B4C N/A PCIEMCTP PCIe MCTP Register RW to FW

Memory Error Detection

0x1084 N/A PEIND Parity and ECC Indication RC

0x1088 N/A PEINDM Parity and ECC Indication Mask RW

0x245C N/A PBECCSTS Packet Buffer ECC Status RW

0x5BA0 N/A PCIEERRCTL PCIe Parity Control Register RW

0x5BA4 N/A PCIEECCCTL PCIe ECC Control Register RW

0x5BA8 N/A PCIEERRSTS PCIe Parity Status Register R/W1C

0x5BAC N/A PCIEECCSTS PCIe ECC Status Register R/W1C

0x5B7C N/A PCIEACL01 PCIe ACL0 and ACL1 Register RW to FW

0x5B80 N/A PCIEACL23 PCIe ACL2 and ACL3 Register RW to FW

0x5F54 N/A LANPERRCTL LAN Port Parity Error Control Register RW to FW

0x5F58 N/A LANPERRSTS LAN Port Parity Error Status Register R/W1C

0x5F5C N/A LANPERRINJ LAN Port Parity Error Inject Register SC

Power Management Registers

0x2170 N/A FCRTC Flow Control Receive Threshold Coalescing RW

0x5DC8 N/A DMACTC DMA Coalescing Clock Control Time Counter RO

0x0E30 N/A EEER Energy Efficient Ethernet (EEE) Register RW

Diagnostic

0x5BB8 N/A PCIEMISC PCIe Misc. Register RW

PCS

0x4200 N/A PCS_CFG PCS Configuration 0 Register RW

0x4208 N/A PCS_LCTL PCS Link Control Register RW

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Ethernet Controller I211 — Programming Interface

262

8.1.3.1 Alias Addresses

Certain registers maintain an alias address designed for backward compatibility with software written
for previous GbE controllers. For these registers, the alias address is listed Table 8-6. Those registers
can be accessed by software at either the new offset or the alias offset. It is recommended that
software that is written solely for the I211, use the new address offset.

0x420C N/A PCS_LSTS PCS Link Status Register RO

0x4210 N/A PCS_DBG0 PCS Debug 0 Register RO

0x4214 N/A PCS_DBG1 PCS Debug 1 Register RO

0x4218 N/A PCS_ANADV AN Advertisement Register RW

0x421C N/A PCS_LPAB Link Partner Ability Register RO

0x4220 N/A PCS_NPTX AN Next Page Transmit Register RW

0x4224 N/A PCS_LPABNP Link Partner Ability Next Page Register RO

Time Sync

0xB620 N/A TSYNCRXCTL Rx Time Sync Control Register RW

0xB624 N/A RXSTMPL Rx Timestamp Low RO

0xB628 N/A RXSTMPH Rx Timestamp High RO

0xB614 N/A TSYNCTXCTL Tx Time Sync Control Register RW

0xB618 N/A TXSTMPL Tx Timestamp Value Low RO

0xB61C N/A TXSTMPH Tx Timestamp Value High RO

0xB6F8 N/A SYSTIMR System Time Residue Register RW

0xB600 N/A SYSTIML System Time Register Low RW

0xB604 N/A SYSTIMH System Time Register High RW

0xB6FC N/A SYSTIMTM System Time Register Tx MS RW

0xB608 N/A TIMINCA Increment Attributes Register RW

0xB60C N/A TIMADJ Time Adjustment Offset Register RW

0xB640 N/A TSAUXC Auxiliary Control Register RW

0xB644 N/A TRGTTIML0 Target Time Register 0 Low RW

0xB648 N/A TRGTTIMH0 Target Time Register 0 High RW

0xB64C N/A TRGTTIML1 Target Time Register 1 Low RW

0xB650 N/A TRGTTIMH1 Target Time Register 1 High RW

0xB654 N/A FREQOUT0 Frequency Out 0 Control Register RW

0xB658 N/A FREQOUT1 Frequency Out 1 Control Register RW

0xB65C N/A AUXSTMPL0 Auxiliary Timestamp 0 Register Low RO

0xB660 N/A AUXSTMPH0 Auxiliary Timestamp 0 Register High RO

0xB664 N/A AUXSTMPL1 Auxiliary Timestamp 1 Register Low RO

0xB668 N/A AUXSTMPH1 Auxiliary Timestamp 1 Register High RO

0x5F50 N/A TSYNCRXCFG Time Sync Rx Configuration RW

0x003C N/A TSSDP Time Sync SDP Configuration Register RW

0xB66C N/A TSICR Time Sync Interrupt Cause Register RC/W1C

0xB674 N/A TSIM Time Sync Interrupt Mask Register RW

0x3578 N/A LAUNCH_OS0 Launch Time Offset Register 0 RW

Table 8-6. Register Summary (Continued)

Offset Alias Offset Abbreviation Name RW

Programming Interface — Ethernet Controller I211

263

8.1.4 MSI-X BAR Register Summary

8.2 General Register Descriptions

8.2.1 Device Control Register - CTRL (0x00000; R/W)

This register, as well as the Extended Device Control (CTRL_EXT) register, controls the major
operational modes for the device. While software writes to this register to control device settings,
several bits (such as FD and SPEED) can be overridden depending on other bit settings and the
resultant link configuration determined by the PHY's auto-negotiation resolution. See Section 4.6.7 for
details on the setup of these registers in the different link modes.

Note: This register is also aliased at address 0x0004.

Table 8-7. MSI-X Register Summary

Category Offset Abbreviation Name RW Page

MSI-X Table 0x0000 + n*0x10
[n=0...4] MSIXTADD MSI–X Table Entry Lower

Address RW page 300

MSI-X Table 0x0004 + n*0x10
[n=0...4] MSIXTUADD MSI–X Table Entry Upper

Address RW page 300

MSI-X Table 0x0008 + n*0x10
[n=0...4] MSIXTMSG MSI–X Table Entry Message R/W page 300

MSI-X Table 0x000C + n*0x10
[n=0...4] MSIXTVCTRL MSI–X Table Entry Vector

Control R/W page 300

MSI-X Table 0x02000 MSIXPBA MSIXPBA Bit Description RO page 301

Field Bit(s) Initial Value Description

FD 0 1b1

Full-Duplex
Controls the MAC duplex setting when explicitly set by software.
0b = Half duplex.
1b = Full duplex.

Reserved 1 0b
Reserved
Write 0b; ignore on read.

GIO Master
Disable 2 0b

When set to 1b, the function of this bit blocks new master requests. If no master
requests are pending by this function, the STATUS.GIO Master Enable Status bit is set.
See Section 5.2.3.3 for further information.

Reserved 5:3 0x0
Reserved
Write 0b, ignore on read.

SLU 6 0b1

Set Link Up
Set Link Up must be set to 1b to permit the MAC to recognize the LINK signal from the
PHY, which indicates the PHY has gotten the link up, and is ready to receive and
transmit data.
See Section 3.7.4 for more information about auto-negotiation and link configuration
in the various modes.
Notes:
1. The CTRL.SLU bit is normally initialized to 0b. However, if the APM Enable bit is

set in the iNVM then it is initialized to 1b.
2. The CTRL.SLU bit is set to 1b if the Enable All Phys in D3 bit in the Common

Firmware Parameters 2 iNVM word is set to 1b (See Section 6.7.1.3).

Ethernet Controller I211 — Programming Interface

264

ILOS 7 0b1

Invert Loss-of-Signal (LOS/LINK) Signal
This bit controls the polarity of the SRDS_[n]_SIG_DET signal or internal link-up
signal.
0b = Do not invert (active high input signal).
1b = Invert signal (active low input signal).
Notes:
1. Source of the link-up signal (SRDS_[n]_SIG_DET signal or internal link-up signal)

is set via the CONNSW.ENRGSRC bit. When using the internal link-up signal, this
bit should be set to 0b.

2. Should be set to 0b when using an internal copper PHY.

SPEED 9:8 10b

Speed Selection.
These bits determine the speed configuration and are written by software after reading
the PHY configuration through the MDIO interface.
These signals are ignored when auto-speed detection is enabled.
00b = 10 Mb/s.
01b = 100 Mb/s.
10b = 1000 Mb/s.
11b = Not used.

Reserved 10 0b
Reserved.
Write 0b, ignore on read.

FRCSPD 11 0b1

Force Speed
This bit is set when software needs to manually configure the MAC speed settings
according to the SPEED bits.
Note that MAC and PHY must resolve to the same speed configuration or software
must manually set the PHY to the same speed as the MAC.
Software must clear this bit to enable the PHY or ASD function to control the MAC
speed setting. Note that this bit is superseded by the CTRL_EXT.SPD_BYPS bit, which
has a similar function.

FRCDPLX 12 0b

Force Duplex
When set to 1b, software can override the duplex indication from the PHY that is
indicated in the FDX to the MAC. Otherwise, in 10/100/1000Base-T link mode, the
duplex setting is sampled from the PHY FDX indication into the MAC on the asserting
edge of the PHY LINK signal. When asserted, the CTRL.FD bit sets duplex.

Reserved 15:13 0x0
Reserved
Write 0b, ignore on read.

SDP0_GPIEN 16 0b
General Purpose Interrupt Detection Enable for SDP0
If software-controlled I/O pin SDP0 is configured as an input, this bit (when 1b)
enables the use for GPI interrupt detection.

SDP1_GPIEN 17 0b
General Purpose Interrupt Detection Enable for SDP1
If software-controlled I/O pin SDP1 is configured as an input, this bit (when 1b)
enables the use for GPI interrupt detection.

SDP0 DATA
(RWM) 18 0b1

SDP0 Data Value
Used to read or write the value of software-controlled I/O pin SDP0.
If SDP0 is configured as an output (SDP0_IODIR = 1b), this bit controls the value
driven on the pin (initial value iNVM-configurable).
If SDP0 is configured as an input, reads return the current value of the pin.
When the SDP0_WDE bit is set, this field indicates the polarity of the watchdog
indication.
Note:

SDP1 DATA
(RWM) 19 0b1

SDP1 Data Value
Used to read or write the value of software-controlled I/O pin SDP1.
If SDP1 is configured as an output (SDP1_IODIR = 1b), this bit controls the value
driven on the pin (initial value iNVM-configurable).
If SDP1 is configured as an input, reads return the current value of the pin.
Note:

ADVD3WUC 20 1b1
D3Cold Wake up Capability Enable
When this bit is set to 0b, PME (WAKE#) is not generated in D3Cold.
Bit loaded from iNVM (refer to Section 6.2.21).

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

265

SDP0_WDE 21 0b1

SDP0 used for Watchdog Indication
When set, SDP0 is used as a watchdog indication. When set, the SDP0_DATA bit
indicates the polarity of the watchdog indication. In this mode, SDP0_IODIR must be
set to an output.

SDP0_IODIR 22 0b1

SDP0 Pin Direction
Controls whether software-controllable pin SDP0 is configured as an input or output
(0b = input, 1b = output). Initial value is iNVM-configurable. This bit is not affected by
software or system reset, only by initial power-on or direct software writes.

SDP1_IODIR 23 0b1

SDP1 Pin Direction
Controls whether software-controllable pin SDP1 is configured as an input or output
(0b = input, 1b = output). Initial value is iNVM-configurable. This bit is not affected by
software or system reset, only by initial power-on or direct software writes.

Reserved 25:24 0x0
Reserved.
Write 0b, ignore on read.

RST (SC) 26 0b

Port Software Reset
This bit performs a reset to the LAN port, resulting in a state nearly approximating the
state following a power-up reset or internal PCIe reset, except for system PCI
configuration and DMA logic.
0b = Normal.
1b = Reset.
This bit is self clearing and is referred to as software reset or global reset.

RFCE 27 1b

Receive Flow Control Enable
When set, indicates that the I211 responds to the reception of flow control packets. If
auto-negotiation is enabled, this bit is set to the negotiated flow control value.
In internal PHYmode it should be done by the software.

TFCE 28 0b

Transmit Flow Control Enable
When set, indicates that the I211 transmits flow control packets (XON and XOFF
frames) based on the receiver fullness. If auto-negotiation is enabled, this bit is set to
the negotiated duplex value.
In internal PHYmode it should be done by the software.

DEV_RST
(SC) 29 0b

Device Reset
This bit performs a reset of the entire controller device, resulting in a state nearly
approximating the state following a power-up reset or internal PCIe reset, except for
system PCI configuration.
0b = Normal.
1b = Reset.
This bit is self clearing.
Notes:
1. Asserting DEV_RST generates an interrupt via the ICR.DRSTA interrupt bit.
2. Device Reset (CTRL.DEV_RST) can be used to globally reset the entire

component if the DEV_RST_EN bit in Initialization Control 4 iNVM word is set.
3. Asserting DEV_RST sets the STATUS.DEV_RST_SET bit.

VME 30 0b

VLAN Mode Enable
When set to 1b, VLAN information is stripped from all received 802.1Q packets.
Note: If this bit is set, the RCTL.SECRC bit should also be set as the CRC is not valid

anymore.

PHY_RST 31 0b

PHY Reset
Generates a hardware-level reset to the internal 1000BASE-T PHY.
0b = Normal operation.
1b = Internal PHY reset asserted.

1. These bits are loaded from iNVM.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

266

8.2.2 Device Status Register - STATUS (0x0008; RO)

Field Bit(s) Initial Value Description

FD 0 X

Full Duplex.
0b = Half duplex (HD).
1b = Full duplex (FD).
Reflects duplex setting of the MAC and/or link.
FD reflects the actual MAC duplex configuration. This normally reflects the
duplex setting for the entire link, as it normally reflects the duplex
configuration negotiated between the PHY and link partner (copper link).

LU 1 X

Link up.
0b = No link established.
1b = Link established.
For this bit to be valid, the Set Link Up bit of the Device Control (CTRL.SLU)
register must be set.
Link up provides a useful indication of whether something is attached to the
port. Successful negotiation of features/link parameters results in link
activity. The link start-up process (and consequently the duration for this
activity after reset) can be several 100's of ms. When the internal PHY is
used, this reflects whether the PHY's LINK indication is present. Refer to
Section 3.7.4 for more details.
Note: This bit is valid only when working in internal PHY mode.

Reserved 3:2 X
Reserved
Write 0b, ignore on read.

Reserved 3:2 X
Reserved.
Write 0, ignore on read.

TXOFF 4 X

Transmission Paused
This bit indicates the state of the transmit function when symmetrical flow
control has been enabled and negotiated with the link partner. This bit is set
to 1b when transmission is paused due to the reception of an XOFF frame.
It is cleared (0b) upon expiration of the pause timer or the receipt of an
XON frame.

Reserved 5 X
Reserved.
Write 0b, ignore on read.

SPEED 7:6 X

Link Speed Setting
Reflects the speed setting of the MAC and/or link when it is operating in 10/
100/1000BASE-T mode (internal PHY).
When the MAC is operating in 10/100/1000BASE-T mode with the internal
PHY, these bits normally reflect the speed of the actual link, negotiated by
the PHY and link partner and reflected internally from the PHY to the MAC
(SPD_IND). These bits also might represent the speed configuration of the
MAC only, if the MAC speed setting has been forced via software
(CTRL.SPEED) or if MAC auto-speed detection is used.
If auto-speed detection is enabled, the I211's speed is configured only once
after the LINK signal is asserted by the PHY.
00b = 10 Mb/s.
01b = 100 Mb/s.
10b = 1000 Mb/s.
11b = 1000 Mb/s.

ASDV 9:8 X

Auto-Speed Detection Value
Speed result sensed by the I211‚Äôs MAC auto-detection function.
These bits are provided for diagnostics purposes only. The ASD calculation
can be initiated by software writing a logic 1b to the CTRL_EXT.ASDCHK
bit. The resultant speed detection is reflected in these bits.
Refer to Section 8.2.3 for details.

PHYRA 10 1b

PHY Reset Asserted
This read/write bit is set by hardware following the assertion of an internal
PHY reset; it is cleared by writing a 0b to it. This bit is also used by
firmware indicating a required initialization of the I211‚Äôs PHY.

Programming Interface — Ethernet Controller I211

267

8.2.3 Extended Device Control Register - CTRL_EXT (0x0018; R/W)

This register provides extended control of the I211’s functionality beyond that provided by the Device
Control (CTRL) register.

Reserved 18:11 0x0
Reserved.
Write 0b, ignore on read.

GIO Master Enable
Status 19 1b

Cleared by the I211 when the CTRL.GIO Master Disable bit is set and no
master requests are pending by this function and is set otherwise. Indicates
that no master requests are issued by this function as long as the CTRL.GIO
Master Disable bit is set.

DEV_RST_SET (R/
W1C) 20 0b

Device Reset Set
When set, indicates that a device reset (CTRL.DEV_RST) was initiated by
one of the software drivers.
Note: Bit cleared by writing as 1b.

PF_RST_DONE 21 1b

PF _RST_DONE
When set, indicates that software reset (CTRL.RST) or device reset
(CTRL.DEV_RST) has completed and the software device driver can begin
initialization process.

Reserved 30:22 0x0
Reserved.
Write 0b, ignore on read.

MAC clock gating
Enable 31 0b1

MAC Clock Gating Enable
This bit is loaded from the iNVM indicating that the device supports MAC
clock. gating

1. If the signature bits of the iNVM’s Initialization Control Word 1 match (01b), this bit is read from the iNVM.

Field Bit(s) Initial Value Description

Reserved 0 0b
Reserved.
Write 0b, ignore on read.

I2C over SDP
Enabled 1 0b1

Enable I2C over SDP0 and SDP2 pins.
When set, SDP0 and SDP2 pins functions as an I2C interface operated
through the I2CCMD,I2CPARAMS register set.

SDP2_GPIEN 2 0b
General Purpose Interrupt Detection Enable for SDP2.
If software-controllable I/O pin SDP2 is configured as an input, this bit
(when set to 1b) enables use for GPI interrupt detection.

SDP3_GPIEN 3 0b
General Purpose Interrupt Detection Enable for SDP3.
If software-controllable I/O pin SDP3 is configured as an input, this bit
(when set to 1b) enables use for GPI interrupt detection.

Reserved 5:4 00b
Reserved.
Write 0b, ignore on read.

SDP2_DATA 6 0b1
SDP2 Data Value. Used to read (write) the value of software-controllable I/
O pin SDP2. If SDP2 is configured as an output (SDP2_IODIR = 1b), this
bit controls the value driven on the pin (initial value iNVM-configurable). If
SDP2 is configured as an input, reads return the current value of the pin.

SDP3_DATA 7 0b1
SDP3 Data Value. Used to read (write) the value of software-controllable I/
O pin SDP3. If SDP3 is configured as an output (SDP3_IODIR = 1b), this
bit controls the value driven on the pin (initial value iNVM-configurable). If
SDP3 is configured as an input, reads return the current value of the pin.

Reserved 9:8 0x01 Reserved.
Write 0b, ignore on read.

SDP2_IODIR 10 0b1
SDP2 Pin Direction. Controls whether software-controllable pin SDP2 is
configured as an input or output (0b = input, 1b = output). Initial value is
iNVM-configurable. This bit is not affected by software or system reset,
only by initial power-on or direct software writes.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

268

SDP3_IODIR 11 0b1
SDP3 Pin Direction. Controls whether software-controllable pin SDP3 is
configured as an input or output (0b = input, 1b = output). Initial value is
iNVM-configurable. This bit is not affected by software or system reset,
only by initial power-on or direct software writes.

ASDCHK 12 0b

Auto-Speed-Detection (ASD) Check
Initiates an ASD sequence to sense the frequency of the PHY receive clock
(RX_CLK). The results are reflected in STATUS.ASDV. This bit is self-
clearing.

Reserved 13 0b Reserved.

Reserved 14 0x0
Reserved.
Write 0b, ignore on read.

SPD_BYPS 15 0b

Speed Select Bypass
When set to 1b, all speed detection mechanisms are bypassed, and the
I211 is immediately set to the speed indicated by CTRL.SPEED. This
provides a method for software to have full control of the speed settings of
the I211 and when the change takes place, by overriding the hardware
clock switching circuitry.

NS_DIS 16 0

No Snoop Disable
When set to 1b, the I211 does not set the no snoop attribute in any PCIe
packet, independent of PCIe configuration and the setting of individual no
snoop enable bits. When set to 0b, behavior of no snoop is determined by
PCIe configuration and the setting of individual no snoop enable bits.

RO_DIS 17 0b

Relaxed Ordering Disabled
When set to 1b, the I211 does not request any relaxed ordering
transactions on the PCIe interface regardless of the state of bit 4 in the
PCIe Device Control register. When this bit is cleared and bit 4 of the PCIe
Device Control register is set, the I211 requests relaxed ordering
transactions as specified by registers RXCTL and TXCTL (per queue and per
flow).

Reserved 18 0b1 Reserved..

Dynamic MAC
Clock Gating 19 0b1 When set, enables dynamic MAC clock gating.

PHY Power
Down Enable 20 1b1 When set, enables the PHY to enter a low-power state as described in

Section 5.4.2.

Reserved 21 0b
Reserved.
Write 0b, ignore on read.

LINK_MODE 23:22 0x01

Link Mode
Controls interface on the link.
00b = Direct copper (1000Base-T) interface (10/100/1000 BASE-T internal
PHY mode).
Note:
1. This bit is reset only on power-up or PCIe reset.

Reserved 24 0b
Reserved.
Write 0b, ignore on read.

I2C Enabled 25 0b1

Enable I2C
This bit enables the SFPx_I2C pins that can be used to access external SFP
modules or an external 1000BASE-T PHY via the MDIO interface. If cleared,
the SFPx_I2C pads are isolated and accesses to the SFPx_I2C pins through
the I2CCMD register or the MDIC register are ignored.

EXT_VLAN 26 0b1

External VLAN Enable
When set, all incoming Rx packets are expected to have at least one VLAN
with the Ether type as defined in VET.EXT_VET that should be ignored. The
packets can have a second internal VLAN that should be used for all
filtering purposes. All Tx packets are expected to have at least one VLAN
added to them by the host. In the case of an additional VLAN request (VLE
- VLAN Enable is set in transmit descriptor) the second VLAN is added after
the first external VLAN is added by the host. This bit is reset only by a
power up reset or by a full iNVM auto load and should only be changed
while Tx and Rx processes are stopped.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

269

The I211 enables up to four externally controlled interrupts. All software-definable pins, these can be
mapped for use as GPI interrupt bits. Mappings are enabled by the SDPx_GPIEN bits only when these
signals are also configured as inputs via SDPx_IODIR. When configured to function as external interrupt
pins, a GPI interrupt is generated when the corresponding pin is sampled in an active-high state.

The bit mappings are listed in Table 8-8 for clarity.

Note: The iNVM reset function can read configuration information out of the iNVM, which affects the
configuration of PCIe space BAR settings. The changes to the BARs are not visible unless the
system reboots and the BIOS is allowed to re-map them.
The SPD_BYPS bit performs a similar function to the CTRL.FRCSPD bit in that the I211’s
speed settings are determined by the value software writes to the CRTL.SPEED bits. However,
with the SPD_BYPS bit asserted, the settings in CTRL.SPEED take effect immediately rather
than waiting until after the I211’s clock switching circuitry performs the change.

8.2.4 Media Dependent Interface (MDI) Control Register - MDIC
(0x0020; R/W)

Software uses this register to read or write MDI registers in the internal PHY.

Reserved 27 0b
Reserved.
Write 0b, ignore on read.

DRV_LOAD 28 0b

Driver Loaded
This bit should be set by the software device driver after it is loaded. This
bit should be cleared when the software device driver unloads or after a
PCIe reset.
Note: Bit is reset on power-up or PCIe reset only.

Reserved 31:29 0b
Reserved
Write 0b, Ignore on read.

1. These bits are read from the iNVM.

Table 8-8. Mappings for SDI Pins Used as GPI

SDP Pin Used as GPI CTRL_EXT Field Settings Resulting ICR Bit
(GPI)

Direction Enable as GPI Interrupt

3 SDP3_IODIR SDP3_GPIEN 14

2 SDP2_IODIR SDP2_GPIEN 13

1 SDP1_IODIR SDP1_GPIEN 12

0 SDP0_IODIR SDP0_GPIEN 11

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

270

8.2.5 MDC/MDIO Configuration Register ‚Äì MDICNFG (0x0E04; R/W)

Note: This register is used to configure the MDIO connection that is accessed via the MDIC register.
Refer to Section 3.7.2.2.2 for details on usage of this register.

Field Bit(s) Initial Value Description

DATA 15:0 X

Data
In a Write command, software places the data bits and the MAC shifts them
out to the PHY. In a Read command, the MAC reads these bits serially from
the PHY and software can read them from this location.

REGADD 20:16 0x0 PHY Register Address: Reg. 0, 1, 2,...31

Reserved 25:21 0x0
Reserved.
Write 0b, ignore on read.

OP 27:26 0x0

Opcode
01b = MDI write.
10b = MDI read.
All other values are reserved.

R (RWM) 28 1b

Ready Bit
Set to 1b by the I211 at the end of the MDI transaction (for example,
indication of a read or write completion). It should be reset to 0b by
software at the same time the command is written.

MDI_IE 29 0b
Interrupt Enable
When set to 1b an Interrupt is generated at the end of an MDI cycle to
indicate an end of a read or write operation to the PHY.

MDI_ERR (RWM) 30 0b

Error
This bit is set to 1b by hardware when it fails to complete an MDI read.
Software should make sure this bit is clear (0b) before issuing an MDI read
or write command.
Note: This bit is valid only when the Ready bit is set.

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Field Bit(s) Initial Value Description

Reserved 20:0 0x0
Reserved.
Write 0b, ignore on read.

PHYADD1

1. PHYADD is loaded from Initialization Control 4 iNVM word to allocate the port address when using an external MDIO port.

25:21 0x00
External PHY Address
When the MDICNFG.Destination bit is 0b, default PHYADD accesses the
internal PHY.

Reserved 30:26 0x0
Reserved.
Write 0b, ignore on read.

Destination2

2. Destination is loaded from iNVM Initialization Control 3 word. When an external PHY supports a MDIO interface, this bit is set to
1b; otherwise, this bit is set to 0b.

31 0b

Destination
0b = MDIO transactions using the MDIC register are directed to the internal
PHY.
1b = MDIO transactions using the MDIC register are directed to an external
PHY using the MDC/MDIO protocol.
Note: When using the I2CCMD register to access an external PHY using

the I2C protocol, the Destination field must be set to 0b.

Programming Interface — Ethernet Controller I211

271

8.2.6 Copper Switch Control - CONNSW (0x0034; R/W)

8.2.7 VLAN Ether Type - VET (0x0038; R/W)

This register is used by hardware to identify 802.1Q (VLAN) Ethernet packets by comparing the Ether
Type field carried by packets with the field contents. To be compliant with the 802.3ac standard, the
VET.VET field has a value of 0x8100.

8.2.8 LED Control - LEDCTL (0x0E00; RW)

This register controls the setup of the LEDs. Refer to Section 7.5.1 for details of the Mode fields
encoding.

Field Bit(s) Initial Value Description

Reserved 1:0 00b Reserved

ENRGSRC 2 0b1

1. The default value of the ENRGSRC bit in this register is defined in the Initialization Control 3 (Offset 0x24) iNVM word (bit 15).

SerDes Energy Detect Source
0b = SerDes Energy detect source is internal.
1b = SerDes Energy detect source is from SRDS_[n]_SIG_DET pin.
This bit defines the source of the signal detect indication used to set link up
while in SerDes mode.
Note: In SGMII and 1000BASE-KX modes energy detect source is

internal and value of CONNSW.ENRGSRC bit should be 0b.

Reserved 8:3 0x0
Reserved.
Write 0x0, ignore on read.

SerDesD (RO) 9 X

SerDes Signal Detect Indication
Indicates the SerDes signal detect value according to the selected source
(either external or internal). Valid only if LINK_MODE is SerDes, 1000BASE-
KX or SGMII.

PHYSD (RO) 10 X
PHY Signal Detect Indication
Valid only if LINK_MODE is the PHY and the receiver is not in electrical idle.

PHY_PDN (RO) 11 X
This bit indicates that the internal GbE PHY is in power down state.
0b = Internal GbE PHY not in power down.
1b = Internal GbE PHY in power down.

Reserved 31:12 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

VET (RO) 15:0 0x8100 VLAN EtherType

VET EXT 31:16 0x8100 External VLAN Ether Type.

Ethernet Controller I211 — Programming Interface

272

Field Bit(s) Initial
Value Description

LED0_MODE 3:0 0110b1
LED0/LINK# Mode
This field specifies the control source for the LED0 output. An initial value of 0110b
selects the LINK100# indication.

LED_PCI_MODE 4 0b

0b = Use LEDs as defined in the other fields of this register.
1b = Use LEDs to indicate PCI3 lanes idle status in SDP mode (only when the
led_mode is set to 0x8 – SDP mode)
LED0 indicates electrical idle status.

GLOBAL_BLINK_
MODE 5 0b1

Global Blink Mode
This field specifies the blink mode of all the LEDs.
0b = Blink at 200 ms on and 200 ms off.
1b = Blink at 83 ms on and 83 ms off.

LED0_IVRT 6 0b1

LED0/LINK# Invert
This field specifies the polarity / inversion of the LED source prior to output or blink
control.
0b = Do not invert LED source (LED active low).
1b = Invert LED source (LED active high).
In mode 0100b (link/activity) this field must be 0. The LED signal must be active low
in mode 0100b (link/activity).

LED0_BLINK 7 0b1

LED0/LINK# Blink
This field specifies whether to apply blink logic to the (possibly inverted) LED control
source prior to the LED output.
0b = Do not blink asserted LED output.
1b = Blink asserted LED output.

LED1_MODE 11:8 0100b1

LED1/LINK/ACTIVITY
This field specifies the control source for the LED1 output. An initial value of 0100b
selects the LINK/ACTIVITY indication. When asserted, means the LINK indication and
when BLINK means LINK and ACTIVITY.

Reserved 13:12 0b
Reserved
Write as 0x0,ignore on read.

LED1_IVRT 14 0b1

LED1/ACTIVITY# Invert
This field specifies the polarity / inversion of the LED source prior to output or blink
control.
0b = Do not invert LED source (LED active low).
1b = Invert LED source (LED active high).
In mode 0100b (link/activity) this field must be 0. The LED signal must be active low
in mode 0100b (link/activity).

LED1_BLINK 15 1b1 LED1/ACTIVITY# Blink

LED2_MODE 19:16 0111b1
LED2/LINK1000# Mode
This field specifies the control source for the LED2 output. An initial value of 0111b
selects the LINK1000# indication.

Reserved 21:20 0x0
Reserved.
Write 0b, ignore on read.

LED2_IVRT 22 0b1

LED2/LINK100# Invert
This field specifies the polarity / inversion of the LED source prior to output or blink
control.
0b = Do not invert LED source (LED active low).
1b = Invert LED source (LED active high).
In mode 0100b (link/activity) this field must be 0. The LED signal must be active low
in mode 0100b (link/activity).

LED2_BLINK 23 0b1 LED2/LINK100# Blink

Programming Interface — Ethernet Controller I211

273

8.3 Internal Packet Buffer Size Registers
The following registers define the size of the on-chip receive and transmit buffers used to receive and
transmit packets. Refer to Section 4.6.9 for the general setting rule that applies on all these packet
buffers.

The registers in this chapter reset only on power up.

8.3.1 RX Packet Buffer Size - RXPBSIZE (0x2404; R/W)

8.3.2 TX Packet Buffer Size - TXPBSIZE (0x3404; R/W)

8.4 Flow Control Register Descriptions

8.4.1 Flow Control Address Low - FCAL (0x0028; RO)

Flow control packets are defined by 802.3X to be either a unique multicast address or the station
address with the EtherType field indicating PAUSE. The FCA registers provide the value hardware uses
to compare incoming packets against, to determine that it should PAUSE its output.

Reserved 27:24 0000b Reserved.

Reserved 29:28 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 31:30 00b Reserved.

1. These bits are read from the iNVM.

Field Bit(s) Init. Description

Rxpbsize 5:0 0x22 Rx packet buffer size in KB.

Reserved 11:6 0x02 Reserved.

Reserved 30:12 0x0
Reserved.
Write 0b, ignore on read.

cfg_ts_en 31 0x0
If set, a line is saved (16 bytes) per packet in the Rx packet buffer for the timestamp
descriptor.
If not set, no timestamp in packet support.

Field Bit(s) Init, Description

Txpbsize 5:0 0x14 Tx Packet Buffer Size in KB.

Reserved 11:6 0x0 Reserved.

Reserved 17:12 0x0 Reserved.

Reserved 23:18 0x0 Reserved.

Reserved 29:24 0x4 Reserved.

Reserved 31:30 0x0
Reserved
Write 0b, ignore on read.

Field Bit(s) Initial
Value Description

Ethernet Controller I211 — Programming Interface

274

The FCAL register contains the lower bits of the internal 48-bit Flow Control Ethernet address. All 32
bits are valid. Software can access the High and Low registers as a register pair if it can perform a 64-
bit access to the PCIe bus. The complete flow control multicast address is: 0x01_80_C2_00_00_01;
where 0x01 is the first byte on the wire, 0x80 is the second, etc.

Note: Any packet matching the contents of {FCAH, FCAL, FCT} when CTRL.RFCE is set is acted on
by the I211. Whether flow control packets are passed to the host (software) depends on the
state of the RCTL.DPF bit.

8.4.2 Flow Control Address High - FCAH (0x002C; RO)

This register contains the upper bits of the 48-bit Flow Control Ethernet address. Only the lower 16 bits
of this register have meaning. The complete Flow Control address is {FCAH, FCAL}.

The complete flow control multicast address is: 0x01_80_C2_00_00_01; where 0x01 is the first byte
on the wire, 0x80 is the second, etc.

8.4.3 Flow Control Type - FCT (0x0030; R/W)

This register contains the Type field that hardware matches to recognize a flow control packet. Only the
lower 16 bits of this register have meaning. This register should be programmed with 0x88_08. The
upper byte is first on the wire FCT[15:8].

8.4.4 Flow Control Transmit Timer Value - FCTTV (0x0170; R/W)

The 16-bit value in the TTV field is inserted into a transmitted frame (either XOFF frames or any PAUSE
frame value in any software transmitted packets). It counts in units of slot time of 64 bytes. If software
needs to send an XON frame, it must set TTV to 0x0 prior to initiating the PAUSE frame.

Field Bit(s) Initial Value Description

FCAL 31:0 0x00C28001 Flow Control Address Low.

Field Bit(s) Initial Value Description

FCAH 15:0 0x0100
Flow Control Address High.
Should be programmed with 0x01_00.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

FCT 15:0 0x8808 Flow Control Type.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

275

8.4.5 Flow Control Receive Threshold Low - FCRTL0 (0x2160; R/W)

This register contains the receive threshold used to determine when to send an XON packet The
complete register reflects the threshold in units of bytes. The lower four bits must be programmed to
0x0 (16 byte granularity). Software must set XONE to enable the transmission of XON frames. Each
time hardware crosses the receive-high threshold (becoming more full), and then crosses the receive-
low threshold and XONE is enabled (1b), hardware transmits an XON frame. When XONE is set, the RTL
field should be programmed to at least 0x3 (at least 48 bytes).

Flow control reception/transmission are negotiated capabilities by the auto-negotiation process. When
the I211 is manually configured, flow control operation is determined by the CTRL.RFCE and CTRL.TFCE
bits.

8.4.6 Flow Control Receive Threshold High - FCRTH0 (0x2168; R/W)

This register contains the receive threshold used to determine when to send an XOFF packet. The
complete register reflects the threshold in units of bytes. This value must be at maximum 48 bytes less
than the maximum number of bytes allocated to the Receive Packet Buffer (RXPBSIZE.RXPbsize), and
the lower four bits must be programmed to 0x0 (16 byte granularity). The value of RTH should also be
bigger than FCRTL0.RTL. Each time the receive FIFO reaches the fullness indicated by RTH, hardware
transmits a PAUSE frame if the transmission of flow control frames is enabled.

Flow control reception/transmission are negotiated capabilities by the auto-negotiation process. When
the I211 is manually configured, flow control operation is determined by the CTRL.RFCE and CTRL.TFCE
bits.

Field Bit(s) Initial Value Description

TTV 15:0 X Transmit Timer Value.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Reserved 3:0 0x0
Reserved.
Write 0x0, ignore on read.

RTL 16:4 0x0

Receive Threshold Low.
FIFO low water mark for flow control transmission when transmit flow control is
enabled (CTRL.TFCE = 1b).
An XON packet is sent if the occupied space in the packet buffer is smaller or equal
than this watermark.
This field is in 16 bytes granularity.

Reserved 30:17 0x0
Reserved.
Write 0x0, ignore on read.

XONE 31 0b
XON Enable.
0b = Disabled.
1b = Enabled.

Ethernet Controller I211 — Programming Interface

276

8.4.7 Flow Control Refresh Threshold Value - FCRTV (0x2460; R/W)

8.4.8 Flow Control Status - FCSTS0 (0x2464; RO)

This register describes the status of the flow control machine.

Field Bit(s) Initial Value Description

Reserved 3:0 0x0
Reserved.
Write 0x0, ignore on read.

RTH 17:4 0x0

Receive Threshold High.
FIFO high water mark for flow control transmission when transmit flow control is
enabled (CTRL.TFCE = 1b). An XOFF packet is sent if the occupied space in the packet
buffer is bigger or equal than this watermark.
This field is in 16 bytes granularity.
Refer to Section 3.7.5.3.1 for calculation of FCRTH0.RTH value.
Notes:
2. The value programmed should be greater than the maximum packet size.

Reserved 31:18 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

FC_refresh_th 15:0 0x0

Flow Control Refresh Threshold.
This value indicates the threshold value of the flow control shadow counter when
transmit flow control is enabled (CTRL.TFCE = 1b). When the counter reaches this
value, and the conditions for PAUSE state are still valid (buffer fullness above low
threshold value), a PAUSE (XOFF) frame is sent to link partner.
If this field contains zero value, the flow control refresh is disabled.

Reserved 31:16 X
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Flow_control
state 0 0b

Flow Control State Machine Signal.
0b = XON.
1b = XOFF.

Above high 1 0x0 The size of data in the memory is above the high threshold.

Below low 2 1b The size of data in the memory is below the low threshold.

Reserved 15:3 0x0
Reserved.
Write 0x0, ignore on read.

Refresh
counter 31:16 0x0 Flow Control Refresh Counter.

Programming Interface — Ethernet Controller I211

277

8.5 PCIe Register Descriptions

8.5.1 PCIe Control - GCR (0x5B00; RW)

8.5.2 PCIe Statistics Control #1 - GSCL_1 (0x5B10; RW)

Field Bit(s) Initial Value Description

Reserved 1:0 0x0 Reserved.

Discard on BME de-
assertion 2 1b When set and BME deasserted, PCIe discards all requests of this function.

Reserved 8:3 0x0
Reserved.
Write 0x0, ignore on read.

Completion Timeout
Resend Enable

9 0b
When set, enables a resend request after the completion timeout expires.
0b = Do not resend request after completion timeout.
Note: 1b = Resend request after completion timeout.

Reserved 10 0b
Reserved.
Write 0b, ignore on read.

Number of Resends 12:11 11b The number of resends in case of timeout or poisoned.

Reserved 17:13 0x0
Reserved.
Write 0x0, ignore on read.

PCIe Capability Version
(RO) 18 1b

Reports the PCIe capability version supported.
0b = Capability version: 0x1.
1b = Capability version: 0x2.

Reserved 30:19 0x0 Reserved.

DEV_RST In Progress 31 0b

Device Reset in Progress.
This bit is set following device reset assertion (CTRL.DEV_RST = 1b) until
no pending requests exist in PCIe.
The software device driver should wait for this bit to be cleared before re-
initializing the port (Refer to Section 4.3.1).

Field Bit(s) Initial Value Description

GIO_COUNT_EN_0 0 0b Enable PCIe Statistic Counter Number 0.

GIO_COUNT_EN_1 1 0b Enable PCIe Statistic Counter Number 1.

GIO_COUNT_EN_2 2 0b Enable PCIe Statistic Counter Number 2.

GIO_COUNT_EN_3 3 0b Enable PCIe Statistic Counter Number 3.

LBC Enable 0 4 0b When set, statistics counter 0 operates in Leaky Bucket mode.

LBC Enable 1 5 0b When set, statistics counter 1 operates in Leaky Bucket mode.

LBC Enable 2 6 0b When set, statistics counter 2 operates in Leaky Bucket mode.

LBC Enable 3 7 0b When set, statistics counter 3 operates in Leaky Bucket mode.

Reserved 26:8 0x0
Reserved.
Write 0x0, ignore on read.

GIO_COUNT_TEST 27 0b
Test Bit.
Forward counters for testability.

GIO_64_BIT_EN 28 0b Enable two 64-bit counters instead of four 32-bit counters.

Ethernet Controller I211 — Programming Interface

278

8.5.3 PCIe Statistics Control #2 - GSCL_2 (0x5B14; RW)

This register configures the events counted by the GSCN_0, GSCN_1, GSCN_2 and GSCN_3 counters.

Table 8-9 lists the encoding of possible event types counted by GSCN_0, GSCN_1, GSCN_2 and
GSCN_3.

GIO_COUNT_RESET 29 0b Reset indication of PCIe statistical counters.

GIO_COUNT_STOP 30 0b Stop indication of PCIe statistical counters.

GIO_COUNT_START 31 0b Start indication of PCIe statistical counters.

Field Bit(s) Initial Value Description

GIO_EVENT_NUM_0 7:0 0x0 Event type that counter 0 (GSCN_0) counts.

GIO_EVENT_NUM_1 15:8 0x0 Event type that counter 1 (GSCN_1) counts.

GIO_EVENT_NUM_2 23:16 0x0 Event type that counter 2 (GSCN_2) counts.

GIO_EVENT_NUM_3 31:24 0x0 Event type that counter 3 (GSCN_3) counts.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

279

Table 8-9. PCIe Statistic Events Encoding

8.5.4 PCIe Statistic Control Register #5...#8 - GSCL_5_8 (0x5B90 +
4*n[n=0...3]; RW)

These registers control the operation of the statistical counters GSCN_0, GSCN_1, GSCN_2 and GSCN_3
when operating in Leaky Bucket mode:

— GSCL_5 controls operation of GSCN_0.
— GSCL_6 controls operation of GSCN_1.
— GSCL_7 controls operation of GSCN_2.
— GSCL_8 controls operation of GSCN_3.

Transaction Layer Events
Event

Mapping
(Hex)

Description

Bad TLP From LL 0x0 For each cycle, the counter increases by one, if a bad TLP is received (bad CRC,
error reported by AL, misplaced special char, or reset in thI of received tlp).

Requests That Reached Timeout 0x10 Number of requests that reached time out.

NACK DLLP Received 0x20 For each cycle, the counter increases by one, if a message was transmitted.

Replay Happened in Retry-Buffer 0x21 Occurs when a replay happened due to a timeout (not asserted when replay
initiated due to NACK.

Receive Error 0x22

Set when one of the following occurs:
1. Decoder error occurred during training in the PHY. It is reported only when

training ends.
2. Decoder error occurred during link-up or until the end of the current packet

(if the link failed). This error is masked when entering/exiting EI.

Replay Roll-Over 0x23 Occurs when a replay was initiated for more than three times (threshold is
configurable by the PHY CSRs).

Re-Sending Packets 0x24 Occurs when a TLP is resent in case of a completion timeout.

Surprise Link Down 0x25 Occurs when link is unpredictably down (not because of reset or DFT).

LTSSM in L0s in both Rx & Tx 0x30 Occurs when LTSSM enters L0s state in both Tx and Rx.

LTSSM in L0s in Rx 0x31 Occurs when LTSSM enters L0s state in Rx.

LTSSM in L0s in Tx 0x32 Occurs when LTSSM enters L0s state in Tx.

LTSSM in L1 active 0x33
Occurs when LTSSM enters L1-active state (requested from host side).
Note: In case of RECOVERY entries not due to L1 exit, if the host will NAK the

L1 request, there will be false L1 entry counts.

LTSSM in L1 SW 0x34
Occurs when LTSSM enters L1-switch (requested from switch side).
Note: In case of RECOVERY entries not due to L1 exit, if the host will NAK the

L1 request, there will be false L1 entry counts.

LTSSM in Recovery 0x35 Occurs when LTSSM enters recovery state.

Field Bit(s) Initial Value Description

LBC threshold n 15:0 0x0 Threshold for the Leaky Bucket Counter n.

LBC timer n 31:16 0x0 Time period between decrementing the value in Leaky Bucket Counter n.

Ethernet Controller I211 — Programming Interface

280

8.5.5 PCIe Counter #0 - GSCN_0 (0x5B20; RC)

8.5.6 PCIe Counter #1 - GSCN_1 (0x5B24; RC)

8.5.7 PCIe Counter #2 - GSCN_2 (0x5B28; RC)

8.5.8 PCIe Counter #3 - GSCN_3 (0x5B2C; RC)

8.5.9 Function Active and Power State to MNG - FACTPS (0x5B30; RO)

Note: Register resets by LAN_PWR_GOOD and PCIe reset.

Field Bit(s) Initial Value Description

EVC 31:0 0x0

Event Counter.
Type of event counted is defined by the GSCL_2.GIO_EVENT_NUM_0 field.
Count value does not wrap around and remains stuck at the maximum
value of 0xFF...F. Value is cleared by read.

Field Bit(s) Initial Value Description

EVC 31:0 0x0

Event Counter.
Type of event counted is defined by the GSCL_2.GIO_EVENT_NUM_1 field.
Count value does not wrap around and remains stuck at the maximum
value of 0xFF...F. Value is cleared by read.

Field Bit(s) Initial Value Description

EVC 31:0 0x0

Event Counter.
Type of event counted is defined by the GSCL_2.GIO_EVENT_NUM_2 field.
Count value does not wrap around and remains stuck at the maximum
value of 0xFF...F. Value is cleared by read.

Field Bit(s) Initial Value Description

EVC 31:0 0x0

Event Counter.
Type of event counted is defined by the GSCL_2.GIO_EVENT_NUM_3 field.
Count value does not wrap around and remains stuck at the maximum
value of 0xFF...F. Value is cleared by read.

Programming Interface — Ethernet Controller I211

281

8.5.10 Mirrored Revision ID - MREVID (0x5B64; R/W)

8.5.11 PCIe Control Extended Register - GCR_EXT (0x5B6C; RW)

8.5.12 PCIe BAR Control - BARCTRL (0x5BFC; R/W) Target

Field Bit(s) Initial Value Description

Func Power State 1:0 00b

Power state indication of Function.
00b = DR.
01b = D0u.
10b = D0a.
11b = D3.
This field resets only by LAN_PWR_GOOD.

Reserved 2 0b Reserved.

Func Aux_En 3 0b Function Auxiliary (AUX) Power PM Enable bit shadow from the
configuration space.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 30 0b Reserved.

PM State Changed (RC) 31 0b
Indicates that one or more of the functional power states have changed.
This bit resets only by LAN_PWR_GOOD.

Field Bit(s) Initial Value Description

Reserved 7:0 0x0 Reserved.

Step REV ID 15:8
0x01 for A1
0x03 for A2

Revision ID from FUNC configuration space.

Reserved 31:16 0x0
Reserved
Write 0x0, ignore on read.

Field Bit(s) Init. Description

Reserved 3:0 0x0 Reserved.

APBACD 4 0b

Auto PBA Clear Disable. When set to 1b, software can clear the PBA only by a direct write to
clear access to the PBA bit. When set to 0b, any active PBA entry is cleared on the falling edge
of the appropriate interrupt request to the PCIe block. The appropriate interrupt request is
cleared when software sets the associated Interrupt Mask bit in the EIMS (re-enabling the
interrupt) or by direct write to clear to the PBA.

Reserved 31:5 0x0 Reserved.

Field Bit(s) Initial Value Description

Reserved 31:0 0x0
Reserved
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

282

8.5.13 Read Request To Data Completion Delay Register - RR2DCDELAY
(0x5BF4; RC)

Note: Register resets by LAN_PWR_GOOD and PCIe reset.

8.5.14 PCIe MCTP Register - PCIEMCTP (0x5B4C; RO to Host)

Note: Reset by PCIe reset.

8.6 Semaphore Registers
This section contains registers used to coordinate between firmware and software. The usage of these
registers is described in Section 4.6.11.

Field Bit(s) Initial Value Description

Max Split Time 31:0 0x0
This field captures the maximum PCIe split time in 16 ns units, which is the
maximum delay between the read request to the first data completion. This
is giving an estimation of the PCIe round trip time.

Field Bit(s) Initial
Value Description

Disable ACL 0 0b When set, the ACL check on the PCIe VDMs is disabled.

Reserved 31:1 0x0
Reserved
Write 0x0, ignore on read

Programming Interface — Ethernet Controller I211

283

8.6.1 Software Semaphore - SWSM (0x5B50; R/W)

8.6.2 Firmware Semaphore - FWSM (0x5B54; RO to Host, RW to FW)

Field Bit(s) Initial Value Description

SMBI (RS) 0 0b

Software/Software Semaphore Bit
This bit is set by hardware when this register is read by the software device
driver and cleared when the host driver writes a 0b to it.
The first time this register is read, the value is 0b. In the next read the
value is 1b (hardware mechanism). The value remains 1b until the software
device driver clears it.
This bit can be used as a semaphore between all I211 driver threads.
This bit is cleared on PCIe reset.

SWESMBI 1 0x0

Software/Firmware Semaphore Bit.
This bit should be set only by the software device driver (read only to
firmware). The bit is not set if bit zero in the FWSM register is set.
The software device driver should set this bit and then read it to verify that
it was set. If it was set, it means that the software device driver can access
the SW_FW_SYNC register.
The software device driver should clear this bit after modifying the
SW_FW_SYNC register.
Note:
• If software takes ownership of the SWSM.SWESMBI bit for a duration

longer than 10 ms, Firmware can take ownership of the bit.
• Hardware clears this bit on a PCIe reset.

Reserved 30:2 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 31 0b Reserved.

Field1 Bit(s) Initial
Value Description

EEP_FW_Semaphore 0 0b

Software/Firmware Semaphore.
Firmware should set this bit to 1b before accessing the SW_FW_SYNC
register. If software is using the SWSM register and does not lock
SW_FW_SYNC, firmware is able to set this bit to 1b. Firmware should set
this bit back to 0b after modifying the SW_FW_SYNC register.
Note: If software takes ownership of the SWSM.SWESMBI bit for a

duration longer than 10 ms, firmware can take ownership of the
bit.

FW_Mode 3:1 0x0

Firmware Mode.
Indicates the firmware mode as follows:
000b = No manageability. Default mode for all SKUs.
001b = The I211 mode. A proxy code was loaded.
010b = Reserved
011b = Reserved.
100b = Host interface only. In the I211, this bit determines that the ROM-
Firmware is ready for the proxy code load by host.

Reserved 6:4 00b
Reserved.
Write 0x0, ignore on read.

Reserved 14:7 0x0
Reserved
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

284

FW_Val_Bit 15 0b

Firmware Valid Bit.
Hardware clears this bit in reset de-assertion so software can know
firmware mode (bits 1-3) bits are invalid.
In the I211, it is set to 1b by ROM firmware when it is ready for the proxy
code load.
Each time this bit is set to 1b, an ICR.MNG interrupt must be issued to
host.

Reset_Cnt 18:16 0b

Reset Counter.
Firmware increments the count on every firmware reset. After seven
firmware reset events, the counter remains at seven and does not wrap
around.

Ext_Err_Ind 24:19 0x0

External Error Indication
Firmware writes here the reason that the firmware operation has stopped.
For example, CRC error.
Possible values:
0x00: No Error.
0x01: Reserved
Reserved.
0x03: Reserved
0x04: Reserved
0x05: Reserved
0x06: Reserved
0x07: Reserved.
0x08: Reserved
0x09: Reserved
0x0A: Reserved
0x0B: Reserved
0x0C: Reserved
0x0D: Reserved
0x0E: Reserved
0x0F to 0x15: Reserved.
0x16: TLB table exceeded.
0x17: DMA load failed.
0x18: Reserved.
0x19: Reserved
0x1A: Reserved
0x1B: Unspecified error.
0x1C to 0x1F: Reserved.
0x20: Reserved
0x21: No manageability.
0x22: Reserved
0x23: Reserved
0x24: Reserved
0x25: Reserved
0x26 to 0x03F: Reserved
Note: Following an error detection and FWSM.Ext_Err_ind update, the

ICR.MGMT bit is set and an interrupt is sent to the host. However
when values of 0x00 or 0x21 are placed in the FWSM.Ext_Err_ind
field, the ICR.MGMT bit is not set and an interrupt is not
generated.

PCIe_Config_Err_Ind 25 0b
PCIe Configuration Error Indication.
Set to 1b by firmware when it fails to configure the PCIe interface.
Cleared by firmware after successfully configuring the PCIe interface.

Field1 Bit(s) Initial
Value Description

Programming Interface — Ethernet Controller I211

285

Notes:
1. The software device driver should only read this register.
2. Bits 15:0 are cleared on firmware reset.

8.6.3 Software–Firmware Synchronization - SW_FW_SYNC (0x5B5C;
RWM)

This register is intended to synchronize between software and firmware.

Note: If software takes ownership of bits in the SW_FW_SYNC register for a duration longer than 1
second, firmware can take ownership of the bit.

Reset conditions:

PHY_SERDES0_Config_
Err_Ind

26 0b
PHY Configuration Error Indication.
Set to 1b by firmware when it fails to configure LAN PHY.
Cleared by firmware after successfully configuring LAN PHY.

Reserved 30:27 0b
Reserved.
Write 0b, ignore on read.

Factory MAC address
restored 31 0b

This bit is set if internal firmware restored the factory MAC address at
power up or if the factory MAC address and the regular MAC address were
the same.

Field Bit(s) Initial
Value Description

Reserved 0 0b Reserved

SW_PHY_SM 1 0b When set to 1b, PHY access is owned by software.

Reserved 2 0b Reserved.

SW_MAC_CSR_SM 3 0b When set to 1b, software owns access to shared CSRs.

Reserved 6:4 0x0
Reserved.
Write 0x0, ignore on read.

SW_SVR_SM 7 0b When set to 1b, the SVR/LVR control registers are owned by the software device
driver.

SW_MB_SM 8 0b When Set to 1b, the SWMBWR mailbox write register, is owned by the software
device driver.

Reserved 9 0b
Reserved.
Write 0b, ignore on read.

Reserved 16:10 0x0
Reserved.
Write 0x0, ignore on read.

FW_PHY_SM 17 0b When set to 1b, PHY access is owned by firmware.

Reserved 18 0b Reserved.

FW_MAC_CSR_SM 19 0b When set to 1b, firmware owns access to shared CSRs.

Reserved 22:20 0b
Reserved.
Write 0x0, ignore on read.

FW_SVR_SM 23 0b When set to 1b, the SVR/LVR control registers are owned by firmware.

Reserved 31:24 0x0
Reserved
Write 0x0, ignore on read.

Field1 Bit(s) Initial
Value Description

Ethernet Controller I211 — Programming Interface

286

— The software-controlled bits 15:0 are reset as any other CSR on global resets and D3hot exit.
Software is expected to clear the bits on entry to D3 state.

— The firmware controlled bits (bits 31:16) are reset on LAN_PWR_GOOD (power up) and firmware
reset.

8.7 Interrupt Register Descriptions

8.7.1 PCIe Interrupt Cause - PICAUSE (0x5B88; RW1/C)

8.7.2 PCIe Interrupt Enable - PIENA (0x5B8C; R/W)

8.7.3 Extended Interrupt Cause - EICR (0x1580; RC/W1C)

This register contains the frequent interrupt conditions for the I211. Each time an interrupt causing
event occurs, the corresponding interrupt bit is set in this register. An interrupt is generated each time
one of the bits in this register is set and the corresponding interrupt is enabled via the Interrupt Mask
Set/Read register. The interrupt might be delayed by the selected Interrupt Throttling register.

Field Bit(s) Init. Description

CA 0 0b PCI Completion Abort Exception Issued.

UA 1 0b
Reserved.
Write 0x0, ignore on read.

BE 2 0b Wrong byte-enable exception in the FUNC unit.

TO 3 0b PCI timeout exception in the FUNC unit.

BMEF 4 0b Asserted when Bus-Master-Enable (BME) of the PF is de-asserted.

ABR 5 0b

PCI Completer Abort Received.
PCI Completer Abort (CA) or Unsupported Request (UR) received (set after receiving CA or
UR).
Note: When this bit is set, all PCIe master activity is stopped. Software should issue a

software (CTRL.RST) reset to enable PCIe activity.

Reserved 31:6 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Init. Description

CA 0 0b When set to 1b, the PCI completion abort interrupt is enabled.

UA 1 0b
Reserved.
Write 0x0, ignore on read.

BE 2 0b When set to 1b, the wrong byte-enable interrupt is enabled.

TO 3 0b When set to 1b, the PCI timeout interrupt is enabled.

BMEF 4 0b When set to 1b, the BME interrupt is enabled.

ABR 5 0b When set to 1b, the PCI completion abort received interrupt is enabled.

Reserved 31:6 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

287

Note that the software device driver cannot determine from the RxTxQ bits what was the cause of the
interrupt. The possible causes for asserting these bits are: Receive descriptor write back, receive
descriptor minimum threshold hit, low latency interrupt for Rx, and transmit descriptor write back.

Writing a 1b to any bit in the register clears that bit. Writing a 0b to any bit has no effect on that bit.

Register bits are cleared on register read if GPIE.Multiple_MSIX = 0b.

Auto clear can be enabled for any or all of the bits in this register.

Note: Bits are not reset by device reset (CTRL.DEV_RST).

8.7.4 Extended Interrupt Cause Set - EICS (0x1520; WO)

Software uses this register to set an interrupt condition. Any bit written with a 1b sets the
corresponding bit in the Extended Interrupt Cause Read register. An interrupt is then generated if one
of the bits in this register is set and the corresponding interrupt is enabled via the Extended Interrupt
Mask Set/Read register. Bits written with 0b are unchanged.

Table 8-10. EICR Register - Non-MSI-X Mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

RxTxQ 3:0 0x0

Receive/Transmit Queue Interrupts.
One bit per queue or a bundle of queues, activated on receive/transmit queue events
for the corresponding bit, such as:
• Receive descriptor write back
• Receive descriptor minimum threshold hit
• Transmit descriptor write back.

The mapping of the actual queue to the appropriate RxTxQ bit is according to the IVAR
registers.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

TCP Timer 30 0b
TCP Timer Expired.
Activated when the TCP timer reaches its terminal count.

Other Cause 31 0b
Interrupt Cause Active.
Activated when any bit in the ICR register is set.

Table 8-11. EICR Register - MSI-X Mode (GPIE.Multiple_MSIX = 1b)

Field Bit(s) Initial Value Description

MSIX 4:0 0x0
Indicates an interrupt cause mapped to MSI-X vectors 4:0.
Note: Bits are not reset by device reset (CTRL.DEV_RST).

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Table 8-12. EICS Register - Non MSI-X mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

RxTxQ 3:0 0x0 Sets to corresponding EICR RxTXQ interrupt condition.

Ethernet Controller I211 — Programming Interface

288

Note: In order to set bit 31 of the EICR (Other Causes), the ICS and IMS registers should be used in
order to enable one of the legacy causes.

8.7.5 Extended Interrupt Mask Set/Read - EIMS (0x1524; RWM)

Reading this register returns which bits that have an interrupt mask set. An interrupt in EICR is enabled
if its corresponding mask bit is set to 1b and disabled if its corresponding mask bit is set to 0b. A PCI
interrupt is generated each time one of the bits in this register is set and the corresponding interrupt
condition occurs (subject to throttling). The occurrence of an interrupt condition is reflected by having a
bit set in the Extended Interrupt Cause Read register.

An interrupt might be enabled by writing a 1b to the corresponding mask bit location (as defined in the
EICR register) in this register. Any bits written with a 0b are unchanged. As a result, if software needs
to disable an interrupt condition that had been previously enabled, it must write to the Extended
Interrupt Mask Clear register rather than writing a 0b to a bit in this register.

Note: Bits are not reset by device reset (CTRL.DEV_RST).

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

TCP Timer 30 0b Sets the corresponding EICR TCP timer interrupt condition.

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Table 8-13. EICS Register - MSI-X Mode (GPIE.Multiple_MSIX = 1b)

Field Bit(s) Initial Value Description

MSI-X 4:0 0x0 Sets the corresponding EICR bit of MSI-X vectors 4:0

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Table 8-14. EIMS Register - Non-MSI-X Mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

RxTxQ 3:0 0x0 Set the Mask bit for the corresponding EICR RxTXQ interrupt.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

TCP Timer 30 0b Set the Mask bit for the corresponding EICR TCP timer interrupt condition.

Other Cause 31 1b Set the Mask bit for the corresponding EICR other cause interrupt condition.

Table 8-15. EIMS Register - MSI-X Mode (GPIE.Multiple_MSIX = 1b)

Field Bit(s) Initial Value Description

MSI-X 4:0 0x0
Set the Mask bit for the corresponding EICR bit of the MSI-X vectors 4:0.
Note: Bits are not reset by device reset (CTRL.DEV_RST).

Reserved 31:5 0x0
Reserved
Write 0x0, ignore on read.

Table 8-12. EICS Register - Non MSI-X mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

289

8.7.6 Extended Interrupt Mask Clear - EIMC (0x1528; WO)

This register provides software a way to disable certain or all interrupts. Software disables a given
interrupt by writing a 1b to the corresponding bit in this register.

On interrupt handling, the software device driver should set all the bits in this register related to the
current interrupt request even though the interrupt was triggered by part of the causes that were
allocated to this vector.

Interrupts are presented to the bus interface only when the mask bit is set to 1b and the cause bit is set
to 1b. The status of the mask bit is reflected in the Extended Interrupt Mask Set/Read register and the
status of the cause bit is reflected in the Interrupt Cause Read register.

Software blocks interrupts by clearing the corresponding mask bit. This is accomplished by writing a 1b
to the corresponding bit location (as defined in the EICR register) of that interrupt in this register. Bits
written with 0b are unchanged (their mask status does not change).

8.7.7 Extended Interrupt Auto Clear - EIAC (0x152C; R/W)

This register is mapped like the EICS, EIMS, and EIMC registers, with each bit mapped to the
corresponding MSI-X vector.

This register is relevant to MSI-X mode only, where read-to-clear can not be used, as it might erase
causes tied to other vectors. If any bits are set in EIAC, the EICR register should not be read. Bits
without auto clear set, need to be cleared with write-to-clear.

Note: EICR bits that have auto clear set are cleared by the internal emission of the corresponding
MSI-X message even if this vector is disabled by the operating system.
The MSI-X message can be delayed by EITR moderation from the time the EICR bit is
activated.

Table 8-16. EIMC Register - Non-MSI-X Mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

RxTxQ 3:0 0x0 Clear the Mask bit for the corresponding EICR RxTXQ interrupt.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

TCP Timer 30 0b Clear the Mask bit for the corresponding EICR TCP timer interrupt.

Other Cause 31 1b Clear the Mask bit for the corresponding EICR other cause interrupt.

Table 8-17. EIMC Register - MSI-X Mode (GPIE.Multiple_MSIX = 1b)

Field Bit(s) Initial Value Description

MSI-X 4:0 0x0 Clear the Mask bit for the corresponding EICR bit of MSI-X vectors 4:0.

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

290

Table 8-18. EIAC Register

8.7.8 Extended Interrupt Auto Mask Enable - EIAM (0x1530; R/W)

Each bit in this register enables clearing of the corresponding bit in EIMS register following read- or
write-to-clear to EICR or setting of the corresponding bit in EIMS following a write-to-set to EICS.

In MSI-X mode, this register controls which of the bits in the EIMS register to clear upon interrupt
generation if enabled via the GPIE.EIAME bit.

Note: When operating in MSI mode and setting any bit in the EIAM register causes the clearing of all
bits in the EIMS register and the masking of all interrupts after generating a MSI interrupt.

Note: Bits are not reset by device reset (CTRL.DEV_RST).

8.7.9 Interrupt Cause Read Register - ICR (0x1500; RC/W1C)

This register contains the interrupt conditions for the I211 that are not present directly in the EICR.
Each time an ICR interrupt causing event occurs, the corresponding interrupt bit is set in this register.
The EICR.Other bit reflects the setting of interrupt causes from ICR as masked by the Interrupt Mask
Set/Read register. Each time all un-masked causes in ICR are cleared, the EICR.Other bit is also
cleared.

ICR bits are cleared on register read. Clear-on-read can be enabled/disabled through a general
configuration register bit. Refer to Section 7.3.3 for additional information.

Field Bit(s) Initial Value Description

MSI-X 4:0 0x0

Auto clear bit for the corresponding EICR bit of the MSI-X vectors 4:0.
Notes:
• Bits are not reset by device reset (CTRL.DEV_RST).
• When GPIE.Multiple_MSIX = 0b (Non-MSI-X Mode) bits 8 and 9 are read only and

should be ignored.

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Table 8-19. EIAM Register - Non-MSI-X Mode (GPIE.Multiple_MSIX = 0b)

Field Bit(s) Initial Value Description

RxTxQ 3:0 0x0 Auto Mask bit for the corresponding EICR RxTxQ interrupt.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

TCP Timer 30 0b Auto Mask bit for the corresponding EICR TCP timer interrupt condition.

Other Cause 31 0b Auto Mask bit for the corresponding EICR other cause interrupt condition.

Table 8-20. EIAM Register - MSI-X Mode (GPIE.Multiple_MSIX = 1b)

Field Bit(s) Initial Value Description

MSIX 4:0 0x0
Auto Mask bit for the corresponding EICR bit of MSI-X vectors 4:0.
Note: Bits are not reset by device reset (CTRL.DEV_RST).

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

291

Auto clear is not available for the bits in this register.

In order to prevent unwanted Link Status Change (LSC) interrupts during initialization, software should
disable this interrupt until the end of initialization.

Field Bit(s) Initial Value Description

TXDW 0 0b
Transmit Descriptor Written Back.
Set when the I211 writes back a Tx descriptor to memory.

Reserved 1 0b
Reserved.
Write 0x0, ignore on read.

LSC 2 0b

Link Status Change.
This bit is set each time the link status changes (either from up to down, or from
down to up). This bit is affected by the LINK indication from the PHY (internal
PHY mode).

Reserved 3 0b
Reserved.
Write 0x0, ignore on read.

RXDMT0 4 0b
Receive Descriptor Minimum Threshold Reached.
Indicates that the minimum number of receive descriptors are available and
software should load more receive descriptors.

Reserved 5 0b
Reserved.
Write 0x0, ignore on read.

Rx Miss 6 0b

Missed packet interrupt is activated for each received packet that overflows the
Rx packet buffer (overrun). Note that the packet is dropped and also increments
the associated MPC counter.
Note: Could be caused by no available receive buffers or because PCIe receive

bandwidth is inadequate.

RXDW 7 0b
Receiver Descriptor Write Back.
Set when the I211 writes back an Rx descriptor to memory.

Reserved 9:8 0b
Reserved.
Write 0x0, ignore on read.

GPHY 10 0b
Internal 1000/100/10BASE-T PHY interrupt.
Refer to Section 8.22 for further information.

GPI_SDP0 11 0b
General Purpose Interrupt on SDP0.
If GPI interrupt detection is enabled on this pin (via CTRL.SDP0_GPIEN), this
interrupt cause is set when the SDP0 is sampled high.

GPI_SDP1 12 0b
General Purpose Interrupt on SDP1.
If GPI interrupt detection is enabled on this pin (via CTRL.SDP1_GPIEN), this
interrupt cause is set when the SDP1 is sampled high.

GPI_SDP2 13 0b
General Purpose Interrupt on SDP2.
If GPI interrupt detection is enabled on this pin (via CTRL_EXT.SDP2_GPIEN),
this interrupt cause is set when the SDP2 is sampled high.

GPI_SDP3 14 0b
General Purpose Interrupt on SDP3.
If GPI interrupt detection is enabled on this pin (via CTRL_EXT.SDP3_GPIEN),
this interrupt cause is set when the SDP3 is sampled high.

Reserved 15 0b Reserved.

Reserved 17:16 00b
Reserved.
Write 0x0, ignore on read.

Reserved 18 0b Reserved.

Time_Sync 19 0b
Time_Sync Interrupt.
This interrupt cause is set if the interrupt is generated by the Time Sync
interrupt (See TSICR and TSIM registers).

Reserved 21:20 0b
Reserved.
Write 0x0, ignore on read.

FER 22 0b
Fatal Error.
This bit is set when a fatal error is detected in one of the memories.

Ethernet Controller I211 — Programming Interface

292

8.7.10 Interrupt Cause Set Register - ICS (0x1504; WO)

Software uses this register to set an interrupt condition. Any bit written with a 1b sets the
corresponding interrupt. This results in the corresponding bit being set in the Interrupt Cause Read
Register (refer to Section 8.7.9). A PCIe interrupt is generated if one of the bits in this register is set
and the corresponding interrupt is enabled through the Interrupt Mask Set/Read Register (refer to
Section 8.7.11). Bits written with 0b are unchanged. Refer to Section 7.3.3 for additional information.

Reserved 23 0b
Reserved.
Write 0x0, ignore on read.

PCI Exception 24 0b

The PCI timeout exception is activated by one of the following events when the
specific PCI event is reported in the PICAUSE register and the appropriate bit in
the PIENA register is set:
1. I/O completion abort.
2. Unsupported I/O request (wrong address).
3. Byte-enable error - Access to the client that does not support partial BE

access (All but MSIX and the PCIe target).
4. Timeout occurred in the FUNC block.
5. BME of the PF is cleared.

Reserved 25 0b Reserved.

Software WD 26 0b
Software Watchdog.
This bit is set after a software watchdog timer times out.

Reserved 27 0b
Reserved.
Write 0x0, ignore on read.

Reserved 28 0b Reserved.

TCP Timer 29 0b
TCP Timer Interrupt.
Activated when the TCP timer reaches its terminal count.

DRSTA 30 0b

Device Reset Asserted.
Indicates CTRL.DEV_RST was asserted. When a device reset occurs, the port
should re-initialize registers and descriptor rings.
Note: This bit is not reset by device reset (CTRL.DEV_RST).

INTA 31 0b

Interrupt Asserted.
Indicates that the INT line is asserted. Can be used by the software device driver
in a shared interrupt scenario to decide if the received interrupt was emitted by
the I211. This bit is not valid in MSI/MSI-X environments.

Field Bit(s) Initial Value Description

TXDW 0 0b Sets the Transmit Descriptor Written Back Interrupt.

Reserved 1 0b
Reserved.
Write 0b, ignore on read.

LSC 2 0b Sets the Link Status Change Interrupt.

Reserved 3 0b
Reserved.
Write 0x0, ignore on read.

RXDMT0 4 0b Sets the Receive Descriptor Minimum Threshold Hit Interrupt.

Reserved 5 0b
Reserved.
Write 0x0, ignore on read.

Rx Miss 6 0b Sets the Rx Miss Interrupt.

RXDW 7 0b Sets the Receiver Descriptor Write Back Interrupt.

Reserved 9:8 0b
Reserved.
Write 0b, ignore on read.

GPHY 10 0b Sets the internal 1000/100/10BASE-T PHY interrupt.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

293

8.7.11 Interrupt Mask Set/Read Register - IMS (0x1508; R/W)

Reading this register returns bits that have an interrupt mask set. An interrupt is enabled if its
corresponding mask bit is set to 1b and disabled if its corresponding mask bit is set to 0b. A PCIe
interrupt is generated each time one of the bits in this register is set and the corresponding interrupt
condition occurs. The occurrence of an interrupt condition is reflected by having a bit set in the
Interrupt Cause Read register (refer to Section 8.7.9).

A particular interrupt can be enabled by writing a 1b to the corresponding mask bit in this register. Any
bits written with a 0b are unchanged. As a result, if software desires to disable a particular interrupt
condition that had been previously enabled, it must write to the Interrupt Mask Clear Register (refer to
Section 8.7.12) rather than writing a 0b to a bit in this register. Refer to Section 7.3.3 for additional
information.

GPI_SDP0 11 0b Sets the General Purpose interrupt, related to SDP0 pin.

GPI_SDP1 12 0b Sets the General Purpose interrupt, related to SDP1 pin.

GPI_SDP2 13 0b Sets the General Purpose interrupt, related to SDP2 pin.

GPI_SDP3 14 0b Sets the General Purpose interrupt, related to SDP3 pin.

Reserved 17:15 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 18 0b Reserved.

Time_Sync 19 0b Sets the Time_Sync interrupt.

Reserved 21:20 0x0
Reserved.
Write 0x0, ignore on read.

FER 22 0b Sets the Fatal Error interrupt.

Reserved 23 0b
Reserved.
Write 0b, ignore on read.

PCI Exception 24 0b Sets the PCI Exception interrupt.

Reserved 25 0b Reserved.

Software WD 26 0b Sets the Software Watchdog interrupt.

Reserved 27 0b
Reserved.
Write 0b, ignore on read.

Reserved 28 0b Reserved.

TCP Timer 29 0b Sets the TCP timer interrupt.

DRSTA 30 0b
Sets the Device Reset Asserted Interrupt.
Note that when setting this bit a DRSTA interrupt is generated on this port
only.

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Field Bit(s) Initial Value Description

TXDW 0 0b Sets/reads the mask for Transmit Descriptor Written Back interrupt.

Reserved 1 0b
Reserved.
Write 0b, ignore on read.

LSC 2 0b Sets/Reads the mask for Link Status Change interrupt.

Reserved 3 0b
Reserved.
Write 0b, ignore on read.

RXDMT0 4 0b Sets/reads the mask for Receive Descriptor Minimum Threshold Hit interrupt.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

294

8.7.12 Interrupt Mask Clear Register - IMC (0x150C; WO)

Software uses this register to disable an interrupt. Interrupts are presented to the bus interface only
when the mask bit is set to 1b and the cause bit set to 1b. The status of the mask bit is reflected in the
Interrupt Mask Set/Read register (refer to Section 8.7.11), and the status of the cause bit is reflected in
the Interrupt Cause Read register (refer to Section 8.7.9). Reading this register returns the value of the
IMS register.

Software blocks interrupts by clearing the corresponding mask bit. This is accomplished by writing a 1b
to the corresponding bit in this register. Bits written with 0b are unchanged (their mask status does not
change).

Software device driver should set all the bits in this register related to the current interrupt request
when handling interrupts, even though the interrupt was triggered by part of the causes that were
allocated to this vector. Refer to Section 7.3.3 for additional information.

Reserved 5 0b
Reserved.
Write 0b, ignore on read.

Rx Miss 6 0b Sets/reads the mask for the Rx Miss interrupt.

RXDW 7 0b Sets/reads the mask for Receiver Descriptor Write Back interrupt.

Reserved 9:8 0b
Reserved.
Write 0b, ignore on read.

GPHY 10 0b Sets/Reads the mask for Internal 1000/100/10BASE-T PHY interrupt.

GPI_SDP0 11 0b Sets/Reads the mask for General Purpose Interrupt, related to SDP0 pin.

GPI_SDP1 12 0b Sets/Reads the mask for General Purpose Interrupt, related to SDP1 pin.

GPI_SDP2 13 0b Sets/Reads the mask for General Purpose Interrupt, related to SDP2 pin.

GPI_SDP3 14 0b Sets/Reads the mask for General Purpose Interrupt, related to SDP3 pin.

Reserved 17:15 0x0
Reserved.
Write 0x0, ignore on read.

MNG 18 0b Sets/reads the mask for Management Event interrupt.

Time_Sync 19 0b Sets/reads the mask for Time_Sync interrupt.

Reserved 20 0b
Reserved.
Write 0b, ignore on read.

Reserved 21 0b
Reserved.
Write 0b, ignore on read.

FER 22 0b Sets/reads the mask for the Fatal Error interrupt.

Reserved 23 0b
Reserved.
Write 0b, ignore on read.

PCI Exception 24 0b Sets/reads the mask for the PCI Exception interrupt.

Reserved 25 0b Reserved.

Software WD 26 0b Sets/reads the mask for the Software Watchdog interrupt.

Reserved 28 0b
Reserved.
Write 0b, ignore on read.

TCP Timer 29 0b Sets/reads the mask for TCP timer interrupt.

DRSTA 30 0b
Sets/reads the mask for Device Reset Asserted interrupt.
Note: Bit is not reset by device reset (CTRL.DEV_RST).

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

295

Field Bit(s) Initial Value Description

TXDW 0 0b Clears the mask for Transmit Descriptor Written Back interrupt.

Reserved 1 0b
Reserved.
Write 0b, ignore on read.

LSC 2 0b Clears the mask for Link Status Change interrupt.

Reserved 3 0b
Reserved.
Write 0b, ignore on read.

RXDMT0 4 0b Clears the mask for Receive Descriptor Minimum Threshold Hit interrupt.

Reserved 5 0b
Reserved.
Write 0b, ignore on read.

Rx Miss 6 0b Clears the mask for the Rx Miss interrupt.

RXDW 7 0b Clears the mask for the Receiver Descriptor Write Back interrupt.

Reserved 9:8 0b
Reserved.
Write 0b, ignore on read.

GPHY 10 0b Clears the mask for the Internal 1000/100/10BASE-T PHY interrupt.

GPI_SDP0 11 0b Clears the mask for the General Purpose interrupt, related to SDP0 pin.

GPI_SDP1 12 0b Clears the mask for the General Purpose interrupt, related to SDP1 pin.

GPI_SDP2 13 0b Clears the mask for the General Purpose interrupt, related to SDP2 pin.

GPI_SDP3 14 0b Clears the mask for the General Purpose interrupt, related to SDP3 pin.

Reserved 17:15 0x0
Reserved.
Write 0x0, ignore on read.

MNG 18 0b Clears the mask for the Management Event interrupt.

Time_Sync 19 0b Clears the mask for the Time_Sync interrupt.

Reserved 20 0b
Reserved.
Write 0b, ignore on read.

Reserved 21 0b
Reserved.
Write 0b, ignore on read.

FER 22 0b Clears the mask for the Fatal Error interrupt.

Reserved 23 0b
Reserved.
Write 0b, ignore on read.

PCI Exception 24 0b Clears the mask for the PCI Exception interrupt.

SCE 25 0b Clears the mask for the DMA Coalescing Clock Control Event interrupt.

Software WD 26 0b Clears the mask for Software Watchdog Interrupt.

Reserved 28:27 0b
Reserved.
Write 0b, ignore on read.

TCP timer 29 0b Clears the mask for TCP timer interrupt.

DRSTA 30 0b Clears the mask for Device Reset Asserted interrupt.

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Ethernet Controller I211 — Programming Interface

296

8.7.13 Interrupt Acknowledge Auto Mask Register - IAM (0x1510; R/W)

8.7.14 Interrupt Throttle - EITR (0x1680 + 4*n [n = 0...4]; R/W)

Each EITR is responsible for an interrupt cause (RxTxQ, TCP timer and Other Cause). The allocation of
EITR-to-interrupt cause is through the IVAR registers.

Software uses this register to pace (or even out) the delivery of interrupts to the host processor. This
register provides a guaranteed inter-interrupt delay between interrupts asserted by the I211,
regardless of network traffic conditions. To independently validate configuration settings, software can
use the following algorithm to convert the inter-interrupt interval value to the common interrupts/sec.
performance metric:

interrupts/sec = (1 * 10-6sec x interval)-1

A counter counts in units of 1*10-6 sec. After counting interval number of units, an interrupt is sent to
the software. The previous equation gives the number of interrupts per second. The equation that
follows is the time in seconds between consecutive interrupts.

For example, if the interval is programmed to 125 (decimal), the I211 guarantees the processor does
not receive an interrupt for 125 s from the last interrupt. The maximum observable interrupt rate from
the I211 should never exceed 8000 interrupts/sec.

Inversely, inter-interrupt interval value can be calculated as:

inter-interrupt interval = (1 * 10-6sec x interrupt/sec)-1

The optimum performance setting for this register is very system and configuration specific. An initial
suggested range is 2 to 175 (0x02 to 0xAF).

Note: Setting EITR to a non-zero value can cause an interrupt cause Rx/Tx statistics miscount.

Field Bit(s) Initial Value Description

IAM_VALUE 30:0 0x0

An ICR read or write has the side effect of writing the contents of this
register to the IMC register. If GPIE.NSICR = 0b, then the copy of this
register to the IMC register occurs only if at least one bit is set in the IMS
register and there is a true interrupt as reflected in the ICR.INTA bit.
Refer to Section 7.3.3 for additional information.
Note: Note: Bit 30 of this register is not reset by device reset

(CTRL.DEV_RST).

Reserved 31 0b
Reserved.
Write 0b, ignore on read.

Programming Interface — Ethernet Controller I211

297

Note: The EITR register and interrupt mechanism is not reset by device reset (CTRL.DEV_RST).
Occurrence of device reset interrupt causes immediate generation of all pending interrupts.

8.7.15 Interrupt Vector Allocation Registers - IVAR (0x1700 + 4*n
[n=0...1]; RW)

These registers have two modes of operation:

1. In MSI-X mode, these registers define the allocation of the different interrupt causes as defined in
Table 7-50 to one of the MSI-X vectors. Each INT_Alloc[i] (i=0...7) field is a byte indexing an entry
in the MSI-X Table Structure and MSI-X PBA Structure.

2. In non MSI-X mode, these registers define the allocation of the Rx and Tx queues interrupt causes
to one of the RxTxQ bits in the EICR register. Each INT_Alloc[i] (i=...7) field is a byte indexing the
appropriate RxTxQ bit as defined in Table 7-49.

Field Bit(s) Initial Value Description

Reserved 1:0 0x0
Reserved.
Write 0x0, ignore on read.

Interval 14:2 0x0
Minimum Inter-interrupt Interval.
The interval is specified in 1 s increments.
A null value is not a valid setting.

LLI_EN 15 0b LLI moderation enable.

LL Counter
(RWM) 20:16 0x0

Reflects the current credits for that EITR for LL interrupts. If the CNT_INGR is not set,
this counter can be directly written by software at any time to alter the throttles
performance

Moderation
Counter
(RWM)

30:21 0x0

Down counter, exposes only the 10 most significant bits of the real 12-bit counter.
Loaded with interval value each time the associated interrupt is signaled. Counts
down to zero and stops. The associated interrupt is signaled each time this counter is
zero and an associated (via the Interrupt Select register) EICR bit is set.
If the CNT_INGR is not set, this counter can be directly written by software at any
time to alter the throttles performance.

CNT_INGR
(WO) 31 0b

When set, hardware does not override the counters fields (ITR counter and LLI credit
counter), so they keep their previous value.
Relevant for the current write only and is always read as zero.

Field Bit(s) Initial Value Description

INT_Alloc[4*n] 2:0 0x0 Defines the MSI-X vector assigned to Rx0 or Rx2 for IVAR[0] or IVAR[1],
respectively. Valid values are 0 to 4 for MSI-X mode and 0 to 3 in non-MSI-X mode.

Reserved 6:3 0x0
Reserved.
Write 0x0, ignore on read.

INT_Alloc[4*n] 7 0b Valid bit for INT_Alloc[4*n].

INT_Alloc[4*n+1] 10:8 0x0 Defines the MSI-X vector assigned to Tx0 or Tx2 for IVAR[0] or IVAR[1],
respectively. Valid values are 0 to 4 for MSI-X mode and 0 to 3 in non-MSI-X mode.

Reserved 14:11 0x0
Reserved.
Write 0x0, ignore on read.

INT_Alloc[4*n+1] 15 0b Valid bit for INT_Alloc[4*n+1].

INT_Alloc[4*n+2] 18:16 0x0 Defines the MSI-X vector assigned to Rx1 or Rx3 for IVAR[0] or IVAR[1],
respectively. Valid values are 0 to 4 for MSI-X mode and 0 to 3 in non-MSI-X mode.

Reserved 22:19 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

298

Note: If invalid values are written to the INT_Alloc fields the result is unexpected.

8.7.16 Interrupt Vector Allocation Registers - MISC IVAR_MISC
(0x1740; RW)

This register is used only in MSI-X mode. This register defines the allocation of the Other Cause and
TCP Timer interrupts to one of the MSI-X vectors.

8.7.17 General Purpose Interrupt Enable - GPIE (0x1514; RW)

INT_Alloc[4*n+2] 23 0b Valid bit for INT_Alloc[4*n+2].

INT_Alloc[4*n+3] 26:24 0x0 Defines the MSI-X vector assigned to Tx1 or Tx3 for IVAR[0] or IVAR[1],
respectively. Valid values are 0 to 4 for MSI-X mode and 0 to 3 in non-MSI-X mode.

Reserved 30:27 0x0
Reserved.
Write 0x0, ignore on read.

INT_Alloc[4*n+3] 31 0b Valid bit for INT_Alloc[4*n+3].

Field Bit(s) Initial Value Description

INT_Alloc[8] 2:0 0x0 Defines the MSI-X vector assigned to the TCP timer interrupt
cause. Valid values are 0 to 4.

Reserved 6:3 0x0
Reserved.
Write 0x0, ignore on read.

INT_Alloc[8] 7 0b Valid bit for INT_Alloc[8].

INT_Alloc[9] 10:8 0x0 Defines the MSI-X vector assigned to the Other Cause interrupt.
Valid values are 0 to 4.

Reserved 14:11 0x0
Reserved.
Write 0x0, ignore on read.

INT_Alloc[9] 15 0b Valid bit for INT_Alloc[9].

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

NSICR 0 0b

Non Selective Interrupt Clear on Read.
When set, every read of ICR clears it. When this bit is cleared, an ICR read
causes it to be cleared only if an actual interrupt was asserted or IMS =
0x0.
Refer to Section 7.3.3 for additional information.

Reserved 3:1 0x0
Reserved.
Write 0x0, ignore on read.

Multiple MSIX 4 0b

0b = In MSI or MSI-X mode, with a single vector, IVAR maps Rx/Tx causes
to 4 EICR bits but MSIX[0] is asserted for all.
1b = MSIX mode, IVAR maps Rx/Tx causes, TCP Timer and Other Cause
interrupts to 5 MSI-x vectors reflected in 5 EICR bits.
Note: When set, the EICR register is not cleared on read.

Reserved 6:5 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

299

8.8 MSI-X Table Register Descriptions
These registers are used to configure the MSI-X mechanism. The Message Address and Message Upper
Address registers set the address for each of the vectors. The message register sets the data sent to
the relevant address. The vector control registers are used to enable specific vectors.

The pending bit array register indicates which vectors have pending interrupts. The structure is listed in
Table 8-21.

Note: N = 5.

Note: N = 5. As a result, only Qword0 is implemented.

LL Interval 11:7 0x0

Low Latency Credits Increment Rate.
The interval is specified in 4 s increments.
Note: When LLI moderation is enabled (LLI_EN bit set), this filed shall

be set with a value different than 0x0.

Reserved 29:12 0x0
Reserved.
Write 0x0, ignore on read.

EIAME 30 0b

Extended Interrupt Auto Mask Enable.
When set (usually in MSI-X mode) and after sending a MSI-X message, if
bits in the EIAM register associated with this message are set, then the
corresponding bits in the EIMS register are cleared. Otherwise, EIAM is
used only after reading or writing the EICR/EICS registers.
Note: When this bit is set in MSI mode, setting of any bit in the EIAM

register causes the clearing of all bits in the EIMS register and
masking of all interrupts after generating a MSI interrupt.

PBA_support 31 0b

PBA Support.
When set, setting one of the extended interrupts masks via EIMS causes
the PBA bit of the associated MSI-X vector to be cleared. Otherwise, the
I211 behaves in a way that supports legacy INT-x interrupts.
Note: Should be cleared when working in INT-x or MSI mode and set in

MSI-X mode.

Table 8-21. MSI-X Table Structure

DWORD3
MSIXTVCTRL

DWORD2
MSIXTMSG

DWORD1
MSIXTUADD

DWORD0
MSIXTADD

Entry
Number BAR 3 - Offset

Vector Control Msg Data Msg Upper Addr Msg Addr Entry 0 Base (0x0000)

Vector Control Msg Data Msg Upper Addr Msg Addr Entry 1 Base + 1*16

Vector Control Msg Data Msg Upper Addr Msg Addr Entry 2 Base + 2*16

...

Vector Control Msg Data Msg Upper Addr Msg Addr Entry (N-1) Base + (N-1) *16

Table 8-22. MSI-X PBA Structure

MSIXPBA[63:0] Qword
Number BAR 3 - Offset

Pending Bits 0 through 63 QWORD0 Base (0x2000)

Pending Bits 64 through 127 QWORD1 Base+1*8

...

Pending Bits ((N-1) div 64)*64 through N-1 QWORD((N-1) div 64) BASE + ((N-1) div 64)*8

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

300

8.8.1 MSI-X Table Entry Lower Address - MSIXTADD (BAR3: 0x0000 +
0x10*n [n=0...4]; R/W)

8.8.2 MSI-X Table Entry Upper Address - MSIXTUADD (BAR3: 0x0004 +
0x10*n [n=0...4]; R/W)

8.8.3 MSI-X Table Entry Message - MSIXTMSG (BAR3: 0x0008 +
0x10*n [n=0...4]; R/W)

8.8.4 MSI-X Table Entry Vector Control - MSIXTVCTRL (BAR3: 0x000C
+ 0x10*n [n=0...4]; R/W)

Field Bit(s) Initial Value Description

Message
Address LSB
(RO)

1:0 0x0 For proper Dword alignment, software must always write 0b‚Äôs to these
two bits. Otherwise, the result is undefined.

Message
Address 31:2 0x0

System-Specific Message Lower Address.
For MSI-X messages, the contents of this field from an MSI-X table entry
specifies the lower portion of the Dword-aligned address for the memory
write transaction.

Field Bit(s) Initial Value Description

Message
Address 31:0 0x0 System-Specific Message Upper Address.

Field Bit(s) Initial Value Description

Message
Data 31:0 0x0

System-Specific Message Data.
For MSI-X messages, the contents of this field from an MSI-X table entry
specifies the data written during the memory write transaction.
In contrast to message data used for MSI messages, the low-order
message data bits in MSI-X messages are not modified by the function.

Field Bit(s) Initial Value Description

Mask 0 1b

When this bit is set, the function is prohibited from sending a message
using this MSI-X table entry. However, any other MSI-X table entries
programmed with the same vector are still capable of sending an equivalent
message unless they are also masked.

Reserved 31:1 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

301

8.8.5 MSIXPBA Bit Description – MSIXPBA (BAR3: 0x2000; RO)

8.8.6 MSI-X PBA Clear ‚Äì PBACL (0x5B68; R/W1C)

8.9 Receive Register Descriptions

8.9.1 Receive Control Register - RCTL (0x0100; R/W)

Field Bit(s) Initial Value Description

Pending Bits 4:0 0x0
For each pending bit that is set, the function has a pending message for
the associated MSI-X table entry.
Pending bits that have no associated MSI-X table entry are reserved.

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

PENBITCLR 4:0 0x0

MSI-X Pending bits Clear.
Writing a 1b to any bit clears the corresponding MSIXPBA bit; writing a 0b
has no effect.
Note: Bits are set for a single PCIe clock cycle and then cleared.

Reserved 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Reserved 0 0b
Reserved.
Write 0b, ignore on read.

RXEN 1 0b

Receiver Enable.
The receiver is enabled when this bit is set to 1b. Writing this bit to 0b stops reception
after receipt of any in progress packet. All subsequent packets are then immediately
dropped until this bit is set to 1b.

SBP 2 0b

Store Bad Packets
0b = Do not store.
1b = Store bad packets.
This bit controls the MAC receive behavior. A packet is required to pass the address
(or normal) filtering before the SBP bit becomes effective. If SBP = 0b, then all
packets with layer 1 or 2 errors are rejected. The appropriate statistic would be
incremented. If SBP = 1b, then these packets are received (and transferred to host
memory). The receive descriptor error field (RDESC.ERRORS) should have the
corresponding bit(s) set to signal the software device driver that the packet is erred.
In some operating systems the software device driver passes this information to the
protocol stack. In either case, if a packet only has layer 3+ errors, such as IP or TCP
checksum errors, and passes other filters, the packet is always received (layer 3+
errors are not used as a packet filter).
Note: Symbol errors before the SFD are ignored. Any packet must have a valid SFD

(RX_DV with no RX_ER in 10/100/1000BASE-T mode) in order to be
recognized by the I211 (even bad packets). Also, erred packets are not
routed to the MNG even if this bit is set.

Ethernet Controller I211 — Programming Interface

302

UPE 3 0b
Unicast Promiscuous Enabled.
0b = Disabled.
1b = Enabled.

MPE 4 0b
Multicast Promiscuous Enabled.
0b = Disabled.
1b = Enabled.

LPE 5 0b

Long Packet Reception Enable.
0b = Disabled.
1b = Enabled.
LPE controls whether long packet reception is permitted. If LPE is 0b,hardware
discards long packets over 1518, 1522 or 1526 bytes depending on the
CTRL_EXT.EXT_VLAN bit and the detection of a VLAN tag in the packet. If LPE is
1b,the maximum packet size that the I211 can receive is defined in the RLPML.RLPML
register.

LBM 7:6 00b

Loopback Mode.
Controls the loopback mode of the I211.
00b = Normal operation (or PHY loopback in 10/100/1000BASE-T mode).
01b = MAC loopback (test mode).
10b = Undefined.
11b = Reserved
When using the internal PHY, LBM should remain set to 00b and the PHY instead
configured for loopback through the MDIO interface.
Note: PHY devices require programming for loopback operation using MDIO

accesses.

Reserved 11:8 0x0
Reserved.
Write 0x0, ignore on read.

MO 13:12 00b

Multicast Offset.
Determines which bits of the incoming multicast address are used in looking up the bit
vector.
00b = bits [47:36] of received destination multicast address.
01b = bits [46:35] of received destination multicast address.
10b = bits [45:34] of received destination multicast address.
11b = bits [43:32] of received destination multicast address.

Reserved 14 0b
Reserved.
Write 0b, ignore on read.

BAM 15 0b
Broadcast Accept Mode.
0b = Ignore broadcast (unless it matches through exact or imperfect filters).
1b = Accept broadcast packets.

BSIZE 17:16 00b

Receive Buffer Size.
BSIZE controls the size of the receive buffers and permits software to trade-off
descriptor performance versus required storage space. Buffers that are 2048 bytes
require only one descriptor per receive packet maximizing descriptor efficiency.
00b = 2048 Bytes.
01b = 1024 Bytes.
10b = 512 Bytes.
11b = 256 Bytes.
Notes:
1. BSIZE should not be modified when RXEN is set to 1b. Set RXEN =0b when

modifying the buffer size by changing this field.
2. BSIZE value only defines receive buffer size of queues with a

SRRCTL.BSIZEPACKET value of 0b.

VFE 18 0b

VLAN Filter Enable.
0b = Disabled (filter table does not decide packet acceptance).
1b = Enabled (filter table decides packet acceptance for 802.1Q packets).
Three bits [20:18] control the VLAN filter table. The first determines whether the
table participates in the packet acceptance criteria. The next two are used to decide
whether the CFI bit found in the 802.1Q packet should be used as part of the
acceptance criteria.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

303

CFIEN 19 0b

Canonical Form Indicator Enable.
0b = Disabled (CFI bit found in received 802.1Q packet’s tag is not compared to
decide packet acceptance).
1b = Enabled (CFI bit found in received 802.1Q packet’s tag must match RCTL.CFI to
accept 802.1Q type packet.

CFI 20 0b
Canonical Form Indicator Bit Value
0b = 802.1Q packets with CFI equal to this field are accepted.
1b = 802.1Q packet is discarded.

PSP 21 0b
Pad Small Receive Packets.
If this field is set, RCTL.SECRC should be set.

DPF 22 1b

Discard Pause Frames.
Controls whether pause frames are forwarded to the host.
0b = incoming pause frames are forwarded to the host.
1b = incoming pause frames are discarded.

PMCF 23 0b

Pass MAC Control Frames.
Filters out unrecognized pause and other control frames.
0b = Filter MAC Control frames.
1b = Pass/forward MAC control frames to the Host that are not XON/XOFF flow control
packets.
The PMCF bit controls the DMA function of the MAC control frames (other than flow
control). A MAC control frame in this context must be addressed to either the MAC
control frame multicast address or the station address, match the type field, and NOT
match the PAUSE opcode of 0x0001. If PMCF = 1b then frames meeting this criteria
are transferred to host memory.

Reserved 25:24 0x0
Reserved.
Write 0x0, ignore on read.

SECRC 26 0b

Strip Ethernet CRC From Incoming Packet
Causes the CRC to be stripped from all packets.
0b = Does not strip CRC.
1b = Strips CRC.
This bit controls whether the hardware strips the Ethernet CRC from the received
packet. This stripping occurs prior to any checksum calculations. The stripped CRC is
not transferred to host memory and is not included in the length reported in the
descriptor.
Notes:
1. If the CTRL.VME bit is set the RCTL.SECRC bit should also be set as the CRC is

not valid anymore.
2. Even when this bit is set, CRC strip is not done on runt packets (smaller than 64

bytes).

Reserved 31:27 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

304

8.9.2 Split and Replication Receive Control - SRRCTL (0xC00C +
0x40*n [n=0...3]; R/W)

8.9.3 Packet Split Receive Type - PSRTYPE (0x5480 + 4*n [n=0...3];
R/W)

This register enables or disables each type of header that needs to be split or replicated (refer to
Section 7.1.5 for additional information on header split support). Each register controls the behavior of
1 queue.

— Packet Split Receive Type Register (queue 0) - PSRTYPE0 (0x5480)

Field Bit(s) Initial Value Description

BSIZEPACKET 6:0 0x0

Receive Buffer Size for Packet Buffer.
The value is in 1 KB resolution. Valid values can be from 1 KB to 16 KB. Default
buffer size is 0 KB. If this field is equal 0x0, then RCTL.BSIZE determines the packet
buffer size.

Reserved 7 0b Reserved.

BSIZEHEADER 13:8 0x4

Receive Buffer Size for Header Buffer.
The value is in 64 bytes resolution. Valid value can be from 64 bytes to 2048 bytes
(BSIZEHEADER = 0x1 to 0x20). Default buffer size is 256 bytes. This field must be
greater than 0 if the value of DESCTYPE is greater or equal to 2.
Note: When SRRCTL.Timestamp is set to 1b and the value of SRRCTL.DESCTYPE is

greater or equal to 2, BSIZEHEADER size should be equal or greater than 2
(128 bytes).

Reserved 19:14 0x0
Reserved.
Write 0x0, ignore on read.

RDMTS 24:20 0x0
Receive Descriptor Minimum Threshold Size.
A Low Latency Interrupt (LLI) associated with this queue is asserted each time the
number of free descriptors becomes equal to RDMTS multiplied by 16.

DESCTYPE 27:25 000b

Defines the descriptor in Rx.
000b = Legacy.
001b = Advanced descriptor one buffer.
010b = Advanced descriptor header splitting.
011b = Advanced descriptor header replication - replicate always.
100b = Advanced descriptor header replication large packet only (larger than header
buffer size).
Reserved.
111b = Reserved.

Reserved 29:28 0x0
Reserved.
Write 0x0, ignore on read.

Timestamp 30 0b

Timestamp Received Packet
0b = Do not place timestamp at the beginning of a receive buffer.
1= Place timestamp at the beginning of a receive buffer. Timestamp is placed only in
buffers of received packets that meet the criteria defined in the TSYNCRXCTL.Type
field, 2-tuple filters or ETQF registers.
When set, the timestamp value in SYSTIMH and SYSTIML registers is placed in the
receive buffer before the MAC header of the packets defined in the
TSYNCRXCTL.Type field.

Drop_En 31 0b/1b

Drop Enabled.
If set, packets received to the queue when no descriptors are available to store them
are dropped. The packet is dropped only if there are not enough free descriptors in
the host descriptor ring to store the packet. If there are enough descriptors in the
host, but they are not yet fetched by the I211, then the packet is not dropped and
there are no release of packets until the descriptors are fetched.
Default is 0b for queue 0 and 1b for the other queues.

Programming Interface — Ethernet Controller I211

305

— Packet Split Receive Type Register (queue 1) - PSRTYPE1 (0x5484)
— Packet Split Receive Type Register (queue 2) - PSRTYPE2 (0x5488)
— Packet Split Receive Type Register (queue 3) - PSRTYPE3 (0x548C)

8.9.4 Receive Descriptor Base Address Low - RDBAL (0xC000 + 0x40*n
[n=0...3]; R/W)

This register contains the lower bits of the 64-bit descriptor base address. The lower four bits are
always ignored. The Receive Descriptor Base Address must point to a 128 byte-aligned block of data.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2800, 0x2900, 0x2A00 and 0x2B00, respectively.

Field Bit(s) Initial Value Description

PSR_type0 0 0b Header includes MAC (VLAN/SNAP).

PSR_type1 1 1b Header includes MAC, (VLAN/SNAP) Fragmented IPv4 only.

PSR_type2 2 1b Header includes MAC, (VLAN/SNAP) IPv4, TCP only.

PSR_type3 3 1b Header includes MAC, (VLAN/SNAP) IPv4, UDP only.

PSR_type4 4 1b Header includes MAC, (VLAN/SNAP) IPv4, Fragmented IPv6 only.

PSR_type5 5 1b Header includes MAC, (VLAN/SNAP) IPv4, IPv6, TCP only.

PSR_type6 6 1b Header includes MAC, (VLAN/SNAP) IPv4, IPv6, UDP only.

PSR_type7 7 1b Header includes MAC, (VLAN/SNAP) Fragmented IPv6 only.

PSR_type8 8 1b Header includes MAC, (VLAN/SNAP) IPv6, TCP only.

PSR_type9 9 1b Header includes MAC, (VLAN/SNAP) IPv6, UDP only.

Reserved_1 10 1b
Reserved.
Write 1b, ignore on read.

PSR_type11 11 1b Header includes MAC, (VLAN/SNAP) IPv4, TCP, NFS only.

PSR_type12 12 1b Header includes MAC, (VLAN/SNAP) IPv4, UDP, NFS only.

Reserved_1 13 1b
Reserved.
Write 1b, ignore on read.

PSR_type14 14 1b Header includes MAC, (VLAN/SNAP) IPv4, IPv6, TCP, NFS only.

PSR_type15 15 1b Header includes MAC, (VLAN/SNAP) IPv4, IPv6, UDP, NFS only.

Reserved_1 16 1b
Reserved.
Write 1b, ignore on read.

PSR_type17 17 1b Header includes MAC, (VLAN/SNAP) IPv6, TCP, NFS only.

PSR_type18 18 1b Header includes MAC, (VLAN/SNAP) IPv6, UDP, NFS only.

Reserved 31:19 0x0
Reserved.
Write 0b, ignore on read.

Field1

1. Software should program the RDBAL[n] register only when a queue is disabled (RXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

Lower_0 6:0 0x0
Ignored on writes.
Returns 0x0 on reads.

RDBAL 31:7 X Receive Descriptor Base Address Low.

Ethernet Controller I211 — Programming Interface

306

8.9.5 Receive Descriptor Base Address High - RDBAH (0xC004 +
0x40*n [n=0...3]; R/W)

This register contains the upper 32 bits of the 64-bit descriptor base address.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2804, 0x2904, 0x2A04 and 0x2B04, respectively.

8.9.6 Receive Descriptor Ring Length - RDLEN (0xC008 + 0x40*n
[n=0...3]; R/W)

This register sets the number of bytes allocated for descriptors in the circular descriptor buffer. It must
be 128-byte aligned.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2808, 0x2908, 0x2A08 and 0x2B08, respectively.

8.9.7 Receive Descriptor Head - RDH (0xC010 + 0x40*n [n=0...3]; RO)

The value in this register might point to descriptors that are still not in host memory. As a result, the
host cannot rely on this value in order to determine which descriptor to process.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2810, 0x2910, 0x2A10 and 0x2B10, respectively.

Field1

1. Software should program the RDBAH[n] register only when a queue is disabled (RXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

RDBAH 31:0 X Receive Descriptor Base Address [63:32].

Field1

1. Software should program the RDLEN[n] register only when a queue is disabled (RXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

Zero 6:0 0x0
Ignore on writes.
Bits 6:0 must be set to 0x0.
Bits 4:0 always read as 0x0.

LEN 19:7 0x0
Descriptor Ring Length (number of 8 descriptor sets).
Note: Maximum allowed value in RDLEN field 19:0 is 0x80000 (32K

descriptors).

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

RDH 15:0 0x0 Receive Descriptor Head.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

307

8.9.8 Receive Descriptor Tail - RDT (0xC018 + 0x40*n [n=0...3]; R/W)

This register contains the tail pointers for the receive descriptor buffer. The register points to a 16-byte
datum. Software writes the tail register to add receive descriptors to the hardware free list for the ring.

Note: Writing the RDT register while the corresponding queue is disabled is ignored by the I211.
In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2818, 0x2918, 0x2A18 and 0x2B18, respectively.

8.9.9 Receive Descriptor Control - RXDCTL (0xC028 + 0x40*n
[n=0...3]; R/W)

This register controls the fetching and write-back of receive descriptors. The three threshold values are
used to determine when descriptors are read from and written to host memory. The values are in units
of descriptors (each descriptor is 16 bytes).

Field Bit(s) Initial Value Description

RDT 15:0 0x0 Receive Descriptor Tail.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

PTHRESH 4:0 0xC

Prefetch Threshold
PTHRESH is used to control when a prefetch of descriptors is considered.
This threshold refers to the number of valid, unprocessed receive
descriptors the I211 has in its on-chip buffer. If this number drops below
PTHRESH, the algorithm considers pre-fetching descriptors from host
memory. This fetch does not happen unless there are at least HTHRESH
valid descriptors in host memory to fetch.
Note: HTHRESH should be given a non zero value each time PTHRESH is

used.
Possible values for this field are 0 to 16.

Reserved 7:5 0x0
Reserved.
Write 0x0, ignore on read.

HTHRESH 12:8 0xA

Host Threshold.
This field defines when a receive descriptor prefetch is performed. Each
time enough valid descriptors, as defined in the HTHRESH field, are
available in host memory a prefetch is performed.
Possible values for this field are 0 to 16.

Reserved 15:13 0x0
Reserved.
Write 0x0, ignore on read.

WTHRESH 20:16 0x1

Write-back Threshold.
WTHRESH controls the write-back of processed receive descriptors. This
threshold refers to the number of receive descriptors in the on-chip buffer
that are ready to be written back to host memory. In the absence of
external events (explicit flushes), the write-back occurs only after at least
WTHRESH descriptors are available for write-back.
Possible values for this field are 0 to 15.
Note: Since the default value for write-back threshold is 1b, the

descriptors are normally written back as soon as one cache line is
available. WTHRESH must contain a non-zero value to take
advantage of the write-back bursting capabilities of the I211.

Note: It’s recommended not to place a value above 0xC in the WTHRESH
field.

Reserved 24:21 0x0 Reserved.

Ethernet Controller I211 — Programming Interface

308

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2828, 0x2928, 0x2A28 and 0x2B28, respectively.

8.9.10 Receive Queue Drop Packet Count - RQDPC (0xC030 + 0x40*n
[n=0...3]; RW)

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x2830, 0x2930, 0x2A30 and 0x2B30, respectively.
Packets dropped due to the queue being disabled might not be counted by this register.

8.9.11 Transmit Queue Drop Packet Count - TQDPC (0xE030 + 0x40*n
[n=0...3]; RW)

ENABLE 25 0b

Receive Queue Enable.
When set, the Enable bit enables the operation of the specific receive
queue.
1b =Enables queue.
0b =Disables queue. Setting this bit initializes the Head and Tail registers
(RDH[n] and RDT[n]) of the specific queue. Until then, the state of the
queue is kept and can be used for debug purposes.
When disabling a queue, this bit is cleared only after all activity in the
queue has stopped.
Note: When receive queue is enabled and descriptors exist, descriptors

are fetched immediately. Actual receive activity on the port starts
only if the RCTL.RXEN bit is set.

SWFLUSH 26 0b

Receive Software Flush.
Enables software to trigger a receive descriptor write-back flushing,
independently of other conditions.
This bit shall be written to 1b and then to 0b after a write-back flush is
triggered.

Reserved 31:27 0x0 Reserved.

Field Bit(s) Initial Value Description

RQDPC 31:0 0x0

Receive Queue Drop Packet Count.
Counts the number of packets dropped by a queue due to lack of descriptors
available.
Note: Counter wraps around when reaching a value of 0xFFFFFFFF.

Field Bit(s) Initial Value Description

TQDPC 31:0 0x0

Transmit Queue Drop Packet Count.
Counts the number of packets dropped by a queue due to lack of space in the
loopback buffer or due to security (anti-spoof) issues.
A multicast packet dropped by some of the destinations, but sent to others is counted
by this counter.
Note: Counter wraps around when reaching a value of 0xFFFFFFFF.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

309

8.9.12 Receive Checksum Control - RXCSUM (0x5000; R/W)

The Receive Checksum Control register controls the receive checksum off loading features of the I211.
The I211 supports the off loading of three receive checksum calculations: the Packet Checksum, the IP
Header Checksum, and the TCP/UDP Checksum.

Note: This register should only be initialized (written) when the receiver is not enabled (only write
this register when RCTL.RXEN = 0b)

Field Bit(s) Initial Value Description

PCSS 7:0 0x0

Packet Checksum Start.
Controls the packet checksum calculation. The packet checksum shares the same
location as the RSS field and is reported in the receive descriptor when the
RXCSUM.PCSD bit is cleared.
If the RXCSUM.IPPCSE is set, the Packet checksum is aimed to accelerate checksum
calculation of fragmented UDP packets. Please refer to Section 7.1.7.2 for detailed
explanation. If RXCSUM.IPPCSE is cleared (the default value), the checksum
calculation that is reported in the Rx Packet checksum field is the unadjusted 16-bit
ones complement of the packet.
The packet checksum starts from the byte indicated by RXCSUM.PCSS (0b
corresponds to the first byte of the packet), after VLAN stripping if enabled by the
CTRL.VME. For example, for an Ethernet II frame encapsulated as an 802.3ac VLAN
packet and with RXCSUM.PCSS set to 14, the packet checksum would include the
entire encapsulated frame, excluding the 14-byte Ethernet header (DA, SA, Type/
Length) and the 4-byte VLAN tag. The packet checksum does not include the Ethernet
CRC if the RCTL.SECRC bit is set. Software must make the required offsetting
computation (to back out the bytes that should not have been included and to include
the pseudo-header) prior to comparing the packet checksum against the L4 checksum
stored in the packet checksum. The partial checksum in the descriptor is aimed to
accelerate checksum calculation of fragmented UDP packets.
Note: The PCSS value should point to a field that is before or equal to the IP header

start. Otherwise, the IP header checksum or TCP/UDP checksum is not
calculated correctly.

IPOFLD 8 1b

IP Checksum Off-load Enable.
RXCSUM.IPOFLD is used to enable the IP Checksum off-loading feature. If
RXCSUM.IPOFLD is set to 1b, the I211 calculates the IP checksum and indicates a
pass/fail indication to software via the IP Checksum Error bit (IPE) in the Error field of
the receive descriptor. Similarly, if RXCSUM.TUOFLD is set to 1b, the I211 calculates
the TCP or UDP checksum and indicates a pass/fail indication to software via the TCP/
UDP Checksum Error bit (RDESC.L4E).
This applies to checksum off loading only. Supported frame types:
• Ethernet II
• Ethernet SNAP

TUOFLD 9 1b TCP/UDP Checksum Off-load Enable.

ICMPv6XSUM 10 1b

ICMPv6 Checksum Enable.
0b = Disable ICMPv6 checksum calculation.
1b = Enable ICMPv6 checksum calculation.
Note: ICMPv6 checksum offload is supported only for packets sent to firmware for

Proxying.

CRCOFL 11 0b

CRC32 Offload Enable.
Enables the SCTP CRC32 checksum off-loading feature. If RXCSUM.CRCOFL is set to
1b, the I211 calculates the CRC32 checksum and indicates a pass/fail indication to
software via the CRC32 Checksum Valid bit (RDESC.L4I) in the Extended Status field
of the receive descriptor.
In non I/OAT, this bit is read only as 0b.

Ethernet Controller I211 — Programming Interface

310

8.9.13 Receive Long Packet Maximum Length - RLPML (0x5004; R/W)

8.9.14 Receive Filter Control Register - RFCTL (0x5008; R/W)

IPPCSE 12 0b
IP Payload Checksum Enable.
See PCSS description.

PCSD 13 0b

Packet Checksum Disable.
The packet checksum and IP identification fields are mutually exclusive with the RSS
hash. Only one of the two options is reported in the Rx descriptor.
RXCSUM.PCSD Legacy Rx Descriptor (SRRCTL.DESCTYPE = 000b):
0b (checksum enable) = Packet checksum is reported in the Rx descriptor.
1b (checksum disable) = Not supported.
RXCSUM.PCSD Extended or Header Split Rx Descriptor (SRRCTL.DESCTYPE not equal
000b):
0b (checksum enable) = checksum and IP identification are reported in the Rx
descriptor.
1b (checksum disable) = RSS Hash value is reported in the Rx descriptor.

Reserved 31:14 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

RLPML 13:0 0x2600 Maximum allowed long packet length. This length is the global length of the packet
including all the potential headers of suffixes in the packet.

Reserved 31:14 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Reserved 5:0 1b
Reserved.
Write 1b, ignore on read.

NFSW_DIS 6 0b
NFS Write Disable.
Disables filtering of NFS write request headers.

NFSR_DIS 7 0b
NFS Read Disable.
Disables filtering of NFS read reply headers.

NFS_VER 9:8 00b

NFS Version.
00b = NFS version 2.
01b = NFS version 3.
10b = NFS version 4.
11b = Reserved for future use.

Reserved 10 0b Reserved.

IPv6XSUM_DIS 11 0b
IPv6 XSUM Disable.
Disables XSUM on IPv6 packets.

Reserved 13:12 0x0
Reserved.
Write 0x0, ignore on read.

IPFRSP_DIS 14 0b
IP Fragment Split Disable.
When this bit is set, the header of IP fragmented packets are not set.

Reserved 17:15 0x0
Reserved.
Write 0x0 ignore on read.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

311

8.9.15 Multicast Table Array - MTA (0x5200 + 4*n [n=0...127]; R/W)

There is one register per 32 bits of the Multicast Address Table for a total of 128 registers. Software
must mask to the desired bit on reads and supply a 32-bit word on writes. The first bit of the address
used to access the table is set according to the RX_CTRL.MO field.

Note: All accesses to this table must be 32 bit.

Figure 8-1 shows the multicast lookup algorithm. The destination address shown represents the
internally stored ordering of the received DA. Note that bit 0 indicated in this diagram is the first on the
wire.

LEF 18 0b
Forward Length Error Packet.
0b = Packet with length error are dropped.
1b = Packets with length error are forwarded to the host.

SYNQFP 19 0b
Defines the priority between SYNQF and 2 tuple filter.
0b = 2-tuple filter priority.
1b = SYN filter priority.

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Bit Vector 31:0 X Word wide bit vector specifying 32 bits in the multicast address filter table.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

312

8.9.16 Receive Address Low - RAL (0x5400 + 8*n [n=0...15]; R/W)

While “n” is the exact unicast/multicast address entry and it is equal to 0,1,...15.

These registers contain the lower bits of the 48 bit Ethernet address. All 32 bits are valid.

These registers are reset by a software reset or platform reset.

Note: The RAL field should be written in network order.

8.9.17 Receive Address High - RAH (0x5404 + 8*n [n=0...15]; R/W)

These registers contain the upper bits of the 48-bit Ethernet address. The complete address is [RAH,
RAL]. The RAH.AV bit determines whether this address is compared against the incoming packet.

The RAH.ASEL field enables the I211 to perform special filtering on receive packets.

Note: The RAH field should be written in network order.

Figure 8-1. Multicast Table Array

Field Bit(s) Initial Value Description

RAL 31:0 X
Receive Address Low.
Contains the lower 32-bit of the 48-bit Ethernet address.

47:40 39:32 31:24 23:16 15:8 7:0

pointer[11:5]

Multicast Table Array

32 x 128
(4096 bit vector)

...

...

pointer[4:0]

word

bit

?

Destination Address

RCTL.MO[1:0]

Programming Interface — Ethernet Controller I211

313

The first receive address register (RAH[0]) is also used for exact match pause frame checking
(DA matches the first register). As a result, RAH[0] should always be used to store the
individual Ethernet MAC address of the I211.

8.9.18 VLAN Priority Queue Filter VLAPQF (0x55B0;R/W)

Field Bit(s) Initial Value Description

RAH 15:0 X
Receive address High.
Contains the upper 16 bits of the 48-bit Ethernet address.

ASEL 17:16 X

Address Select.
Selects how the address is to be used in the address filtering.
00b = Destination address (required for normal mode).
01b = Source address.
10b = Reserved.
11b = Reserved.

Reserved 19:18 X Reserved

Reserved 27:20 0x0
Reserved.
Write 0x0, Ignore on reads

QSEL Enable 28 X
Queue Select Enable.
When set to 1b the value in the QSEL should be used as part of
the queue classification algorithm.

Reserved 30:29 0x0
Reserved.
Write 0x0, ignore on reads.

AV 31 0x0
Address Valid.
Cleared after master reset.
In entries 0-15 this bit is cleared by master reset.

Field Bit(s) Initial Value Description

VP0QSEL 1:0 0x0
VLAN Priority 0 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x0 and
are enabled by VLANPV.

Reserved 2 0x0 Reserved.

VLANP0V 3 0x0
VLAN Priority 0 Valid.
This field enables VLAN Priority 0x0 for queue selection.

VP1QSEL 5:4 0x0
VLAN Priority 1Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x1 and
are enabled by VLANPV.

Reserved 6 0x0 Reserved.

VLANP1V 7 0x0
VLAN Priority 1 Valid.
This field enables VLAN Priority 0x1 for queue selection.

VP2QSEL 9:8 0x0
VLAN Priority 2 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x2 and
are enabled by VLANPV.

Reserved 10 0x0 Reserved.

VLANP2V 11 0x0
VLAN Priority 2 Valid.
This field enables VLAN Priority 0x2 for queue selection.

VP3QSEL 13:12 0x0
VLAN Priority 3 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x3 and
are enabled by VLANPV.

Reserved 14 0x0 Reserved.

Ethernet Controller I211 — Programming Interface

314

8.9.19 VLAN Filter Table Array - VFTA (0x5600 + 4*n [n=0...127]; R/W)

There is one register per 32 bits of the VLAN Filter Table. The size of the word array depends on the
number of bits implemented in the VLAN Filter Table. Software must mask to the desired bit on reads
and supply a 32-bit word on writes.

Note: All accesses to this table must be 32 bit.

The algorithm for VLAN filtering using the VFTA is identical to that used for the Multicast Table Array.
Refer to Section 8.9.15 for a block diagram of the algorithm. If VLANs are not used, there is no need to
initialize the VFTA.

VLANP3V 15 0x0
VLAN Priority 3 Valid.
This field enables VLAN Priority 0x3 for queue selection.

VP4QSEL 17:16 0x0
VLAN Priority 4 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x4 and
are enabled by VLANPV.

Reserved 18 0x0 Reserved.

VLANP4V 19 0x0
VLAN Priority 4 Valid.
This field enables VLAN Priority 4 for queue selection.

VP5QSEL 21:20 0x0
VLAN Priority 5 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x5 and
are enabled by VLANPV.

Reserved 22 0x0 Reserved.

VLANP5V 23 0x0
VLAN Priority 5 Valid.
This field enables VLAN Priority 0x5 for queue selection.

VP6QSEL 25:24 0x0
VLAN Priority 6 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x6 and
are enabled by VLANPV.

Reserved 26 0x0 Reserved.

VLANP6V 27 0x0
VLAN Priority 6 Valid.
This field enables VLAN Priority 0x6 for queue selection.

VP7QSEL 29:28 0x0
VLAN Priority 7 Queue Selection.
This field defines the target queue for packets with VLAN priority value of 0x7 and
are enabled by VLANPV.

Reserved 30 0x0 Reserved.

VLANP7V 31 0x0
VLAN Priority 7 Valid.
This field enables VLAN Priority 0x7 for queue selection.

Field Bit(s) Initial Value Description

Bit Vector 31:0 X Double-word wide bit vector specifying 32 bits in the VLAN Filter table.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

315

8.9.20 Multiple Receive Queues Command Register - MRQC (0x5818; R/
W)

Note: The MRQC.Multiple Receive Queues Enable field is used to enable/disable RSS hashing and
also to enable multiple receive queues. Disabling this feature is not recommended. Model
usage is to reset the I211 after disabling the RSS.

Field Bit(s) Initial Value Description

Multiple
Receive
Queues
Enable

2:0 0x0

Multiple Receive Queues Enable.
Enables support for Multiple Receive Queues and defines the mechanism that controls
queue allocation.
000b = Multiple receive queues as defined by filters (2-tuple filters, L2 Ether-type
filters, SYN filter and flex filters).
001b = Reserved.
010b = Multiple receive queues as defined by filters and RSS for 4 queues1.
011b = Reserved.
100b = Reserved.
101b = Reserved.
110b = Reserved.
111b = Reserved.
Allowed values for this field are 000b, 010b. Any other value is ignored.

1. Note that the RXCSUM.PCSD bit should be set to enable reception of the RSS hash value in the receive descriptor.

Def_Q 5:3 0x0

Defines the default queue according to value of the Multiple Receive Queues Enable
field.
If Multiple Receive Queues Enable equals:
000b= Def_Q defines the destination of all packets not forwarded by filters.
001b= Def_Q field is ignored
010b= Def_Q defines the destination of all packets not forwarded by RSS or filters.
011b = Def_Q field is ignored.
100-101b= Def_Q field is ignored.
110b= Def_Q field is ignored.

Reserved 15:6 0x0
Reserved.
Write 0x0, ignore on read.

RSS Field
Enable 31:16 0x0

Each bit, when set, enables a specific field selection to be used by the hash function.
Several bits can be set at the same time.
Bit[16] = Enable TcpIPv4 hash function
Bit[17] = Enable IPv4 hash function
Bit[18] = Enable TcpIPv6Ex hash function
Bit[19] = Enable IPv6Ex hash function
Bit[20] = Enable IPv6 hash function
Bit[21] = Enable TCPIPv6 hash function
Bit[22] = Enable UDPIPv4
Bit[23] = Enable UDPIPv6
Bit[24] = Enable UDPIPv6Ext
Bit[25] = Reserved.
Bits[31:26] = Reserved (zero).

Ethernet Controller I211 — Programming Interface

316

8.9.21 RSS Random Key Register - RSSRK (0x5C80 + 4*n [n=0...9]; R/
W)

The RSS Random Key register stores a 40 byte key used by the RSS hash function.

8.9.22 Redirection Table - RETA (0x5C00 + 4*n [n=0...31]; R/W)

The redirection table is a 128-entry table with each entry being eight bits wide. Only 1 to 3 bits of each
entry are used to store the queue index. The table is configured through the following R/W registers.

Each entry (byte) of the redirection table contains the following:

— Bits [7:3] - Reserved.

Field Bit(s) Initial Value Description

K0 7:0 0x0 Byte n*4 of the RSS random key (n=0,1,...9).

K1 15:8 0x0 Byte n*4+1 of the RSS random key (n=0,1,...9).

K2 23:16 0x0 Byte n*4+2 of the RSS random key (n=0,1,...9).

K3 31:24 0x0 Byte n*4+3 of the RSS random key (n=0,1,...9).

31 24 23 16 15 8 7 0

K[3] K[2] K[1] K[0]

...

K[39] K[36]

Field Bit(s) Initial Value Description

Entry 0 7:0 0x0 Determines the tag value and physical queue for index 4*n+0
(n=0...31).

Entry 1 15:8 0x0 Determines the tag value and physical queue for index 4*n+1
(n=0...31).

Entry 2 23:16 0x0 Determines the tag value and physical queue for index 4*n+2
(n=0...31).

Entry 3 31:24 0x0 Determines the tag value and physical queue for index 4*n+3
(n=0...31).

31 24 23 16 15 8 7 0

Tag 3 Tag 2 Tag 1 Tag 0

...

Tag 127

7:3 2:0

Reserved Queue index

Programming Interface — Ethernet Controller I211

317

— Bits [2:0] - Queue index for all pools or in regular RSS. In RSS only mode, all bits are used.

The contents of the redirection table are not defined following reset of the Memory Configuration
registers. System software must initialize the table prior to enabling multiple receive queues. It can
also update the redirection table during run time. Such updates of the table are not synchronized with
the arrival time of received packets. Therefore, it is not guaranteed that a table update takes effect on
a specific packet boundary.

Note: In case the operating system provides a redirection table whose size is smaller than 128
bytes, the software usually replicates the operating system-provided redirection table to span
the whole 128 bytes of the hardware's redirection table.

8.9.23 DMA VM Offload Register - DVMOLR (0xC038 + 0x40*n[n=0...3];
RW)

This register controls part of the offload and queueing options applied to each queue.

8.10 Filtering Register Descriptions

8.10.1 Immediate Interrupt RX - IMIR (0x5A80 + 4*n [n=0...7]; R/W)

This IMIR[n], TTQF[n], and the IMIREXT[n] registers define the filtering required to indicate which
packet triggers a LLI (immediate interrupt). The registers can also be used for queuing and deciding on
the timestamp of a packet.

Notes:
1. The Port field should be written in network order.
2. If one of the actions for this filter is set, then at least one of the IMIR[n].PORT_BP, IMIR[n].Size_BP,

the Mask bits in the TTQF[n] register or the IMIREXT.CtrlBit_BP bits should be cleared.
3. The value of the IMIR and IMIREXT registers after reset is unknown (apart from the

IMIR.Immediate Interrupt bit which is guaranteed to be cleared). Therefore, both registers should
be programmed before an IMIR.Immediate Interrupt is set for a given flow.

Field Bit(s) Initial Value Description

Reserved 28:0 0x0
Reserved.
Write 0x0, ignore on read.

Hide VLAN 29 0b

If this bit is set, a value of zero is written in the RDESC.VLAN tag and in the
RDESC.STATUS.VP fields of the received descriptor.
If this bit is set for a queue, the DVMOLR.STRVLAN bit for this queue should
be set also.

STRVLAN 30 0b

VLAN Strip.
If this bit is set, the VLAN is removed from the packet, and can be inserted
in the receive descriptor (depending on the value of the Hide VLAN field).
Note: If this bit is set the DVMOLR[n].CRC strip bit should be set as the

CRC is not valid anymore.

CRC Strip 31 1b

CRC Strip.
If this bit is set, the CRC is removed from the packet.
Notes:
1. If the DVMOLR[n].STRVLAN bit is set the DVMOLR[n].CRC strip bit

should also be set as the CRC is not valid anymore.
2. Even when this bit is set, CRC strip is not done on runt packets

(smaller than 64 bytes).

Ethernet Controller I211 — Programming Interface

318

Field Bit(s) Initial Value Description

Destination Port 15:0 0x0

Destination TCP Port
This field is compared with the Destination TCP port in incoming packets. Only a
packet with a matching destination TCP port triggers an immediate interrupt (if
IMIR[n].Immediate Interrupt is set to 1b) and trigger the actions defined in the
appropriate TTQF[n] register if all other filtering conditions are met.
Note: Enabled by the IMIR.PORT_BP bit.

Immediate
Interrupt 16 0b

Enables issuing an immediate interrupt when the following conditions are met:
• The 2-tuple filter associated with this register matches.
• The length filter associated with this filter matches.
• The TCP flags filter associated with this filter matches.

PORT_BP 17 X

Port Bypass.
When set to 1b, the TCP port check is bypassed and only other conditions are
checked.
When set to 0b, the TCP port is checked to fit the port field.

Reserved 28:18 0x0
Reserved.
Write 0x0, ignore on read.

Filter Priority 31:29 000b

Defines the priority of the filter assuming two filters with same priority don’t
match. If two filters with the same priority match the incoming packet, the first
filter (lowest ordinal number) is used in order to define the queue destination of
this packet.

Programming Interface — Ethernet Controller I211

319

8.10.2 Immediate Interrupt Rx Ext. - IMIREXT (0x5AA0 + 4*n
[n=0...7]; R/W)

Field Bit(s) Initial Value Description

Size_Thresh 11:0 X

Size Threshold.
These 12 bits define a size threshold. Only a packet with a length below this threshold
triggers an immediate interrupt (if IMIR[n].Immediate Interrupt is set to 1b) and
trigger the actions defined in the appropriate TTQF[n] register (if TTQF[n].Queue
Enable is set to 1b) if all other filtering conditions are met.
Notes:
1. Enabled by the IMIREXT.Size_BP bit.
2. The size used for this comparison is the size of the packet as forwarded to the

host and does not include any of the fields stripped by the MAC (VLAN or CRC).
As a result, setting the RCTL.SECRC and CTRL.VME bits should be taken into
account while calculating the size threshold.

3. When DVMOLR.CRC strip and DVMOLR.STRVLAN are used, the Size_thresh
should include the VLAN and the CRC.

Size_BP 12 X
Size Bypass.
When 1b, the size check is bypassed.
When 0b, the size check is performed.

CtrlBit 18:13 X

Control Bit.
Defines TCP control bits used to generate immediate interrupt and trigger filter.
Only a received packet with the corresponding TCP control bits set to 1b triggers an
immediate interrupt (if IMIR[n].Immediate Interrupt is set to 1b) and trigger the
actions defined in the appropriate TTQF[n] register (if TTQF[n].Queue Enable is set to
1b) if all other filtering conditions are met.
Bit 13 (URG)= Urgent pointer field significant.
Bit 14 (ACK)= Acknowledgment field.
Bit 15 (PSH):= Push function.
Bit 16 (RST)= Reset the connection.
Bit 17 (SYN)= Synchronize sequence numbers.
Bit 18 (FIN)= No more data from sender.
Note: Enabled by the IMIREXT.CtrlBit_BP bit.

CtrlBit_BP 19 X
Control Bits Bypass.
When set to 1b, the control bits check is bypassed.
When set to 0b, the control bits check is performed.

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

320

8.10.3 2-tuples Queue Filter - TTQF (0x59E0 + 4*n[n=0...7]; RW)

8.10.4 Immediate Interrupt Rx VLAN Priority - IMIRVP (0x5AC0; R/W)

Field Bit(s) Initial Value Description

Protocol 7:0 0x0

IP L4 protocol, part of the 2-tuple queue filters.
This field is compared with the IP L4 protocol in incoming packets. Only a packet
with a matching IP L4 protocol will trigger an immediate interrupt (if
IMIR[n].Immediate Interrupt is set to 1b) and trigger the actions defined in the
appropriate TTQF[n] register (if TTQF[n].Queue Enable is set to 1b) if all other
filtering conditions are met.

Queue Enable 8 0b When set, enables filtering of Rx packets by the 2-tuples defined in this filter to
the queue indicated in this register.

Reserved 11:9 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 14:9 0x0
Reserved.
Write 0x0, ignore on read.

Reserved_1 15
1b (For
legacy
reasons)

Reserved.
Write 1b, ignore on read.

Rx Queue 18:16 0x0 Identifies the Rx queue associated with this 2-tuple filter. Valid values are 0 to 3.

Reserved 26:19 0x0
Reserved
Write 0x0, ignore on read.

1588 time stamp 27 0b

When set, packets that match this filter are time stamped according to the IEEE
1588 specification.
Note: Packet is time stamped only if it matches IEEE 1588 protocol according

to the definition in the TSYNCRXCTL.Type field.

Mask 31:28 0xF

Mask bits for the 2-tuple fields. The corresponding field participates in the match
if the following bit cleared:
Bit 28 = Mask protocol comparison.
Bits 31:29 = Reserved.

Field Bit(s) Initial Value Description

Vlan_Pri 2:0 000b

VLAN Priority.
This field includes the VLAN priority threshold. When Vlan_pri_en is set to 1b, then an
incoming packet with a VLAN tag with a priority field equal or higher to VlanPri triggers
an immediate interrupt, regardless of the EITR moderation.

Vlan_pri_en 3 0b

VLAN Priority Enable.
When set to 1b, an incoming packet with VLAN tag with a priority equal or higher to
Vlan_Pri triggers an immediate interrupt, regardless of the EITR moderation.
When set to 0b, the interrupt is moderated by EITR.

Reserved 31:4 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

321

8.10.5 SYN Packet Queue Filter - SYNQF (0x55FC; RW)

8.10.6 EType Queue Filter - ETQF (0x5CB0 + 4*n[n=0...7]; RW)

8.11 Transmit Register Descriptions

8.11.1 Transmit Control Register - TCTL (0x0400; R/W)

Field Bit(s) Initial Value Description

Queue Enable 0 0b When set, enables forwarding of Rx packets to the queue indicated in this
register.

Rx Queue 3:1 0x0 Identifies an Rx queue associated with SYN packets. Valid values are 0 to 3.

Reserved 31:4 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

EType 15:0 0x0 Identifies the protocol running on top of IEEE 802. Used to forward Rx packets
containing this EType to a specific Rx queue.

Rx Queue 18:16 0x0 Identifies the receive queue associated with this EType. Valid values are 0 to 3.

Reserved 19 0x0
Reserved.
Write 0x0, ignore on read.

EType Length 24:20 0x0

Ethertype Length. When enabled by Ethertype length enable this field defines the
length of the Ethertype specified by EType and the device continues parsing
incoming packets post this EType. The length includes the Ethertype itself as well
as the data portion that is followed for this Ethertype. The minimal Ethertype
length supported is 4 bytes.

EType Length
Enable 25 0x0 Ethertype Length Enable. When set indicates the Ethertype length defined in

EType Length is valid.

Filter enable 26 0b When set, this filter is valid. Any of the actions controlled by the following fields
are gated by this field.

Reserved 28:27 0x0
Reserved.
Write 0x0, ignore on read.

Immediate
Interrupt 29 0x0 When set, packets that match this filter generate an immediate interrupt.

1588 time stamp 30 0b

When set, packets with this EType are time stamped according to the IEEE 1588
specification.
Note: The packet is time stamped only if it matches IEEE 1588 protocol

according to the definition in the TSYNCRXCTL.Type field.

Queue Enable 31 0b When set, enables filtering of Rx packets by the EType defined in this register to
the queue indicated in this register.

Ethernet Controller I211 — Programming Interface

322

8.11.2 Transmit Control Extended - TCTL_EXT (0x0404; R/W)

This register controls late collision detection.

The COLD field is used to determine the latest time in which a collision indication is considered as a
valid collision and not a late collision. When using the internal PHY, the default value of 0x40 provides a
behavior consistent with the 802.3 spec requested behavior.

Field Bit(s) Initial Value Description

Reserved 0 0b
Reserved.
Write 0b, ignore on read.

EN 1 0b

Transmit Enable.
The transmitter is enabled when this bit is set to 1b. Writing 0b to this bit stops
transmission after any in progress packets are sent. Data remains in the transmit FIFO
until the device is re-enabled. Software should combine this operation with reset if the
packets in the TX FIFO should be flushed.

PSP 3 1b

Pad Short Packets.
0b = Do not pad.
1b = Pad.
Padding makes the packet 64 bytes long. This is not the same as the minimum
collision distance.
If padding of short packets is allowed, the total length of a packet not including FCS
should be not less than 17 bytes.

CT 11:4 0xF

Collision Threshold.
This determines the number of attempts at retransmission prior to giving up on the
packet (not including the first transmission attempt). While this can be varied, it
should be set to a value of 15 in order to comply with the IEEE specification requiring
a total of 16 attempts. The Ethernet back-off algorithm is implemented and clamps to
the maximum number of slot-times after 10 retries. This field only has meaning when
in half-duplex operation.
Note: Software can choose to abort packet transmission in less than the Ethernet

mandated 16 collisions. For this reason, hardware provides CT support.

BST 21:12 0x40
Back-Off Slot Time.
This value determines the back-off slot time value in byte time.

SWXOFF 22 0b

Software XOFF Transmission.
When set to 1b, the I211 schedules the transmission of an XOFF (PAUSE) frame using
the current value of the PAUSE timer (FCTTV.TTV). This bit self-clears upon
transmission of the XOFF frame.
Note: While 802.3x flow control is only defined during full duplex operation, the

sending of PAUSE frames via the SWXOFF bit is not gated by the duplex
settings within the I211. Software should not write a 1b to this bit while the
I211 is configured for half-duplex operation.

Reserved 23 0b Reserved.

RTLC 24 0b

Re-transmit on Late Collision.
When set, enables the I211 to re-transmit on a late collision event.
Note: RTLC configures the I211 to perform re-transmission of packets when a late

collision is detected. Note that the collision window is speed dependent: 64
bytes for 10/100 Mb/s and 512 bytes for 1000 Mb/s operation. If a late
collision is detected when this bit is disabled, the transmit function assumes
the packet has successfully transmitted. This bit is ignored in full-duplex
mode.

Reserved 31:25 Reserved.

Programming Interface — Ethernet Controller I211

323

8.11.3 Transmit IPG Register - TIPG (0x0410; R/W)

This register controls the Inter Packet Gap (IPG) timer.

8.11.4 Retry Buffer Control – RETX_CTL (0x041C; RW)

This register controls the collision retry buffer.

Field Bit(s) Initial Value Description

Reserved 9:0 0x40
Reserved.
Write 0x40, ignore on read.

COLD 19:10 0x42
Collision Distance.
Used to determine the latest time in which a collision indication is considered as a
valid collision and not a late collision.

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

IPGT 9:0 0x08

IPG Back to Back.
Specifies the IPG length for back to back transmissions in both full and half duplex.
Measured in increments of the MAC clock:
8 ns MAC clock when operating @ 1 Gb/s.
80 ns MAC clock when operating @ 100 Mb/s.
800 ns MAC clock when operating @ 10 Mb/s.
IPGT specifies the IPG length for back-to-back transmissions in both full duplex and
half duplex. Note that an offset of 4 byte times is added to the programmed value to
determine the total IPG. As a result, a value of 8 is recommended to achieve a 12 byte
time IPG.

IPGR1 19:10 0x04

IPG Part 1.
Specifies the portion of the IPG in which the transmitter defers to receive events.
IPGR1 should be set to 2/3 of the total effective IPG (8).
Measured in increments of the MAC clock:
8 ns MAC clock when operating @ 1 Gb/s.
80 ns MAC clock when operating @ 100 Mb/s
800 ns MAC clock when operating @ 10 Mb/s.

IPGR 29:20 0x06

IPG After Deferral.
Specifies the total IPG time for non back-to-back transmissions (transmission
following deferral) in half duplex.
Measured in increments of the MAC clock:
8 ns MAC clock when operating @ 1 Gb/s.
80 ns MAC clock when operating @ 100 Mb/s
800 ns MAC clock when operating @ 10 Mb/s.
An offset of 5-byte times must be added to the programmed value to determine the
total IPG after a defer event. A value of 7 is recommended to achieve a 12-byte
effective IPG. Note that the IPGR must never be set to a value greater than IPGT. If
IPGR is set to a value equal to or larger that IPGT, it overrides the IPGT IPG setting in
half duplex resulting in inter-packet gaps that are larger then intended by IPGT. In this
case, full duplex is unaffected and always relies on IPGT.

Reserved 31:30 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

324

8.11.5 DMA TX Control - DTXCTL (0x3590; R/W)

This register is used for controlling the DMA Tx behavior.

8.11.6 DMA TX TCP Flags Control Low - DTXTCPFLGL (0x359C; RW)

This register holds the buses that AND the control flags in TCP header for the first and middle
segments of a TSO packet. Refer to Section 7.2.4.7.1 and Section 7.2.4.7.2 for details on the use of
this register.

Field Bit(s) Initial Value Description

Water Mark 3:0 0x3 Retry buffer water mark. This parameters defines the minimal number of Qwords that
should be present in the retry buffer before transmission is started.

Reserved 31:4 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Reserved 1:0 0x0
Reserved.
Write 0x0, ignore on read.

Enable_spoof_queue 2 0b
Enable Spoofing Queue.
0b = Disable queue that exhibited spoofing behavior.
1b = Do not disable port that exhibited spoofing behavior.

Reserved 3 0x0
Reserved.
Write 0x0, ignore on read.

OutOfSyncDisable 4 0b
Disable Out Of Sync Mechanism.
0b = Out Of Sync mechanism is enabled.
1b = Out Of Sync mechanism is disabled.

Reserved 6:5 0 Reserved.

Count CRC 7 1b If set, the CRC is counted as part of the packet bytes statistics in per
Queue statistics (PQGORC, PQGOTC, PQGORLBC and PQGOTLBC).

Reserved 31:8 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

TCP_flg_first_seg 11:0 0xFF6
TCP Flags First Segment.
Bits that are used to execute an AND operation with the TCP flags in the TCP
header in the first segment

Reserved 15:12 0x0
Reserved.
Write 0x0, ignore on read.

TCP_Flg_mid_seg 27:16 0xF76
TCP Flags middle segments.
Bits that are used to execute an AND operation with the TCP flags in the TCP
header in the middle segments.

Reserved 31:28 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

325

8.11.7 DMA TX TCP Flags Control High - DTXTCPFLGH (0x35A0; RW)

This register holds the buses that AND the control flags in TCP header for the last segment of a TSO
packet. Refer to Section 7.2.4.7.3 for details of use of this register.

8.11.8 DMA TX Max Total Allow Size Requests - DTXMXSZRQ (0x3540;
RW)

This register limits the allowable size of concurrent outstanding Tx read requests from the host memory
on the PCIe. Limiting the size of concurrent outstanding PCIe requests allows low latency packet read
requests to be serviced in a timely manner, as the low latency request is serviced right after current
outstanding requests are completed.

8.11.9 DMA TX Maximum Packet Size - DTXMXPKTSZ (0x355C; RW)

This register limits the total number of data bytes that might be transmitted in a single frame. Reducing
packet size enables better utilization of transmit buffer.

Field Bit(s) Initial Value Description

TCP_Flg_lst_seg 11:0 0xF7F
TCP Flags Last Segment.
Bits that are used to execute an AND operation with the TCP flags at TCP header
in the last segment.

Reserved 31:12 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Max_bytes_num_req 11:0 0x10

Maximum allowable size of concurrent Tx outstanding requests on PCIe.
Field defines maximum size in 256 byte resolution of outstanding Tx requests
to be sent on PCIe. If total amount of outstanding Tx requests is higher than
defined in this field, no further Tx outstanding requests are sent.

Reserved 31:12 0x0 Reserved.

Field Bit(s) Initial Value Description

MAX_TPKT_SIZE 8:0 0x98

Maximum transmit packet size that is allowed to be transmitted by the driver.
Value entered is in 64 Bytes resolution.
Notes:
1. Default value enables transmission of maximum sized 9,728-byte Jumbo

frames.
2. Values programmed in this field should not exceed 9,728 bytes.
3. Value programmed should not exceed the Tx buffers size programmed in

the TXPBSIZE register.

Reserved 31:9 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

326

8.11.10 Transmit Descriptor Base Address Low - TDBAL (0xE000 +
0x40*n [n=0...3]; R/W)

These registers contain the lower 32 bits of the 64-bit descriptor base address. The lower 7 bits are
ignored. The Transmit Descriptor Base Address must point to a 128-byte aligned block of data.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3800, 0x3900, 0x3A00 and 0x3B00, respectively.

8.11.11 Transmit Descriptor Base Address High - TDBAH (0xE004 +
0x40*n [n=0...3]; R/W)

These registers contain the upper 32 bits of the 64-bit descriptor base address.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3804, 0x3904, 0x3A04 and 0x3B04, respectively.

8.11.12 Transmit Descriptor Ring Length - TDLEN (0xE008 + 0x40*n
[n=0...3]; R/W)

These registers contain the descriptor ring length. The registers indicates the length in bytes and must
be 128-byte aligned.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3808, 0x3908, 0x3A08 and 0x3B08, respectively.

Field1

1. Software should program the TDBAL[n] register only when a queue is disabled (TXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

Lower_0 6:0 0x0
Ignored on writes.
Returns 0x0 on reads.

TDBAL 31:7 X Transmit Descriptor Base Address Low.

Field1

1. Software should program the TDBAH[n] register only when a queue is disabled (TXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

TDBAH 31:0 X Transmit Descriptor Base Address [63:32].

Field1

1. Software should program the TDLEN[n] register only when a queue is disabled (TXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

Zero 6:0 0x0
Ignore on writes.
Read back as 0x0.

LEN 19:7 0x0
Descriptor Ring Length (number of 8 descriptor sets).
Note: Maximum allowed value in TDLEN field 19:0 is 0x80000 (32K

descriptors).

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

327

8.11.13 Transmit Descriptor Head - TDH (0xE010 + 0x40*n [n=0...3];
RO)

These registers contain the head pointer for the transmit descriptor ring. It points to a 16-byte datum.
Hardware controls this pointer.

Note: The values in these registers might point to descriptors that are still not in host memory. As a
result, the host cannot rely on these values in order to determine which descriptor to release.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3810, 0x3910, 0x3A10 and 0x3B10, respectively.

8.11.14 Transmit Descriptor Tail - TDT (0xE018 + 0x40*n [n=0...3]; R/
W)

These registers contain the tail pointer for the transmit descriptor ring and points to a 16-byte datum.
Software writes the tail pointer to add more descriptors to the transmit ready queue. Hardware
attempts to transmit all packets referenced by descriptors between head and tail.

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3818, 0x3918, 0x3A18 and 0x3B18, respectively.

8.11.15 Transmit Descriptor Control - TXDCTL (0xE028 + 0x40*n
[n=0...3]; R/W)

These registers control the fetching and write-back operations of transmit descriptors. The three
threshold values are used to determine when descriptors are read from and written to host memory.
The values are in units of descriptors (each descriptor is 16 bytes).

Since write-back of transmit descriptors is optional (under the control of RS bit in the descriptor), not
all processed descriptors are counted with respect to WTHRESH. Descriptors start accumulating after a
descriptor with RS set is processed. In addition, with transmit descriptor bursting enabled, some
descriptors are written back that did not have RS set in their respective descriptors.

Note: When WTHRESH = 0x0, only descriptors with the RS bit set are written back.

Field Bit(s) Initial Value Description

TDH 15:0 0x0 Transmit Descriptor Head.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

TDT 15:0 0x0 Transmit Descriptor Tail.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

328

Field Bit(s) Initial Value Description

PTHRESH 4:0 0x0

Prefetch Threshold.
Controls when a prefetch of descriptors is considered. This threshold refers to the
number of valid, unprocessed transmit descriptors the I211 has in its on-chip buffer. If
this number drops below PTHRESH, the algorithm considers pre-fetching descriptors
from host memory. However, this fetch does not happen unless there are at least
HTHRESH valid descriptors in host memory to fetch.
Note: When PTHRESH is 0x0 a transmit descriptor fetch operation is done when any

valid descriptors are available in host memory and space is available in
internal buffer.

Reserved 7:5 0x0
Reserved.
Write 0x0, ignore on read.

HTHRESH 12:8 0x0

Host Threshold.
Prefetch of transmit descriptors is considered when number of valid transmit
descriptors in host memory is at least HTHRESH.
Note: HTHRESH should be given a non zero value each time PTHRESH is used.

Reserved 15:13 0x0
Reserved.
Write 0x0, ignore on read.

WTHRESH 20:16 0x0

Write-Back Threshold.
Controls the write-back of processed transmit descriptors. This threshold refers to the
number of transmit descriptors in the on-chip buffer that are ready to be written back
to host memory. In the absence of external events (explicit flushes), the write-back
occurs only after at least WTHRESH descriptors are available for write-back.
Possible values for this field are 0 to 23.
Note: Since the default value for write-back threshold is 0b, descriptors are

normally written back as soon as they are processed. WTHRESH must be
written to a non-zero value to take advantage of the write-back bursting
capabilities of the I211.

Reserved 23:21 0x0 Reserved.

Reserved 24 0b
Reserved.
Write 0b, ignore on read.

ENABLE 25 0b

Transmit Queue Enable.
When set, this bit enables the operation of a specific transmit queue.Setting this bit
initializes the Tail and Head registers (TDT[n] and TDH[n]) of a specific queue. Until
then, the state of the queue is kept and can be used for debug purposes.
When disabling a queue, this bit is cleared only after all transmit activity on this queue
is stopped.
Note: When transmit queue is enabled and descriptors exist, descriptors and data

are fetched immediately. Actual transmit activity on port starts only if the
TCTL.EN bit is set.

Programming Interface — Ethernet Controller I211

329

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3828, 0x3928, 0x3A28 and 0x3B28, respectively.

8.11.16 Tx Descriptor Completion Write-Back Address Low - TDWBAL
(0xE038 + 0x40*n [n=0...3]; R/W)

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3838, 0x3938, 0x3A38 and 0x3B38, respectively.

8.11.17 Tx Descriptor Completion Write-Back Address High - TDWBAH
(0xE03C + 0x40*n [n=0...3];R/W)

SWFLSH 26 0b

Transmit Software Flush.
This bit enables software to trigger descriptor write-back flushing, independently of
other conditions.
This bit must be written to 1b and then to 0b after a write-back flush is triggered.
Note: When working in head write-back mode (TDWBAL.Head_WB_En = 1b)

TDWBAL.WB_on_EITR bit should be set for a transmit descriptor flush to
occur.

Priority 27 0b

Transmit Queue Priority.
0b = Low priority.
1b = High priority.
When set, transmit DMA resources are always allocated to the queue before low
priority queues. Arbitration between transmit queues with the same priority is done in
a Round Robin (RR) fashion or in most empty fashion set by the
TQAVCTRL.DataFetchARB register.

HWBTHRESH 31:28 0x0

Transmit Head Write-back Threshold.
If the value of field is greater than 0x0, the head write-back to host occurs only when
the amount of internal pending write backs exceeds this threshold. Refer to
Section 7.2.4 for additional information.
Note: When activating this mode the WB_on_EITR bit in the TDWBAL register

should be set to guarantee a write back after a timeout even if the threshold
has not been reached.

Field1

1. Software should program the TDWBAL[n] register only when a queue is disabled (TXDCTL[n].Enable = 0b).

Bit(s) Initial Value Description

Head_WB_En 0 0b

Head Write-Back Enable.
1b = Head write back is enabled.
0b = Head write back is disabled.
When head_WB_en is set, TXDCTL.SWFLSH is ignored and no descriptor write back is
executed.

WB_on_EITR 1 0b When set, a head write back is done upon EITR expiration.

HeadWB_Low 31:2 0x0

Bits 31:2 of the head write-back memory location (Dword aligned). The last 2 bits of
this field are ignored and are always interpreted as 00b, meaning that the actual
address is Qword aligned.
Bits 1:0 are always 00b.

Field1 Bit(s) Initial Value Description

HeadWB_High 31:0 0x0 Highest 32 bits of the head write-back memory location.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

330

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x383C, 0x393C, 0x3A3C and 0x3B3C, respectively.

8.11.18 Launch Time Offset Register LAUNCH_OS0 (0x3578; R/W)

8.12 DCA and TPH Register Descriptions

8.12.1 Rx DCA Control Registers - RXCTL (0xC014 + 0x40*n [n=0...3];
R/W)

Note: Rx data write no-snoop is activated when the NSE bit is set in the receive descriptor.

Note: Both the DCA Enable bit and TPH Enable bit should not be set for the same type of traffic.

1. Software should program the TDWBAH[n] register only when a queue is disabled (TXDCTL[n].Enable = 0b).

Field Bit(s) Initial Value Description

Reserved 4:0 0x0 Reserved.

LaunchOffset 29:5 0x0

Launch Time Offset, defined in 32nsec granularity.
The launch time of a packet is defined by the sum of the LaunchOffset and the
Relative LaunchTime parameter in the transmit context descriptor. Note that the
calculated launch time should not exceed 1 second on which SYSTIML wraps
around.

Reserved 30 0x0 Reserved.

Reserved 31 0x1 Reserved, should be written to 0x1 and ignored on read.

Field Bit(s) Initial Value Description

Rx Descriptor
Fetch TPH EN 0 0b

Receive Descriptor Fetch TPH Enable.
When set, hardware enables TPH for all Rx descriptors fetch from memory. When
cleared, hardware does not enable TPH for descriptor fetches. This bit is cleared as a
default.

Rx Descriptor
Writeback TPH EN 1 0b

Receive Descriptor Writeback TPH Enable.
When set, hardware enables TPH for all Rx descriptors written back into memory.
When cleared, hardware does not enable TPH for descriptor write-backs. This bit is
cleared as a default. The hint used is the hint set in the Socket ID field.

Rx Header TPH EN 2 0b

Receive Header TPH Enable.
When set, hardware enables TPH for all received header buffers. When cleared,
hardware does not enable TPH for Rx headers. This bit is cleared as a default. The hint
used is the hint set in the Socket ID field.

Rx Payload TPH EN 3 0b

Receive Payload TPH Enable.
When set, hardware enables TPH for all Ethernet payloads written into memory. When
cleared, hardware does not enable TPH for Ethernet payloads. This bit is cleared as a
default. The hint used is the hint set in the Socket ID field.

Reserved 4 0b
Reserved.
Write 0b, ignore on read.

Programming Interface — Ethernet Controller I211

331

Note: In order to keep compatibility withprevious devices, for queues 0-3, these registers are
aliased to addresses 0x2814, 0x2914, 0x2A14 and 0x2B14, respectively.

Rx Descriptor
DCA EN 5 0b

Descriptor DCA Enable.
When set, hardware enables DCA for all Rx descriptors written back into memory.
When cleared, hardware does not enable DCA for descriptor write-backs. This bit is
cleared as a default.

Rx Header DCA EN 6 0b
Receive Header DCA Enable.
When set, hardware enables DCA for all received header buffers. When cleared,
hardware does not enable DCA for Rx headers. This bit is cleared as a default.

Rx Payload DCA EN 7 0b

Receive Payload DCA Enable.
When set, hardware enables DCA for all Ethernet payloads written into memory. When
cleared, hardware does not enable DCA for Ethernet payloads. This bit is cleared as a
default.

RXdescRead
NSEn 8 0b

Receive Descriptor Read No Snoop Enable.
This bit must be reset to 0b to ensure correct functionality (except if the software
driver can guarantee the data is present in the main memory before the DMA process
occurs).
Note: When TPH is enabled, the No Snoop bit should be 0b.

RXdescRead
ROEn 9 1b Receive Descriptor Read Relax Order Enable.

RXdescWBNSen 10 0b
Receive Descriptor Write-Back No Snoop Enable.
This bit must be reset to 0b to ensure correct functionality of descriptor write back.
Note: When TPH is enabled No Snoop bit should be 0b.

RXdescWBROen
(RO) 11 0b

Receive Descriptor Write-Back Relax Order Enable.
This bit must be reset to 0b to ensure correct functionality of descriptor write back.

RXdataWrite
NSEn 12 0b

Receive Data Write No Snoop Enable (header replication: header and data).
When set to 0b, the last bit of the Packet Buffer Address field in the advanced receive
descriptor is used as the LSB of the packet buffer address (A0), thus enabling Byte
alignment of the buffer.
When set to 1b, the last bit of the Packet Buffer Address field in advanced receive
descriptor is used as the No-Snoop Enabling (NSE) bit (buffer is Word aligned). If also
set to 1b, the NSE bit determines whether the data buffer is snooped or not.
Note: When TPH is enabled No Snoop bit should be 0b.

RXdataWrite
ROEn 13 1b Receive Data Write Relax Order Enable (header replication: header and data).

RxRepHeader
NSEn 14 0b

Receive Replicated/Split Header No Snoop Enable.
This bit must be reset to 0b to ensure correct functionality of header write to host
memory.
Note: When TPH is enabled, the No Snoop bit should be 0b.

RxRepHeader
ROEn 15 1b Receive Replicated/Split Header Relax Order Enable.

Reserved 23:16 0x0
Reserved.
Write 0x0, ignore on read.

CPUID 31:24 0x0

Physical ID.
Legacy DCA capable platforms. The software device driver, upon discovery of the
physical CPU ID and CPU Bus ID, programs the CPUID field with the Physical CPU and
Bus ID associated with this Rx queue.
DCA 1.0 capable platforms. The software device driver programs a value, based on the
relevant APIC ID, associated with this Tx queue.
Refer to Table 3.1.3.1.2.3 for details.
TPH capable platforms. The device driver programs a value, based on the relevant
Socket ID, associated with this receive queue.
Note that for TPH platforms, bits 31:27 of this field should always be set to zero. Refer
to Section 7.7.2 for details.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

332

8.12.2 Tx DCA Control Registers - TXCTL (0xE014 + 0x40*n [n=0...3];
R/W)

Field Bit(s) Initial Value Description

Tx Descriptor Fetch
TPH EN1

1. Both the DCA Enable bit and the TPH Enable bit should not be set for the same type of traffic.

0 0b

Transmit Descriptor Fetch TPH Enable.
When set, hardware enables TPH for all Tx descriptors fetch from memory. When
cleared, hardware does not enable TPH for descriptor fetches. This bit is cleared as a
default.

Tx Descriptor
Writeback TPH EN 1 0b

Transmit Descriptor Writeback TPH Enable.
When set, hardware enables TPH for all Tx descriptors written back into memory.
When cleared, hardware does not enable TPH for descriptor write-backs. This bit is
cleared as a default. The hint used is the hint set in the Socket ID field.

Reserved 2 0b
Reserved.
Write 0b, ignore on read.

Tx Packet TPH EN 3 0b

Transmit Packet TPH Enable.
When set, hardware enables TPH for all Ethernet payloads read from memory. When
cleared, hardware does not enable TPH for Ethernet payloads. This bit is cleared as a
default.

Reserved 4 0b
Reserved.
Write 0b, ignore on read.

Tx Descriptor DCA
EN1 5 0b

Descriptor DCA Enable.
When set, hardware enables DCA for all Tx descriptors written back into memory.
When cleared, hardware does not enable DCA for descriptor write backs. This bit is
cleared as a default and also applies to head write back when enabled.

Reserved 7:6 00b
Reserved.
Write 00b, ignore on read.

TXdescRDNSen 8 0b

Tx Descriptor Read No Snoop Enable.
This bit must be reset to 0b to ensure correct functionality (unless the software
device driver has written this bit with a write-through instruction).
Note: When TPH is enabled No Snoop bit should be 0b.

TXdescRDROEn 9 1b Tx Descriptor Read Relax Order Enable.

TXdescWBNSen 10 0b

Tx Descriptor Write-Back No Snoop Enable.
This bit must be reset to 0b to ensure correct functionality of descriptor write-back.
Also applies to head write-back, when enabled.
Note: When TPH is enabled No Snoop bit should be 0b.

TXdescWBROen 11 1b
Tx Descriptor Write Back Relax Order Enable.
Applies to head write back, when enabled.

TXDataReadNSEn 12 0b
Tx Data Read No Snoop Enable.
Note: When TPH is enabled No Snoop bit should be 0b.

TXDataReadROEn 13 1b Tx Data Read Relax Order Enable.

Reserved 23:14 0b
Reserved
Write 0 ignore on read.

CPUID 31:24 0x0

Physical ID
Legacy DCA capable platforms - the device driver, upon discovery of the physical CPU
ID and CPU Bus ID, programs the CPUID field with the Physical CPU and Bus ID
associated with this Tx queue.
DCA 1.0 capable platforms - the device driver programs a value, based on the
relevant APIC ID, associated with this Tx queue.
Refer to Table 3.1.3.1.2.3 for details
TPH capable platforms - the device driver programs a value, based on the relevant
Socket ID, associated with this transmit queue.
Note that for TPH platforms, bits 31:27 of this field should always be set to zero.
Refer to Section 7.7.2 for details.

Programming Interface — Ethernet Controller I211

333

Note: In order to keep compatibility with previous devices, for queues 0-3, these registers are
aliased to addresses 0x3814, 0x3914, 0x3A14 and 0x3B14, respectively.

8.12.3 DCA Requester ID Information - DCA_ID (0x5B70; RO)

The DCA Requester ID field, composed of Device ID, Bus #, and Function # is set up in MMIO space for
software to program the DCA Requester ID Authentication register.

8.12.4 DCA Control - DCA_CTRL (0x5B74; R/W)

This CSR is common to all functions.

Field Bit(s) Initial Value Description

Function
Number 2:0 000b

Function Number.
Function number assigned to the function based on BIOS/operating system
enumeration.

Device
Number 7:3 0x0

Device Number.
Device number assigned to the function based on BIOS/operating system
enumeration.

Bus Number 15:8 0x0
Bus Number.
Bus number assigned to the function based on BIOS/operating system enumeration.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

DCA_DIS 0 1b
DCA Disable.
0b = DCA tagging is enabled.
1b = DCA tagging is disabled.

DCA_MODE 4:1 0x0

DCA Mode.
000b = Legacy DCA is supported. The TAG field in the TLP header is based on the
following coding: bit 0 is DCA enable; bits 3:1 are CPU ID).
001b = DCA 1.0 is supported. When DCA is disabled for a given message, the TAG
field is 0000,0000b. If DCA is enabled, the TAG is set per queue as programmed in the
relevant DCA Control register.
All other values are undefined.

Reserved 8:5 0x0
Reserved.
Write 0x0, ignore on read.

Desc_PH 10:9 00b
Descriptor PH.
Defines the PH field used when a TPH hint is given for descriptor associated traffic
(descriptor fetch, descriptor write back or head write back).

Data_PH 12:11 10b
Data PH.
Defines the PH field used when a TPH hint is given for data associated traffic (Tx data
read, Rx data write).

Reserved 31:13 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

334

8.13 Timer Registers Description

8.13.1 Watchdog Setup - WDSTP (0x1040; R/W)

8.13.2 Watchdog Software Device Status - WDSWSTS (0x1044; R/W)

8.13.3 Free Running Timer - FRTIMER (0x1048; RWM)

This register reflects the value of a free running timer that can be used for various timeout indications.
The register is reset by a PCI reset and/or software reset.

Note: Writing to this register is for DFX purposes only.

Field Bit(s) Initial Value Description

WD_Enable 0 0b Enable Watchdog Timer.

WD_Timer_
Load_enable
(SC)

1 0b

Enables the load of the watchdog timer by writing to WD_Timer field. If this bit is not
set, the WD_Timer field is loaded by the value of WD_Timeout.
Note: Writing to this field is only for DFX purposes.

This field resets on software reset events.

Reserved 15:2 0x0
Reserved.
Write 0x0, ignore on read.

WD_Timer
(RWM) 23:16 WD_Timeout

Indicates the current value of the timer. Resets to the timeout value each time the I211
functional bit in Software Device Status register is set. If this timer expires, the WD
interrupt to the firmware and the WD SDP is asserted. As a result, this timer is stuck at
zero until it is re-armed.
Note: Writing to this field is only for DFX purposes.

WD_Timeout 31:24 0x2

Note: Defines the number of seconds until the watchdog expires. The granularity of
this timer is 1 second. The minimal value allowed for this register when the
watchdog mechanism is enabled is two. Setting this field to 1b might cause
the watchdog to expire immediately.

Field Bit(s) Initial Value Description

Dev_Function
al (SC) 0 0b

Each time this bit is set, the watchdog timer is re-armed.
This bit is self clearing.

Force_WD
(SC) 1 0b

Setting this bit causes the WD timer to expire immediately. The WD_timer field is set
to 0b. It can be used by software in order to indicate some fatal error detected in the
software or in the hardware.
This bit is self clearing.

Reserved 23:2 0x0
Reserved.
Write 0x0, ignore on read.

Stuck Reason 31:24 0x0
This field can be used by software to indicate to the firmware the reason the I211 is
malfunctioning. The encoding of this field is software/firmware dependent. A value of
0x0 indicates a functional the I211.

Field Bit(s) Initial Value Description

Microsecond 9:0 X Number of microseconds in the current millisecond.

Millisecond 19:10 X Number of milliseconds in the current second.

Seconds 31:20 X Number of seconds from the timer start (up to 4095 seconds).

Programming Interface — Ethernet Controller I211

335

8.13.4 TCP Timer - TCPTIMER (0x104C; R/W)

Field Bit(s) Initial Value Description

Duration 7:0 0x0
Duration.
Duration of the TCP interrupt interval in ms.

KickStart (WO) 8 0b
Counter KickStart.
Writing a 1b to this bit kick starts the counter down count from the initial
value defined in the Duration field. Writing a 0b has no effect.

TCPCountEn 9 0b

TCP Count Enable.
1b = TCP timer counting enabled.
0b = TCP timer counting disabled.
Once enabled, the TCP counter counts from its internal state. If the
internal state is equal to 0b, the down-count does not restart until
KickStart is activated. If the internal state is not 0b, the down-count
continues from internal state.
This enables a pause in the counting for debug purpose.

TCPCountFinish (WO) 10 0b

TCP Count Finish.
This bit enables software to trigger a TCP timer interrupt, regardless of the
internal state.
Writing a 1b to this bit triggers an interrupt and resets the internal counter
to its initial value. Down count does not restart until either KickStart is
activated or Loop is set.
Writing a 0b has no effect.

Loop 11 0b

TCP Loop.
When set to 1b, the TCP counter reloads duration each time it reaches
zero, and continues down-counting from this point without kick starting.
When set to 0b, the TCP counter stops at a zero value and does not re-
start until KickStart is activated.
Note: Setting this bit alone is not enough to start the timer activity. The

KickStart bit should also be set.

Reserved 31:12 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

336

8.14 Time Sync Register Descriptions

8.14.1 Rx Time Sync Control Register - TSYNCRXCTL (0xB620;RW)

8.14.2 Rx Timestamp Low - RXSTMPL (0xB624; RO)

8.14.3 Rx Timestamp High - RXSTMPH (0xB628; RO)

Field Bit(s) Initial Value Description

RXTT(RO) 0 0x0
Rx Timestamp Valid
Bit is set when a valid value for Rx timestamp is captured in the Rx timestamp
registers. Bit is cleared by read of Rx timestamp high register (RXSTMPH)).

Type 3:1 0x0

Type of Packets to Timestamp.
000b = Timestamp L2 (V2) packets with MessageType as defined by MSGT field in the
TSYNCRXCFG register as well as DELAY_REQ and DELAY_RESP packets.
001b = Timestamp L4 (V1) packets with Control as defined by CTRLT field in the
TSYNCRXCFG register.
010b = Timestamp V2 (L2 and L4) packets with MessageType as defined by MSGT
field in the TSYNCRXCFG register as well as DELAY_REQ and DELAY_RESP packets.
100b = timestamp all packets.
101b = Timestamp all V2 packets which have a MessageType bit 3 zero, which means
timestamp all event packets.
011b, 110b and 111b = Reserved

En 4 0b
Enable Rx Timestamp
0b = Timestamping disabled.
1b = Timestamping enabled.

RSV 31:5 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

RTSL 29:0 0x0 Rx timestamp LSB value (defined in ns units).

Zero 31:30 0x0 Zero bits.

Field Bit(s) Initial Value Description

RTSH 31:0 0x0 Rx timestamp MSB value (defined in second units).

Programming Interface — Ethernet Controller I211

337

8.14.4 Tx Time Sync Control Register - TSYNCTXCTL (0xB614; RW)

8.14.5 Tx Timestamp Value Low - TXSTMPL (0xB618;RO)

8.14.6 Tx Timestamp Value High - TXSTMPH(0xB61C; RO)

8.14.7 System Time Register Residue - SYSTIMR (0xB6F8; RW)

8.14.8 System Time Register Low - SYSTIML (0xB600; RW)

Field Bit(s) Initial Value Description

TXTT(ROM) 0 0b Transmit timestamp valid (equals 1b when a valid value for Tx timestamp is captured
in the Tx timestamp register, clear by read of Tx timestamp register TXSTMPH).

RSV 3:1 0x0
Reserved.
Write 0x0, ignore on read.

EN 4 0b
Enable Transmit timestamp.
0b = time stamping disabled.
1b = time stamping enabled.

RSV 5:7 0x0 Reserved. Write 0x0, ignore on read.

1588_Offset 8:15 0x0
Byte offset of the inserted timestamp to the transmit packet in 1-step flow. The offset
is defined in byte units measured from the beginning of the packet as transmitted to
the network (including the optional inserted VLAN tag).

RSV 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

TTSL 29:0 0x0 Transmit timestamp LSB value (defined in ns units).

Zero 31:30 0x0 Zero bits.

Field Bit(s) Initial Value Description

TTSH 31:0 0x0 Transmit timestamp MSB value (defined in sec units).

Field Bit(s) Initial Value Description

STR 31:0 0x0 System time Residue value (defined in 2-32 nS resolution).

Field Bit(s) Initial Value Description

STL 29:0 0x0 System time LSB value (defined in ns units).

Zero 31:30 0x0 Zero bits.

Ethernet Controller I211 — Programming Interface

338

8.14.9 System Time Register High - SYSTIMH (0xB604; RW)

8.14.10 System Time Register Tx MS - SYSTIMTM (0xB6FC; RW)

8.14.11 Increment Attributes Register - TIMINCA (0xB608; RW)

8.14.12 Time Adjustment Offset Register - TIMADJ (0xB60C; RW)

Field Bit(s) Initial Value Description

STH 31:0 0x0 System time MSB value (defined in sec units).

Field Bit(s) Initial Value Description

STM 15:0 0x0
Two MS bytes of the system time (defined in 232 sec units). This field is
static, kept at the value programmed by the software. It is used for 1-step
transmission as the two MS bytes inserted to the SYNC packet.

RSV 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Incvalue 30:0 0x0
Increment value.
Value to be added or subtracted (depending on ISGN value) from 8 nS clock
cycle in resolution of 2-32 nS.

ISGN 31 0b
Increment sign.
0b = Each 8 nS cycle add to SYSTIM a value of 8 nS + Incvalue * 2-32 nS.
1b = Each 8 nS cycle add to SYSTIM a value of 8 nS -Incvalue * 2-32 nS.

Field Bit(s) Initial Value Description

Tadjus 29:0 0x0
Time Adjustment Value.
Low (defined in ns units). The TADJL field can be set to any non-zero value
smaller than 999,999,900 decimal (slightly below 1 second).

Zero 30 0b Zero bit.

Sign 31 0b Sign (0b= “+”1b = “-”).

Programming Interface — Ethernet Controller I211

339

8.14.13 TimeSync Auxiliary Control Register - TSAUXC (0xB640; RW)

Field Bit(s) Initial Value Description

EN_TT0 0 0b

Enable target time 0.
Enable bit is set by software to 1b, to enable pulse or level change generation as a
function of the TSAUXC.PLSG bit.

EN_TT1 1 0b
Enable target time 1.
Enable bit is set by software to 1b, to enable a level change.

EN_CLK0 2 0b

Enable Configurable Frequency Clock 0.
Clock is generated according to frequency defined in the FREQOUT0 register on the
SDP pin (0 to 3) that has both:
1. TSSDP.TS_SDPx_SEL field with a value of 10b.
2. TSSDP.TS_SDPx_EN value of 1b.

SAMP_AUT0 3 0b
When setting the SAMP_AUT0 flag the SYSTIML/H registers are latched to the
AUXSTMPL0/ AUXSTMPH0 registers. Then the SAMP_AUT0 flag is auto-cleared by the
hardware.

ST0 4 0b

Start Clock 0 Toggle on Target Time 0.
Enable Clock 0 toggle only after target time 0, that’s defined in the TRGTTIML0 and
TRGTTIMH0 registers, has passed. The clock output is initially 0 and toggles with a
frequency defined in the FREQOUT0 register.

EN_CLK1 5 0b

Enable Configurable Frequency Clock 1.
Clock is generated according to frequency defined in the FREQOUT1 register on the
SDP pin (0 to 3) that has both:
1. TSSDP.TS_SDPx_SEL field with a value of 11b.
2. TSSDP.TS_SDPx_EN value of 1b.

SAMP_AUT1 6 0b
When setting the SAMP_AUT1 flag the SYSTIML/H registers are latched to the
AUXSTMPL1/ AUXSTMPH1 registers. Then the SAMP_AUT1 flag is auto-cleared by the
hardware.

ST1 7 0b

Start Clock 1 Toggle on Target Time 1.
Enable Clock 1 toggle only after Target Time 1, that’s defined in the TRGTTIML1 and
TRGTTIMH1 registers, has passed. The clock output is initially 1 and toggles with a
frequency defined in the FREQOUT1 register

EN_TS0 8 0b

Enable hardware timestamp 0.
Enable Timestamping occurrence of change in SDP pin into the AUXSTMPL0 and
AUXSTMPH0 registers.
SDP pin (0 to 3) is selected for time stamping, if the SDP pin is selected via the
TSSDP.AUX0_SDP_SEL field and the TSSDP.AUX0_TS_SDP_EN bit is set to 1b.

AUTT0 9 0b
Auxiliary Timestamp Taken.
Cleared when read from auxiliary timestamp 0 occurred.

EN_TS1 10 0b

Enable Hardware Timestamp 1.
Enable timestamping occurrence of change in SDP pin into the AUXSTMPL1 and
AUXSTMPH1 registers.
SDP pin (0 to 3) is selected for time stamping, if the SDP pin is selected via the
TSSDP.AUX1_SDP_SEL field and the TSSDP.AUX1_TS_SDP_EN bit is set to 1b.

AUTT1 11 0b
Auxiliary Timestamp Taken.
Cleared when read from auxiliary timestamp 1 occurred.

Reserved 16:12 0x0
Reserved.
Write 0x0, ignore on read.

PLSG 17 0b

Use Target Time 0 to generate start of pulse and Target Time 1 to generate end of
pulse. SDP pin selected to drive pulse or level change is set according to the
TSSDP.TS_SDPx_SEL field with a value of 00b and TSSDP.TS_SDPx_EN bit with a
value of 1b.
0b = Target Time 0 generates change in SDP level.
1b = Target time 0 generates start of pulse on SDP pin.
Note: Pulse or level change is generated when TSAUXC.EN_TT0 is set to 1b.

Ethernet Controller I211 — Programming Interface

340

8.14.14 Target Time Register 0 Low - TRGTTIML0 (0xB644; RW)

8.14.15 Target Time Register 0 High - TRGTTIMH0 (0xB648; RW)

8.14.16 Target Time Register 1 Low - TRGTTIML1 (0xB64C; RW)

8.14.17 Target Time Register 1 High - TRGTTIMH1 (0xB650; RW)

Reserved 29:18 0b
Reserved.
Write 0b, ignore on read.

Reserved 30 1b
Reserved.
Write 1b, ignore on read.

Disable
systime 31 1b

Disable SYSTIM Count Operation.
0b = SYSTIM timer activated
1b = SYSTIM timer disabled. Value of SYSTIMH, SYSTIML and SYSTIMR remains
constant.

Field Bit(s) Initial Value Description

TTL 29:0 0x0 Target Time 0 LSB register (defined in ns units).

Zero 31:30 0x0 Zero bits.

Field Bit(s) Initial Value Description

TTH 31;0 0x0 Target Time 0 MSB register (defined in second units).

Field Bit(s) Initial Value Description

TTL 29:0 0x0 Target Time 1 LSB register (defined in ns units).

Zero 31:30 0x0 Zero bits.

Field Bit(s) Initial Value Description

TTH 31:0 0x0 Target Time 1 MSB register (defined in second units).

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

341

8.14.18 Frequency Out 0 Control Register FREQOUT0 (0xB654; RW)

8.14.19 Frequency Out 1 Control Register - FREQOUT1 (0xB658; RW)

8.14.20 Auxiliary Time Stamp 0 Register Low - AUXSTMPL0 (0xB65C; RO)

8.14.21 Auxiliary Time Stamp 0 Register High -AUXSTMPH0 (0xB660; RO)

Reading this register releases the value stored in AUXSTMPH/L0 and enables timestamping of the next
value.

8.14.22 Auxiliary Time Stamp 1 Register Low AUXSTMPL1 (0xB664; RO)

Field Bit(s) Initial Value Description

CHCT 29:0 0x0

Clock Out Half Cycle Time. Defines the Half Cycle time of Clock 0 in ns
units. When clock output is enabled, permitted values are any value larger
than 8 and up to including 70,000,000 decimal (70 ms). The following
larger values can be used as long as the output clock is synchronized to
whole seconds as described in section "Synchronized Output Clock on SDP
Pins": 125 ms; 250 ms and 500 ms.

Reserved 31:30 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

CHCT 29:0 0x0

Clock Out Half Cycle Time defines the Half Cycle time of Clock 1 in ns units.
When clock output is enabled, permitted values are any value larger than 8
and up to including 70,000,000 decimal (70 ms). The following larger
values can be used as long as the output clock is synchronized to whole
seconds as described in section "Synchronized Output Clock on SDP Pins":
125 ms; 250 ms and 500 ms.

Reserved 31:30 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

TSTL 29:0 0x0 Auxiliary Time Stamp 0 LSB value (defined in ns units).

Zero 31:30 0x0 Zero bits.

Field Bit(s) Initial Value Description

TSTH 31:0 0x0 Auxiliary Time Stamp 0 MSB value (defined in second units).

Field Bit(s) Initial Value Description

TSTL 29:0 0x0 Auxiliary Time Stamp 1 LSB value (defined in ns units).

Zero 31:30 0x0 Zero bits.

Ethernet Controller I211 — Programming Interface

342

8.14.23 Auxiliary Time Stamp 1 Register High - AUXSTMPH1 (0xB668;
RO)

Reading this register releases the value stored in AUXSTMPH/L1 and enables timestamping of the next
value.

8.14.24 Time Sync RX Configuration - TSYNCRXCFG (0x5F50; R/W)

8.14.25 Time Sync SDP Configuration Register - TSSDP (0x003C; R/W)

This register defines the assignment of SDP pins to the time sync auxiliary capabilities.

Field Bit(s) Initial Value Description

TSTH 31:0 0x0 Auxiliary Time Stamp 1 MSB value (defined in second units).

Field Bit(s) Initial Value Description

CTRLT 7:0 0x0 V1 control to timestamp.

MSGT 15:8 0x0 V2 Message Type to timestamp.

Reserved 31:16 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

AUX0_SDP_SEL 1:0 00b

Select one of the SDPs to serve as the trigger for auxiliary time stamp 0
(AUXSTMPL0 and AUXSTMPH0 registers).
00b = SDP0 is assigned.
01b = SDP1 is assigned.
10b = SDP2 is assigned.
11b = SDP3 is assigned.

AUX0_TS_SDP_EN 2 0b
When set indicates that one of the SDPs can be used as an external trigger to
Aux timestamp 0 (note that if this bit is set to one of the SDP pins, the
corresponding pin should be configured to input mode using SPD_DIR).

AUX1_SDP_SEL 4:3 00b

Select one of the SDPs to serve as the trigger for auxiliary time stamp 1 (in
AUXSTMPL1 and AUXSTMPH1 registers).
00b = SDP0 is assigned.
01b = SDP1 is assigned.
10b = SDP2 is assigned.
11b = SDP3 is assigned.

AUX1_TS_SDP_EN 5 0b
When set indicates that one of the SDPs can be used as an external trigger to
Aux timestamp 1 (note that if this bit is set to one of the SDP pins, the
corresponding pin should be configured to input mode using SPD_DIR).

TS_SDP0_SEL 7:6 00b

SDP0 allocation to Tsync event – when TS_SDP0_EN is set, these bits select the
Tsync event that is routed to SDP0.
00b = Target time 0 is output on SDP0.
01b = Target time 1 is output on SDP0.
10b = Freq clock 0 is output on SDP0.
11b = Freq clock 1 is output on SDP0.

TS_SDP0_EN 8 0b When set indicates that SDP0 is assigned to Tsync.

Programming Interface — Ethernet Controller I211

343

8.15 Time Sync Interrupt Registers

8.15.1 Time Sync Interrupt Cause Register - TSICR (0xB66C; RC/W1C)

Note: Once ICR.Time_Sync is set, the internal value of this register should be cleared by writing 1b
to all bits or cleared by a read to enable receiving an additional ICR.Time_Sync interrupt.

TS_SDP1_SEL 10:9 00b

SDP1 allocation to Tsync event – when TS_SDP1_EN is set, these bits select the
Tsync event that is routed to SDP1.
00b = Target time 0 is output on SDP1.
01b = Target time 1 is output on SDP1.
10b = Freq clock 0 is output on SDP1.
11b = Freq clock 1 is output on SDP1.

TS_SDP1_EN 11 0b When set indicates that SDP1 is assigned to Tsync.

TS_SDP2_SEL 13:12 00b

SDP2 allocation to Tsync event – when TS_SDP2_EN is set, these bits select the
Tsync event that is routed to SDP2.
00b = Target time 0 is output on SDP2.
01b = Target time 1 is output on SDP2.
10b = Freq clock 0 is output on SDP2.
11b = Freq clock 1 is output on SDP2.

TS_SDP2_EN 14 0b When set indicates that SDP2 is assigned to Tsync.

TS_SDP3_SEL 16:15 00b

SDP3 allocation to Tsync event – when TS_SDP3_EN is set, these bits select the
Tsync event that is routed to SDP3.
00b = Target time 0 is output on SDP3.
01b = Target time 1 is output on SDP3.
10b = Freq clock 0 is output on SDP3.
11b = Freq clock 1 is output on SDP3.

TS_SDP3_EN 17 0b When set indicates that SDP3 is assigned to Tsync.

Reserved 31:18 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

SYS WARP 0 0b
SYSTIM Warp around.
Set when SYSTIML This event should happen every second.

TXTS 1 0b
Transmit Timestamp.
Set when new timestamp is loaded into TXSTMP register.

RXTS 2 0b
Receive Timestamp.
Set when new timestamp is loaded into RXSTMP register.

TT0 3 0b

Target Time 0 Trigger.
Set when target time 0 (TRGTTIML/H0) trigger occurs. This interrupt is
enabled only if the EN_TT0 flag in the TSAUXC register is set. Note that this
interrupt cause is set also by CLK0 output which is based on TRGTTIM0.

TT1 4 0b

Target Time 1 Trigger.
Set when target time 1 (TRGTTIML/H1) trigger occurs. This interrupt is
enabled only if the EN_TT1 flag in the TSAUXC register is set. Note that this
interrupt cause is set also by CLK1 output which is based on TRGTTIM1.

AUTT0 5 0b
Auxiliary Timestamp 0 Taken.
Set when new timestamp is loaded into AUXSTMP 0 (auxiliary timestamp
0) register.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

344

8.15.2 Time Sync Interrupt Mask Register - TSIM (0xB674; RW)

AUTT1 6 0b
Auxiliary Timestamp 1 Taken.
Set when new timestamp is loaded into AUXSTMP 1 (auxiliary timestamp
1) register.

TADJ 7 0b
Time Adjust Done.
Set when time adjust-to-SYSTIM completes.

Reserved 31:8 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

SYS WARP 0 0b
SYSTIM Warp Around Mask.
0b = No interrupt generated when TSICR.SWARP is set.
1b= Interrupt generated when TSICR.SWARP is set.

TXTS 1 0b
Transmit Timestamp Mask.
0b = No interrupt generated when TSICR.TXTS is set.
1b= Interrupt generated when TSICR.TXTS is set.

RXTS 2 0b
Receive Timestamp Mask.
0b = No interrupt generated when TSICR.RXTS is set.
1b= Interrupt generated when TSICR.RXTS is set.

TT0 3 0b
Target time 0 Trigger Mask.
0b = No interrupt generated when TSICR.TT0 is set.
1b= Interrupt generated when TSICR.TT0 is set.

TT1 4 0b
Target time 1 Trigger Mask.
0b = No interrupt generated when TSICR.TT1 is set.
1b= Interrupt generated when TSICR.TT1 is set.

AUTT0 5 0b
Auxiliary Timestamp 0 Taken Mask.
0b = No interrupt generated when TSICR.AUTT0 is set.
1b= Interrupt generated when TSICR.AUTT0 is set.

AUTT1 6 0b
Auxiliary Timestamp 1 Taken Mask.
0b = No interrupt generated when TSICR.AUTT1 is set.
1b = Interrupt generated when TSICR.AUTT1 is set.

TADJ 7 0b
Time Adjust 0 Done Mask.
0b = No interrupt generated when TSICR.TADJ is set.
1b = Interrupt generated when TSICR.TADJ is set.

Reserved 31:8 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

345

8.15.3 AN Advertisement - PCS_ANADV (0x4218; R/W)

8.15.4 Next Page Transmit - PCS_NPTX (0x4220; RW)

Field Bit(s) Initial Value Description

Reserved 4:0 0x0
Reserved.
Write 0, ignore on read.

FDCAP 5 1b
Full Duplex.
Setting this bit indicates that the I211 is capable of full duplex operation. This bit
should be set to 1b for normal operation.

HDCAP (RO) 6 0b
Half Duplex.
This bit indicates that the I211 is capable of half duplex operation. This bit is tied to 0b
because the I211 does not support half duplex in SerDes mode.

ASM 8:7 00b

Local PAUSE Capabilities.
The I211's PAUSE capability is encoded in this field.
00b = No PAUSE.
01b = Symmetric PAUSE.
10b = Asymmetric PAUSE to link partner.
11b = Both symmetric and asymmetric PAUSE to the I211.

Reserved 11:9 0x0
Reserved.
Write 0x0, ignore on read.

RFLT 13:12 00b

Remote Fault.
The I211's remote fault condition is encoded in this field. The I211 might indicate a
fault by setting a non-zero remote fault encoding and re-negotiating.
00b = No error, link OK.
01b = Link failure.
10b = Offline.
11b = Auto-negotiation error.

Reserved 14 0x0
Reserved.
Write 0x0, ignore on read.

NEXTP 15 0b
Next Page Capable.
The I211 asserts this bit to request a next page transmission.
The I211 clears this bit when no subsequent next pages are requested.

Reserved 31:16 0x0 Reserved.

Field Bit(s) Initial Value Description

CODE 10:0 0x0
Message/Unformatted Code Field.
The Message field is an 11-bit wide field that encodes 2048 possible messages. The
Unformatted Code field is an 11-bit wide field that might contain an arbitrary value.

TOGGLE 11 0b

Toggle.
This bit is used to ensure synchronization with the pink partner during next page
exchange. This bit always takes the opposite value of the Toggle bit in the previously
exchanged Link Code word. The initial value of the Toggle bit in the first next page
transmitted is the inverse of bit 11 in the base Link Code word and, therefore, can
assume a value of 0b or 1b. The Toggle bit is set as follows:
0b = Previous value of the transmitted Link Code word when 1b.
1b = Previous value of the transmitted Link Code word when 0b.

ACK2 12 0b
Acknowledge 2.
Used to indicate that a device has successfully received its Link Partners' Link Code
word.

Ethernet Controller I211 — Programming Interface

346

8.15.5 Link Partner Ability Next Page - PCS_LPABNP (0x4224; RO)

8.16 Statistics Register Descriptions
All Statistics registers reset when read. In addition, they stick at 0xFFFF_FFFF when the maximum
value is reached.

PGTYPE 13 0b

Message/Unformatted Page.
This bit is used to differentiate a message page from an unformatted page. The
encoding is:
0b = Unformatted page.
1b = Message page.

Reserved 14 -
Reserved.
Write 0b, ignore on read.

NXTPG 15 0b

Next Page.
Used to indicate whether or not this is the last next page to be transmitted. The
encoding is:
0b = Last page.
1b = Additional next pages follow.

Reserved 31:16 -
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

CODE 10:0 -
Message/Unformatted Code Field.
The Message field is an 11-bit wide field that encodes 2048 possible messages. The
Unformatted Code field is an 11-bit wide field that might contain an arbitrary value.

TOGGLE 11 -

Toggle.
This bit is used to ensure synchronization with the link partner during next page
exchange. This bit always takes the opposite value of the Toggle bit in the previously
exchanged Link Code word. The initial value of the Toggle bit in the first next page
transmitted is the inverse of bit 11 in the base Link Code word and, therefore, can
assume a value of 0b or 1b. The Toggle bit is set as follows:
0b = Previous value of the transmitted Link Code word when 1b.
1b = Previous value of the transmitted Link Code word when 0b.

ACK2 12 -
Acknowledge 2.
Used to indicate that a device has successfully received its Link Partners' Link Code
word.

MSGPG 13 -

Message Page.
This bit is used to differentiate a message page from an unformatted page. The
encoding is:
0b = Unformatted page.
1b = Message page.

ACK 14 -
Acknowledge.
The link partner has acknowledged receiving a next page.

NXTPG 15 -

Next Page.
Used to indicate whether or not this is the last next page to be transmitted. The
encoding is:
0b = Last page.
1b = Additional Next Pages follow.

Reserved 31:16 -
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

347

For the receive statistics it should be noted that a packet is indicated as received if it passes the I211's
filters and is placed into the packet buffer memory. A packet does not have to be transferred to host
memory in order to be counted as received.

Due to divergent paths between interrupt-generation and logging of relevant statistics counts, it might
be possible to generate an interrupt to the system for a noteworthy event prior to the associated
statistics count actually being incremented. This is extremely unlikely due to expected delays
associated with the system interrupt-collection and ISR delay, but might be observed as an interrupt
for which statistics values do not quite make sense. Hardware guarantees that any event noteworthy of
inclusion in a statistics count is reflected in the appropriate count within 1 s; a small time-delay prior
to a read of statistics might be necessary to avoid the potential for receiving an interrupt and observing
an inconsistent statistics count as part of the ISR.

8.16.1 CRC Error Count - CRCERRS (0x4000; RC)

Counts the number of receive packets with CRC errors. In order for a packet to be counted in this
register, it must pass address filtering and must be 64 bytes or greater (from <Destination Address>
through <CRC>, inclusively) in length. If receives are not enabled, then this register does not
increment.

8.16.2 Alignment Error Count - ALGNERRC (0x4004; RC)

Counts the number of receive packets with alignment errors (the packet is not an integer number of
bytes in length). In order for a packet to be counted in this register, it must pass address filtering and
must be 64 bytes or greater (from <Destination Address> through <CRC>, inclusive) in length. If
receives are not enabled, then this register does not increment. This register is valid only in MII mode
during 10/100 Mb/s operation.

8.16.3 Symbol Error Count - SYMERRS (0x4008; RC)

Counts the number of symbol errors between reads. The count increases for every bad symbol
received, whether or not a packet is currently being received and whether or not the link is up.

8.16.4 RX Error Count - RXERRC (0x400C; RC)

Counts the number of packets received in which RX_ER was asserted by the PHY. In order for a packet
to be counted in this register, it must pass address filtering and must be 64 bytes or greater (from
<Destination Address> through <CRC>, inclusive) in length. If receives are not enabled, then this
register does not increment.

Field Bit(s) Initial Value Description

CEC 31:0 0x0 CRC Error Count.

Field Bit(s) Initial Value Description

AEC 31:0 0x0 Alignment Error Count.

Field Bit(s) Initial Value Description

SYMERRS 31:0 0x0 Symbol Error Count.

Ethernet Controller I211 — Programming Interface

348

8.16.5 Missed Packets Count - MPC (0x4010; RC)

Counts the number of missed packets. Packets are missed when the receive FIFO has insufficient space
to store the incoming packet. This can be caused because of too few buffers allocated, or because there
is insufficient bandwidth on the PCI bus. Events setting this counter causes ICR.Rx Miss, the Receiver
Overrun interrupt, to be set. This register does not increment if receives are not enabled.

These packets are also counted in the Total Packets Received register as well as in Total Octets
Received register.

8.16.6 Single Collision Count - SCC (0x4014; RC)

This register counts the number of times that a successfully transmitted packet encountered a single
collision. This register only increments if transmits are enabled (TCTL.EN is set) and the I211 is in half-
duplex mode.

8.16.7 Excessive Collisions Count - ECOL (0x4018; RC)

When 16 or more collisions have occurred on a packet, this register increments, regardless of the value
of collision threshold. If collision threshold is set below 16, this counter won’t increment. This register
only increments if transmits are enabled (TCTL.EN is set) and the I211 is in half-duplex mode.

8.16.8 Multiple Collision Count - MCC (0x401C; RC)

This register counts the number of times that a transmit encountered more than one collision but less
than 16. This register only increments if transmits are enabled (TCTL.EN is set) and the I211 is in half-
duplex mode.

Field Bit(s) Initial Value Description

RXEC 31:0 0x0 Rx Error Count

Field Bit(s) Initial Value Description

MPC 31:0 0x0 Missed Packets Count.

Field Bit(s) Initial Value Description

SCC 31:0 0x0 Number of times a transmit encountered a single collision.

Field Bit(s) Initial Value Description

ECC 31:0 0x0 Number of packets with more than 16 collisions.

Field Bit(s) Initial Value Description

MCC 31:0 0x0 Number of times a successful transmit encountered multiple collisions.

Programming Interface — Ethernet Controller I211

349

8.16.9 Late Collisions Count - LATECOL (0x4020; RC)

Late collisions are collisions that occur after one slot time. This register only increments if transmits are
enabled (TCTL.EN is set) and the I211 is in half-duplex mode.

8.16.10 Collision Count - COLC (0x4028; RC)

This register counts the total number of collisions seen by the transmitter. This register only increments
if transmits are enabled (TCTL.EN is set) and the I211 is in half-duplex mode.

8.16.11 Defer Count - DC (0x4030; RC)

This register counts defer events. A defer event occurs when the transmitter cannot immediately send
a packet due to the medium being busy either because another device is transmitting, the IPG timer
has not expired, half-duplex deferral events, reception of XOFF frames, or the link is not up. This
register only increments if transmits are enabled (TCTL.EN is set). This counter does not increment for
streaming transmits that are deferred due to TX IPG.

8.16.12 Transmit with No CRS - TNCRS (0x4034; RC)

This register counts the number of successful packet transmissions in which the CRS input from the PHY
was not asserted within one slot time of start of transmission from the MAC. Start of transmission is
defined as the assertion of TX_EN to the PHY.

The PHY should assert CRS during every transmission. This register only increments if transmits are
enabled (TCTL.EN is set). This register is in full-duplex mode, and in 100 Mbps half-duplex mode .

8.16.13 Host Transmit Discarded Packets by MAC Count - HTDPMC
(0x403C; RC)

This register counts the number of packets sent by the host that are dropped by the MAC. This can
include packets dropped because of excessive collisions or link fail events.

Field Bit(s) Initial Value Description

LCC 31:0 0x0 Number of packets with late collisions.

Field Bit(s) Initial Value Description

CCC 31:0 0x0 Total number of collisions experienced by the transmitter.

Field Bit(s) Initial Value Description

CDC 31:0 0x0 Number of defer events.

Field Bit(s) Initial Value Description

TNCRS 31:0 0x0 Number of transmissions without a CRS assertion from the PHY.

Field Bit(s) Initial Value Description

HTDPMC 31:0 0x0 Number of packets sent by the host but discarded by the MAC.

Ethernet Controller I211 — Programming Interface

350

8.16.14 Receive Length Error Count - RLEC (0x4040; RC)

This register counts receive length error events. A length error occurs if an incoming packet passes the
filter criteria but is undersized or oversized. Packets less than 64 bytes are undersized. Packets over
1518, 1522 or 1526 bytes (according to the number of VLAN tags present) are oversized if Long Packet
Enable (RCTL.LPE) is 0b. If LPE is 1b, then an incoming, packet is considered oversized if it exceeds the
size defined in RLPML.RLPML field.

If receives are not enabled, this register does not increment. These lengths are based on bytes in the
received packet from <Destination Address> through <CRC>, inclusive.

Note: Runt packets smaller than 25 bytes may not be counted by this counter.

8.16.15 XON Received Count - XONRXC (0x4048; RC)

This register counts the number of valid XON packets received. XON packets can use the global
address, or the station address. This register only increments if receives are enabled (RCTL.RXEN is
set).

8.16.16 XON Transmitted Count - XONTXC (0x404C; RC)

This register counts the number of XON packets transmitted. These can be either due to a full queue or
due to software initiated action (using TCTL.SWXOFF). This register only increments if transmits are
enabled (TCTL.EN is set).

8.16.17 XOFF Received Count - XOFFRXC (0x4050; RC)

This register counts the number of valid XOFF packets received. XOFF packets can use the global
address or the station address. This register only increments if receives are enabled (RCTL.RXEN is
set).

Field Bit(s) Initial Value Description

RLEC 31:0 0x0 Number of packets with receive length errors.

Field Bit(s) Initial Value Description

XONRXC 31:0 0x0 Number of XON packets received.

Field Bit(s) Initial Value Description

XONTXC 31:0 0x0 Number of XON packets transmitted.

Field Bit(s) Initial Value Description

XOFFRXC 31:0 0x0 Number of XOFF packets received.

Programming Interface — Ethernet Controller I211

351

8.16.18 XOFF Transmitted Count - XOFFTXC (0x4054; RC)

This register counts the number of XOFF packets transmitted. These can be either due to a full queue or
due to software initiated action (using TCTL.SWXOFF). This register only increments if transmits are
enabled (TCTL.EN is set).

8.16.19 FC Received Unsupported Count - FCRUC (0x4058; RC)

This register counts the number of unsupported flow control frames that are received.

The FCRUC counter increments when a flow control packet is received that matches either the reserved
flow control multicast address (in the FCAH/L register) or the MAC station address, and has a matching
flow control type field match (value in the FCT register), but has an incorrect op-code field. This register
only increments if receives are enabled (RCTL.RXEN is set).

Note: When the RCTL.PMCF bit is set to 1b then the FCRUC counter increments after receiving
packets that don’t match standard address filtering.

8.16.20 Packets Received [64 Bytes] Count - PRC64 (0x405C; RC)

This register counts the number of good packets received that are exactly 64 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Packets that are counted in the Missed Packet Count
register are not counted in this register. This register does not include received flow control packets and
increments only if receives are enabled (RCTL.RXEN is set).

8.16.21 Packets Received [65–127 Bytes] Count - PRC127 (0x4060; RC)

This register counts the number of good packets received that are 65-127 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Packets that are counted in the Missed Packet Count
register are not counted in this register. This register does not include received flow control packets and
increments only if receives are enabled (RCTL.RXEN is set).

Field Bit(s) Initial Value Description

XOFFTXC 31:0 0x0 Number of XOFF packets transmitted.

Field Bit(s) Initial Value Description

FCRUC 31:0 0x0 Number of unsupported flow control frames received.

Field Bit(s) Initial Value Description

PRC64 31:0 0x0 Number of packets received that are 64 bytes in length.

Field Bit(s) Initial Value Description

PRC127 31:0 0x0 Number of packets received that are 65-127 bytes in length.

Ethernet Controller I211 — Programming Interface

352

8.16.22 Packets Received [128–255 Bytes] Count - PRC255 (0x4064; RC)

This register counts the number of good packets received that are 128-255 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Packets that are counted in the Missed Packet Count
register are not counted in this register. This register does not include received flow control packets and
increments only if receives are enabled (RCTL.RXEN is set).

8.16.23 Packets Received [256–511 Bytes] Count - PRC511 (0x4068; RC)

This register counts the number of good packets received that are 256-511 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Packets that are counted in the Missed Packet Count
register are not counted in this register. This register does not include received flow control packets and
increments only if receives are enabled (RCTL.RXEN is set).

8.16.24 Packets Received [512–1023 Bytes] Count - PRC1023 (0x406C;
RC)

This register counts the number of good packets received that are 512-1023 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Packets that are counted in the Missed Packet Count
register are not counted in this register. This register does not include received flow control packets and
increments only if receives are enabled (RCTL.RXEN is set).

8.16.25 Packets Received [1024 to Max Bytes] Count - PRC1522
(0x4070; RC)

This register counts the number of good packets received that are from 1024 bytes to the maximum
(from <Destination Address> through <CRC>, inclusive) in length. The maximum is dependent on the
current receiver configuration (for example, RCTL.LPE, etc.) and the type of packet being received. If a
packet is counted in Receive Oversized Count, it is not counted in this register (refer to
Section 8.16.37). This register does not include received flow control packets and only increments if the
packet has passed address filtering and receives are enabled (RCTL.RXEN is set).

Due to changes in the standard for maximum frame size for VLAN tagged frames in 802.3, the I211
accepts packets that have a maximum length of 1522 bytes. The RMON statistics associated with this
range has been extended to count 1522 byte long packets. If CTRL_EXT.EXT_VLAN is set, packets up to
1526 bytes are counted by this counter.

Field Bit(s) Initial Value Description

PRC255 31:0 0x0 Number of packets received that are 128-255 bytes in length.

Field Bit(s) Initial Value Description

PRC511 31:0 0x0 Number of packets received that are 256-511 bytes in length.

Field Bit(s) Initial Value Description

PRC1023 31:0 0x0 Number of packets received that are 512-1023 bytes in length.

Field Bit(s) Initial Value Description

PRC1522 31:0 0x0 Number of packets received that are 1024-Max bytes in length.

Programming Interface — Ethernet Controller I211

353

8.16.26 Good Packets Received Count - GPRC (0x4074; RC)

This register counts the number of good packets received of any legal length. The legal length for the
received packet is defined by the value of Long Packet Enable (RCTL.LPE) (refer to Section 8.16.37).
This register does not include received flow control packets and only counts packets that pass filtering.
This register only increments if receives are enabled (RCTL.RXEN is set). This register does not count
packets counted by the Missed Packet Count (MPC) register.

Note: GPRC can count packets interrupted by a link disconnect although they have a CRC error.

8.16.27 Broadcast Packets Received Count - BPRC (0x4078; RC)

This register counts the number of good (no errors) broadcast packets received. This register does not
count broadcast packets received when the broadcast address filter is disabled. This register only
increments if receives are enabled (RCTL.RXEN is set). This register does not count packets counted by
the Missed Packet Count (MPC) register.

8.16.28 Multicast Packets Received Count - MPRC (0x407C; RC)

This register counts the number of good (no errors) multicast packets received. This register does not
count multicast packets received that fail to pass address filtering nor does it count received flow
control packets. This register only increments if receives are enabled (RCTL.RXEN is set). This register
does not count packets counted by the Missed Packet Count (MPC) register.

8.16.29 Good Packets Transmitted Count - GPTC (0x4080; RC)

This register counts the number of good (no errors) packets transmitted. A good transmit packet is
considered one that is 64 or more bytes in length (from <Destination Address> through <CRC>,
inclusively) in length. This does not include transmitted flow control packets. This register only
increments if transmits are enabled (TCTL.EN is set).

8.16.30 Good Octets Received Count - GORCL (0x4088; RC)

These registers make up a 64-bit register that counts the number of good (no errors) octets received.
This register includes bytes received in a packet from the <Destination Address> field through the
<CRC> field, inclusive; GORCL must be read before GORCH.

Field Bit(s) Initial Value Description

GPRC 31:0 0x0 Number of good packets received (of any length).

Field Bit(s) Initial Value Description

BPRC 31:0 0x0 Number of broadcast packets received.

Field Bit(s) Initial Value Description

MPRC 31:0 0x0 Number of multicast packets received.

Field Bit(s) Initial Value Description

GPTC 31:0 0x0 Number of good packets transmitted.

Ethernet Controller I211 — Programming Interface

354

In addition, it sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached. Only octets of
packets that pass address filtering are counted in this register. This register does not count octets of
packets counted by the Missed Packet Count (MPC) register. This register only increments if receives
are enabled (RCTL.RXEN is set).

These octets do not include octets of received flow control packets.

8.16.31 Good Octets Received Count - GORCH (0x408C; RC)

8.16.32 Good Octets Transmitted Count - GOTCL (0x4090; RC)

These registers make up a 64-bit register that counts the number of good (no errors) packets
transmitted. This register must be accessed using two independent 32-bit accesses; GOTCL must be
read before GOTCH.

In addition, it sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached. This register
includes bytes transmitted in a packet from the <Destination Address> field through the <CRC> field,
inclusive. This register counts octets in successfully transmitted packets that are 64 or more bytes in
length. This register only increments if transmits are enabled (TCTL.EN is set).

These octets do not include octets in transmitted flow control packets.

8.16.33 Good Octets Transmitted Count - GOTCH (0x4094; RC)

8.16.34 Receive No Buffers Count - RNBC (0x40A0; RC)

This register counts the number of times that frames were received when there were no available
buffers in host memory to store those frames (receive descriptor head and tail pointers were equal).
The packet is still received if there is space in the FIFO. This register only increments if receives are
enabled (RCTL.RXEN is set).

Notes:
1. This register does not increment when flow control packets are received.

Field Bit(s) Initial Value Description

GORCL 31:0 0x0 Number of good octets received ‚Äì lower 4 bytes.

Field Bit(s) Initial Value Description

GORCH 31:0 0x0 Number of good octets received ‚Äì upper 4 bytes.

Field Bit(s) Initial Value Description

GOTCL 31:0 0x0 Number of good octets transmitted ‚Äì lower 4 bytes.

Field Bit(s) Initial Value Description

GOTCH 31:0 0x0 Number of good octets transmitted ‚Äì upper 4 bytes.

Programming Interface — Ethernet Controller I211

355

2. If a packet is replicated, this counter counts each of the packet that is dropped.

8.16.35 Receive Undersize Count - RUC (0x40A4; RC)

This register counts the number of received frames that passed address filtering, and were less than
minimum size (64 bytes from <Destination Address> through <CRC>, inclusive), and had a valid CRC.
This register only increments if receives are enabled (RCTL.RXEN is set).

Note: Runt packets smaller than 25 bytes cannot be counted by this counter.

8.16.36 Receive Fragment Count - RFC (0x40A8; RC)

This register counts the number of received frames that passed address filtering, and were less than
minimum size (64 bytes from <Destination Address> through <CRC>, inclusive), but had a bad CRC
(this is slightly different from the Receive Undersize Count register). This register only increments if
receives are enabled (RCTL.RXEN is set).

Note: Runt packets smaller than 25 bytes cannot be counted by this counter.

8.16.37 Receive Oversize Count - ROC (0x40AC; RC)

This register counts the number of received frames with valid CRC field that passed address filtering,
and were greater than maximum size. For definition of oversized packets, refer to Section 7.1.1.4.

If receives are not enabled, this register does not increment. These lengths are based on bytes in the
received packet from <Destination Address> through <CRC>, inclusive.

Field Bit(s) Initial Value Description

RNBC 31:0 0x0 Number of receive no buffer conditions.

Field Bit(s) Initial Value Description

RUC 31:0 0x0 Number of receive undersize errors.

Field Bit(s) Initial Value Description

RFC 31:0 0x0 Number of receive fragment errors.

Field Bit(s) Initial Value Description

ROC 31:0 0x0 Number of receive oversize errors.

Ethernet Controller I211 — Programming Interface

356

8.16.38 Receive Jabber Count - RJC (0x40B0; RC)

This register counts the number of received frames that passed address filtering, and were greater than
maximum size and had a bad CRC (this is slightly different from the Receive Oversize Count register).
For definition of oversized packets, refer to Section 7.1.1.4.

If receives are not enabled, this register does not increment. These lengths are based on bytes in the
received packet from <Destination Address> through <CRC>, inclusive.

8.16.39 Total Octets Received - TORL (0x40C0; RC)

These registers make up a logical 64-bit register that counts the total number of octets received. This
register must be accessed using two independent 32-bit accesses; TORL must be read before TORH.
This register sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached.

All packets received have their octets summed into this register, regardless of their length, whether
they are erred, or whether they are flow control packets. This register includes bytes received in a
packet from the <Destination Address> field through the <CRC> field, inclusive. This register only
increments if receives are enabled (RCTL.RXEN is set).

Note: Broadcast rejected packets are counted in this counter (as opposed to all other rejected
packets that are not counted).

8.16.40 Total Octets Received - TORH (0x40C4; RC)

8.16.41 Total Octets Transmitted - TOTL (0x40C8; RC)

These registers make up a 64-bit register that counts the total number of octets transmitted. This
register must be accessed using two independent 32-bit accesses; TOTL must be read before TOTH.
This register sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached.

All transmitted packets have their octets summed into this register, regardless of their length or
whether they are flow control packets. This register includes bytes transmitted in a packet from the
<Destination Address> field through the <CRC> field, inclusive.

Field Bit(s) Initial Value Description

RJC 31:0 0x0 Number of receive jabber errors.

Field Bit(s) Initial Value Description

TORL 31:0 0x0 Number of total octets received - lower 4 bytes.

Field Bit(s) Initial Value Description

TORH 31:0 0x0 Number of total octets received - upper 4 bytes.

Programming Interface — Ethernet Controller I211

357

Octets transmitted as part of partial packet transmissions (for example, collisions in half-duplex mode)
are not included in this register. This register only increments if transmits are enabled (TCTL.EN is set).

8.16.42 Total Octets Transmitted - TOTH (0x40CC; RC)

8.16.43 Total Packets Received - TPR (0x40D0; RC)

This register counts the total number of all packets received. All packets received are counted in this
register, regardless of their length, whether they have errors, or whether they are flow control packets.
This register only increments if receives are enabled (RCTL.RXEN is set).

Notes:
1. Broadcast rejected packets are counted in this counter (as opposed to all other rejected packets

that are not counted).
2. Runt packets smaller than 25 bytes cannot be counted by this counter.
3. TPR can count packets interrupted by a link disconnect although they have a CRC error.

8.16.44 Total Packets Transmitted - TPT (0x40D4; RC)

This register counts the total number of all packets transmitted. All packets transmitted are counted in
this register, regardless of their length, or whether they are flow control packets.

Partial packet transmissions (collisions in half-duplex mode) are not included in this register. This
register only increments if transmits are enabled (TCTL.EN is set). This register counts all packets,
including standard packets, packets received over the SMBus, and packets generated by the PT
function.

8.16.45 Packets Transmitted [64 Bytes] Count - PTC64 (0x40D8; RC)

This register counts the number of packets transmitted that are exactly 64 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (collisions in half-duplex
mode) are not included in this register. This register does not include transmitted flow control packets
(which are 64 bytes in length). This register only increments if transmits are enabled (TCTL.EN is set).
This register counts all packets, including standard packets.

Field Bit(s) Initial Value Description

TOTL 31:0 0x0 Number of total octets transmitted - lower 4 bytes.

Field Bit(s) Initial Value Description

TOTH 31:0 0x0 Number of total octets transmitted - upper 4 bytes.

Field Bit(s) Initial Value Description

TPR 31:0 0x0 Number of all packets received.

Field Bit(s) Initial Value Description

TPT 31:0 0x0 Number of all packets transmitted.

Ethernet Controller I211 — Programming Interface

358

8.16.46 Packets Transmitted [65-127 Bytes] Count - PTC127 (0x40DC;
RC)

This register counts the number of packets transmitted that are 65-127 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (for example, collisions in
half-duplex mode) are not included in this register. This register only increments if transmits are
enabled (TCTL.EN is set). This register counts all packets, including standard packets.

8.16.47 Packets Transmitted [128-255 Bytes] Count - PTC255 (0x40E0;
RC)

This register counts the number of packets transmitted that are 128-255 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (collisions in half-duplex
mode) are not included in this register. This register only increments if transmits are enabled (TCTL.EN
is set). This register counts all packets, including standard packets.

8.16.48 Packets Transmitted [256-511 Bytes] Count - PTC511 (0x40E4;
RC)

This register counts the number of packets transmitted that are 256-511 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (for example, collisions in
half-duplex mode) are not included in this register. This register only increments if transmits are
enabled (TCTL.EN is set). This register counts all packets.

8.16.49 Packets Transmitted [512-1023 Bytes] Count - PTC1023
(0x40E8; RC)

This register counts the number of packets transmitted that are 512-1023 bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (for example, collisions in
half-duplex mode) are not included in this register. This register only increments if transmits are
enabled (TCTL.EN is set). This register counts all packets.

Field Bit(s) Initial Value Description

PTC64 31:0 0x0 Number of packets transmitted that are 64 bytes in length.

Field Bit(s) Initial Value Description

PTC127 31:0 0x0 Number of packets transmitted that are 65-127 bytes in length.

Field Bit(s) Initial Value Description

PTC255 31:0 0x0 Number of packets transmitted that are 128-255 bytes in length.

Field Bit(s) Initial Value Description

PTC511 31:0 0x0 Number of packets transmitted that are 256-511 bytes in length.

Field Bit(s) Initial Value Description

PTC1023 31:0 0x0 Number of packets transmitted that are 512-1023 bytes in length.

Programming Interface — Ethernet Controller I211

359

8.16.50 Packets Transmitted [1024 Bytes or Greater] Count - PTC1522
(0x40EC; RC)

This register counts the number of packets transmitted that are 1024 or more bytes (from <Destination
Address> through <CRC>, inclusive) in length. Partial packet transmissions (for example, collisions in
half-duplex mode) are not included in this register. This register only increments if transmits are
enabled (TCTL.EN is set).

Due to changes in the standard for maximum frame size for VLAN tagged frames in 802.3, the I211
transmits packets that have a maximum length of 1522 bytes. The RMON statistics associated with this
range has been extended to count 1522 byte long packets. This register counts all packets. If
CTRL.EXT_VLAN is set, packets up to 1526 bytes are counted by this counter.

8.16.51 Multicast Packets Transmitted Count - MPTC (0x40F0; RC)

This register counts the number of multicast packets transmitted. This register does not include flow
control packets and increments only if transmits are enabled (TCTL.EN is set).

8.16.52 Broadcast Packets Transmitted Count - BPTC (0x40F4; RC)

This register counts the number of broadcast packets transmitted. This register only increments if
transmits are enabled (TCTL.EN is set). This register counts all packets.

8.16.53 Interrupt Assertion Count - IAC (0x4100; RC)

This counter counts the total number of LAN interrupts generated in the system. In case of MSI-X
systems, this counter reflects the total number of MSI-X messages that are emitted.

8.16.54 Rx Packets to Host Count - RPTHC (0x4104; RC)

Field Bit(s) Initial Value Description

PTC1522 31:0 0x0 Number of packets transmitted that are 1024 or more bytes in length.

Field Bit(s) Initial Value Description

MPTC 31:0 0x0 Number of multicast packets transmitted.

Field Bit(s) Initial Value Description

BPTC 31:0 0x0 Number of broadcast packets transmitted count.

Field Bit(s) Initial Value Description

IAC 31:0 0x0 This is a count of all the LAN interrupt assertions that have occurred.

Field Bit(s) Initial Value Description

RPTHC 31:0 0x0 This is a count of all the received packets sent to the host.

Ethernet Controller I211 — Programming Interface

360

8.16.55 EEE TX LPI Count - TLPIC (0x4148; RC)

This register counts EEE TX LPI entry events. A EEE TX LPI event occurs when the transmitter enters
EEE (IEEE802.3az) LPI state. This register only increments if transmits are enabled (TCTL.EN is set)
and Link Mode is internal Copper PHY (CTRL_EXT.LINK_MODE = 00b).

8.16.56 EEE RX LPI Count - RLPIC (0x414C; RC)

This register counts EEE RX LPI entry events. A EEE RX LPI event occurs when the receiver detects link
partner entry into EEE (IEEE802.3az) LPI state. This register only increments if receives are enabled
(RCTL.RXEN is set) and Link Mode is internal Copper PHY (CTRL_EXT.LINK_MODE = 00b).

8.16.57 Host Good Packets Transmitted Count-HGPTC (0x4118; RC)

This register counts the number of good (non-erred) packets transmitted sent by the host. A good
transmit packet is considered one that is 64 or more bytes in length (from <Destination Address>
through <CRC>, inclusively) in length. This register only increments if transmits are enabled (TCTL.EN
is set).

8.16.58 Receive Descriptor Minimum Threshold Count-RXDMTC (0x4120;
RC)

This register counts the number of events where the number of descriptors in one of the Rx queues was
lower than the threshold defined for this queue.

Field Bit(s) Initial Value Description

ETLPIC 31:0 0x0 Number of EEE TX LPI events.

Field Bit(s) Initial Value Description

ERLPIC 31:0 0x0 Number of EEE RX LPI events.

Field Bit(s) Initial Value Description

HGPTC 31:0 0x0 Number of good packets transmitted by the host.

Field Bit(s) Initial Value Description

RXDMTC 31:0 0x0 This is a count of the receive descriptor minimum threshold events.

Programming Interface — Ethernet Controller I211

361

8.16.59 Host Good Octets Received Count - HGORCL (0x4128; RC)

8.16.60 Host Good Octets Received Count - HGORCH (0x412C; RC)

These registers make up a logical 64-bit register that counts the number of good (non-erred) octets
received. This register includes bytes received in a packet from the <Destination Address> field
through the <CRC> field, inclusive. This register must be accessed using two independent 32-bit
accesses.; HGORCL must be read before HGORCH.

In addition, it sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached. Only packets that
pass address filtering are counted in this register. This register counts only octets of packets that
reached the host. The only exception is packets dropped by the DMA because of lack of descriptors in
one of the queues. These packets are included in this counter.

This register only increments if receives are enabled (RCTL.RXEN is set).

8.16.61 Host Good Octets Transmitted Count - HGOTCL (0x4130; RC)

8.16.62 Host Good Octets Transmitted Count - HGOTCH (0x4134; RC)

These registers make up a logical 64-bit register that counts the number of good (non-erred) packets
transmitted. This register must be accessed using two independent 32-bit accesses. This register resets
each time the upper 32 bits are read (HGOTCH).

In addition, it sticks at 0xFFFF_FFFF_FFFF_FFFF when the maximum value is reached. This register
includes bytes transmitted in a packet from the <Destination Address> field through the <CRC> field,
inclusive. This register counts octets in successfully transmitted packets which are 64 or more bytes in
length. This register only increments if transmits are enabled (TCTL.EN is set).

These octets do not include octets in transmitted flow control packets.

Field Bit(s) Initial Value Description

HGORCL 31:0 0x0 Number of good octets received by host ‚Äì lower 4 bytes.

Field Bit(s) Initial Value Description

HGORCH 31:0 0x0 Number of good octets received by host ‚Äì upper 4 bytes.

Field Bit(s) Initial Value Description

HGOTCL 31:0 0x0 Number of good octets transmitted by host - lower 4 bytes.

Field Bit(s) Initial Value Description

HGOTCH 31:0 0x0 Number of good octets transmitted by host - upper 4 bytes.

Ethernet Controller I211 — Programming Interface

362

8.16.63 Length Error Count - LENERRS (0x4138; RC)

Counts the number of receive packets with Length errors. For example, valid packets (no CRC error)
with a Length/Type field with a value smaller or equal to 1500 greater than the frame size. In order for
a packet to be counted in this register, it must pass address filtering and must be 64 bytes or greater
(from <Destination Address> through <CRC>, inclusive) in length. If receives are not enabled, then
this register does not increment.

8.17 Statistical Counters
The I211 supports nine statistical counters per queue.

8.17.1 Per Queue Good Packets Received Count - PQGPRC (0x10010 +
n*0x100 [n=0...3]; RW)

This register counts the number of legal length good packets received in queue[n]. The legal length for
the received packet is defined by the value of Long Packet Enable (RCTL.LPE) (refer to
Section 8.16.37). This register does not include received flow control packets and only counts packets
that pass filtering. This register only increments if receive is enabled.

Note: PQGPRC might count packets interrupted by a link disconnect although they have a CRC error.
Unlike some other statistics registers that are not allocated per VM, this register is not cleared
on read. Furthermore, the register wraps around back to 0x0000 on the next increment when
reaching a value of 0xFFFF and then continues normal count operation.

8.17.2 Per Queue Good Packets Transmitted Count - PQGPTC (0x10014
+ n*0x100 [n=0...3]; RW)

This register counts the number of good (no errors) packets transmitted on queue[n]. A good transmit
packet is considered one that is 64 or more bytes in length (from <Destination Address> through
<CRC>, inclusively) in length. This does not include transmitted flow control packets. This register only
increments if transmits are enabled (TCTL.EN is set). This counter includes loopback packets or packets
later dropped by the MAC.

A multicast packet dropped by some of the destinations, but sent to others is counted by this counter

Note: Unlike some other statistic registers that are not allocated per VM, this register is not cleared
on read. Furthermore, the register wraps around back to 0x0000 on the next increment when
reaching a value of 0xFFFFFFFF and then continues normal count operation.

Field Bit(s) Initial Value Description

LENERRS 31:0 0x0 Length error count.

Field Bit(s) Initial Value Description

GPRC 31:0 0x0 Number of good packets received (of any length).

Programming Interface — Ethernet Controller I211

363

8.17.3 Per Queue Good Octets Received Count - PQGORC (0x10018 +
n*0x100 [n=0...3]; RW)

This register counts the number of good (no errors) octets received on queue[n]. This register includes
bytes received in a packet from the <Destination Address> field through the <CRC> field, inclusive.

Only octets of packets that pass address filtering are counted in this register. This register only
increments if receive is enabled.

Note: VLAN tag is part of the byte count only if reported to the VM. For example, if the
DVMOLR.HIDE VLAN bit is not set for this VM. CRC is part of the byte count if DTXCTL.Count
CRC is set.

Note: Unlike some other statistic registers that are not allocated per VM, this register is not cleared
on read. Furthermore, the register wraps around back to 0x0000 on the next increment when
reaching a value of 0xFFFF and then continues normal count operation.

8.17.4 Per Queue Good Octets Transmitted Count - PQGOTC (0x10034 +
n*0x100 [n=0...3]; RW)

This register counts the number of good (no errors) packets transmitted on queue[n]. This register
includes bytes transmitted in a packet from the <Destination Address> field through the <CRC> field,
inclusive. Register also counts any padding that were added by the hardware. This register counts
octets in successfully transmitted packets that are 64 or more bytes in length. Octets counted do not
include octets in transmitted flow control packets. This register only increments if transmit is enabled.

A multicast packet dropped by some of the destinations, but sent to others is counted by this counter

Note: CRC is part of the byte count if DTXCTL.Count CRC is set.
Unlike some other statistic registers that are not allocated per VM, this register is not cleared
on read. Furthermore, the register wraps around back to 0x0000 on the next increment when
reaching a value of 0xFFFF and then continues normal count operation.

8.17.5 Per Queue Multicast Packets Received Count - PQMPRC (0x10038
+ n*0x100 [n=0...3]; RO)

This register counts the number of good (no errors) multicast packets received on queue[n]. This
register does not count multicast packets received that fail to pass address filtering nor does it count
received flow control packets. This register only increments if receive is enabled.

Field Bit(s) Initial Value Description

GPTC 31:0 0x0 Number of good packets transmitted.

Field Bit(s) Initial Value Description

GORC 31:0 0x0 Number of good octets received.

Field Bit(s) Initial Value Description

GOTC 31:0 0x0 Number of good octets transmitted ‚Äì lower 4 bytes.

Ethernet Controller I211 — Programming Interface

364

Note: Unlike some other statistic registers that are not allocated per VM, this register is not cleared
on read. Furthermore, the register wraps around back to 0x0000 on the next increment when
reaching a value of 0xFFFF and then continues normal count operation.

8.18 Wake Up Control Register Descriptions

8.18.1 Wake Up Control Register - WUC (0x5800; R/W)

The PME_En and PME_Status bits of this register are reset when LAN_PWR_GOOD is 0b. When
AUX_PWR = 0b, these register bits also reset by de-asserting PE_RST_N and during a D3 to D0
transition.

Field Bit(s) Initial Value Description

MPRC 31:0 0x0 Number of multicast packets received.

Field Bit(s) Initial Value Description

APME 0 0b

Advance Power Management Enable.
If set to 1b, APM Wakeup is enabled.
If this bit is set and the APMPME bit is cleared, reception of a magic packet asserts the
WUS.MAG bit but does not assert a PME.
Note: This bit is reset only on power-on reset but its value is auto-loaded from NVM on

PCIe reset.

PME_En 1 0b

PME_En.
This read/write bit is used by the software device driver to enable generation of a PME
event without writing to the Power Management Control / Status Register (PMCSR) in
the PCIe configuration space.
Note: This bit reflects the value of the PMCSR.PME_En bit when the bit in the PMCSR

register is modified. However, when the value of WUC.PME_En bit is modified by
software device driver, the value is not reflected in the PMCSR.PME_En bit.

Note: This bit is reset only on power-on reset When the AUX_PWR = 0b bit is also
reset on de-assertion of PE_RST_N and during D3 to D0 transition.

PME_Status (R/
W1C) 2 0b

PME_Status.
This bit is set when the I211 receives a wakeup event. It is the same as the PME_Status
bit in the Power Management Control / Status Register (PMCSR). Writing a 1b to this bit
clears also the PME_Status bit in the PMCSR.
Note: This bit is reset only on power-on reset When the AUX_PWR = 0b bit is also

reset on de-assertion of PE_RST_N and during D3 to D0 transition.

APMPME 3 0b

Assert PME On APM Wakeup.
If set to 1b, the I211 sets the PME_Status bit in the Power Management Control / Status
Register (PMCSR) and asserts PE_WAKE_N and sends a PM_PME PCIe message when
APM Wakeup is enabled (WUC.APME = 1b) and the I211 receives a matching Magic
Packet.
Notes:
1. When WUC.APMPME is set PE_WAKE_N is asserted and a PM_PME message is sent

even if PMCSR.PME_En is cleared.
2. This bit is reset only on power-on reset but its value is auto-loaded from NVM on

SW reset.

Programming Interface — Ethernet Controller I211

365

8.18.2 Wakeup Filter Control Register - WUFC (0x5808; R/W)

This register is used to enable each of the pre-defined and flexible filters for wake-up support. A value
of 1b means the filter is turned on; A value of 0b means the filter is turned off.

PPROXYE 4 0b
Port Proxying Enable.
Note: When set to 1b Proxying of packets is enabled when device is in D3 low power

state.

EN_APM_D0 5 0b

Enable APM wake on D0.
0b = Enable APM wake only when function is in D3 and WUC.APME is set to 1b.
1b = Always enable APM wake when WUC.APME is set to 1b.
Note: This bit is reset on power on reset only.

Reserved 31:6 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

LNKC 0 0b Link Status Change Wakeup Enable.

MAG 1 0b Magic Packet Wake-up Enable.

EX 2 0b Directed Exact Wake-up Enable.1

MC 3 0b Directed Multicast Wake-up Enable.

BC 4 0b Broadcast Wake-up Enable.

ARP Directed 5 0b
ARP Request Packet and IP4AT Match Wake-up Enable.
Wake on match of any ARP request packet that passed main filtering and
Target IP address also matches one of the valid IP4AT filters.

IPv4 6 0b Directed IPv4 Packet Wake-up Enable.

IPv6 7 0b Directed IPv6 Packet Wake-up Enable.

Reserved 8 0b
Reserved.
Write 0b, ignore on read.

NS 9 0b
IPV6 Neighbor Solicitation Wake-up Enable.
Wake on match of any NS packet that passed main filtering.

NS Directed 10 0b
IPV6 Neighbor Solicitation and Directed DA Match Wake-up Enable.
Wake on match of NS packet and target IP address also matches IPV6AT
filter.

ARP 11 0b
ARP Request Packet Wake-up Enable.
Wake on match of any ARP request packet that passed main filtering.

Reserved 13:12 0x0
Reserved.
Write 0x0, ignore on read.

FLEX_HQ 14 0b

Flex Filters Host Queuing
0b = Do not use flex filters for queueing decisions in D0 state.
1b = Use flex filters enabled in the WUFC register for queuing decisions in
D0 state.
Note: Should be enabled only when multi queueing is enabled

(MRQC.Multiple Receive Queues = 010b or 000b).

Reserved 15 0b Reserved.

FLX0 16 0b Flexible Filter 0 Enable.

FLX1 17 0b Flexible Filter 1 Enable.

FLX2 18 0b Flexible Filter 2 Enable.

FLX3 19 0b Flexible Filter 3 Enable.

FLX4 20 0b Flexible Filter 4 Enable.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

366

8.18.3 Wake Up Status Register - WUS (0x5810; R/W1C)

This register is used to record statistics about all wake-up packets received. If a packet matches
multiple criteria then multiple bits could be set. Writing a 1b to any bit clears that bit.

This register is not cleared when PE_RST_N is asserted. It is only cleared when LAN_PWR_GOOD is de-
asserted or when cleared by the software device driver.

Note: If additional packets are received that match one of the wakeup filters, after the original
wake-up packet is received, the WUS register is not updated with the new match detection
until the register is cleared.

FLX5 21 0b Flexible Filter 5 Enable.

FLX6 22 0b Flexible Filter 6 Enable.

FLX7 23 0b Flexible Filter 7 Enable.

FLX0_ACT 24 0b
Flexible Filter 0 Action.
0b= WoL.
1b= Reserved.

FLX1_ACT 25 0b
Flexible Filter 1 Action.
0b= WoL.
1b= Reserved.

FLX2_ACT 26 0b
Flexible Filter 2 Action.
0b= WoL.
1b= Reserved.

FLX3_ACT 27 0b
Flexible Filter 3 Action.
0b= WoL.
1b= Reserved.

Reserved 30:28 0b Reserved.

FW_RST_WK 31 0b
Enable Wake on Firmware Reset Assertion.
When set, a firmware reset causes a system wake so that the software
driver can re-send proxying information to firmware.

1. If the RCTL.UPE is set, and the EX bit is also set, any unicast packet wakes up the system.

Field Bit(s) Initial Value Description

LNKC 0 0b Link Status Change.

MAG 1 0b Magic Packet Received.

EX 2 0b

Directed Exact Packet Received.
The packet’s address matched one of the 32 pre-programmed exact values in the
Receive Address registers (RAL[n]/RAH[n]), the packet was a unicast packet and
RCTL.UPE is set to 1b.

MC 3 0b

Directed Multicast Packet Received.
The packet was a multicast packet hashed to a value that corresponded to a 1 bit in
the Multicast Table Array (MTA) or the packet was a multicast packet and RCTL.MPE is
set to 1b.

BC 4 0b Broadcast Packet Received.

ARP Directed 5 0b
ARP Request Packet with IPVA4AT filter Received.
When set to 1b indicates a match on any ARP request packet that passed main filtering
and Target IP address also matches one of the valid IP4AT filters.

IPv4 6 0b Directed IPv4 Packet Received.

IPv6 7 0b Directed IPv6 Packet Received.

Reserved 8 0b Reserved.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

367

Note: FLX0-7 bits are set only when flex filter match is detected and WUFC.FLEX_HQ is 0b.

8.18.4 Wake Up Packet Length - WUPL (0x5900; RO)

This register indicates the length of the first wake-up packet received. It is valid if one of the bits in the
Wakeup Status register (WUS) is set. It is not cleared by any reset.

8.18.5 Wake Up Packet Memory - WUPM (0x5A00 + 4*n [n=0...31]; RO)

This register is read-only and it is used to store the first 128 bytes of the wake up packet for software
retrieval after system wake up. It is not cleared by any reset.

NS 9 0b
IPV6 Neighbor Solicitation Received.
When set to 1b indicates a match on any ICMPv6 packet such as Neighbor Solicitation
(NS) packet or Multicast Listener Discovery (MLD) packet that passed main filtering.

NS Directed 10 0b

IPV6 Neighbor Solicitation with Directed DA Match Received.
When set to 1b, indicates a match on any ICMPv6 packet such as a NS packet or MLD
packet that passed main filtering and the field placed in the target IP address of a NS
packet (9th byte to 24th byte of the ICMPv6 header) also matches a valid IPV6AT filter.

ARP 11 0b
ARP Request Packet Received.
When set to 1b, indicates a match on an ARP request packet that passed main
filtering.

Reserved 15:11 0x0
Reserved.
Write 0bx0, ignore on read.

FLX0 16 0b Flexible Filter 0 Match.

FLX1 17 0b Flexible Filter 1 Match.

FLX2 18 0b Flexible Filter 2 Match.

FLX3 19 0b Flexible Filter 3 Match.

FLX4 20 0b Flexible Filter 4 Match.

FLX5 21 0b Flexible Filter 5 Match.

FLX6 22 0b Flexible Filter 6 Match.

FLX7 23 0b Flexible Filter 7 Match.

Reserved 30:24 0x0
Reserved.
Write 0x0, ignore on read.

FW_RST_WK 31 0b
Wake Due to Firmware Reset Assertion Event.
When set to 1b, indicates that a firmware reset assertion caused the system wake so
that the software device driver can re-send proxying information to firmware.

Field Bit(s) Initial Value Description

LEN 11:0 X Length of Wake-up Packet. (If jumbo frames are enabled and the packet is longer
than 2047 bytes then this field is 2047.)

Reserved 31:12 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

WUPD 31:0 X Wakeup Packet Data.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

368

8.18.6 Proxying Filter Control Register - PROXYFC (0x5F60; R/W)

This register is used to enable each of the pre-defined and flexible filters for proxying support. A value
of 1b means the filter is turned on. A value of 0b means the filter is turned off.

8.18.7 Proxying Status Register - PROXYS (0x5F64; R/W1C)

This register is used to record statistics about all proxying packets received. If a packet matches
multiple criteria then multiple bits could be set. Writing a 1b to any bit clears that bit.

This register is not cleared when PE_RST_N is asserted. It is only cleared when LAN_PWR_GOOD is de-
asserted or when cleared by the software device driver.

Note: If additional packets are received that matches one of the wake-up filters, after the original
wake-up packet is received, the PROXYS register is updated with the matching filters
accordingly.

Field Bit(s) Initial Value Description

D0_PROXY 0 0b

Enable Protocol Offload in D0.
0b = Enable protocol offload only when device is in D3 low power state.
1b = Enable protocol offload always.
Note: Protocol offload is enabled only when the WUC.PPROXYE and

MANC.MPROXYE bits are set to 1b.

Reserved 1 0b
Reserved.
Write 0b, ignore on read.

EX 2 0b Directed Exact Proxy Enable.

MC 3 0b Directed Multicast Proxy Enable.

BC 4 0b Broadcast Proxy Enable.

ARP Directed 5 0b ARP Request Packet and IP4AT Match Proxy Enable.

IPv4 6 0b Directed IPv4 Packet Proxy Enable.

IPv6 7 0b Directed IPv6 Packet Proxy Enable.

Reserved 8 0b
Reserved.
Write 0b, ignore on read.

NS 9 0b IPV6 Neighbor Solicitation Proxy Enable.

NS Directed 10 0b IPV6 Neighbor Solicitation and Directed DA Match Proxy Enable.

ARP 11 0b ARP Request Packet Proxy Enable.

Reserved 14:12 0x0
Reserved.
Write 0x0, ignore on read.

Reserved 15 0b Reserved.

FLX0 16 0b Flexible Filter 0 Enable.

FLX1 17 0b Flexible Filter 1 Enable.

FLX2 18 0b Flexible Filter 2 Enable.

FLX3 19 0b Flexible Filter 3 Enable.

FLX4 20 0b Flexible Filter 4 Enable.

FLX5 21 0b Flexible Filter 5 Enable.

FLX6 22 0b Flexible Filter 6 Enable.

FLX7 23 0b Flexible Filter 7 Enable.

Reserved 31:24 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

369

Note: FLX0-7 bits are set only when flex filter match is detected and WUFC.FLEX_HQ is 0b.

8.18.8 Proxying Extended Status Register - PROXYEXS (0x5594; R/
W1C)

This register is used to record statistics about all proxying packets received. If a packet matches
multiple criteria then multiple bits could be set. Writing a 1b to any bit clears that bit.

This register is not cleared when PE_RST_N is asserted. It is only cleared when LAN_PWR_GOOD is de-
asserted or when cleared by the software device driver.

Field Bit(s) Initial Value Description

Reserved 1:0 0x0
Reserved.
Write 0x0, ignore on read.

EX 2 0b
Directed Exact Packet Received.
The packet’s address matched one of the 32 pre-programmed exact values in the
Receive Address registers, the packet was a unicast packet and RCTL.UPE is set to 1b.

MC 3 0b

Directed Multicast Packet Received.
The packet was a multicast packet hashed to a value that corresponded to a 1 bit in
the Multicast Table Array or the packet was a multicast packet and RCTL.MPE is set to
1b.

BC 4 0b Broadcast Packet Received.

ARP Directed 5 0b
ARP Request Packet with IP4AT Filter Match Received.
When set to 1b indicates a match on any ARP request packet that passed main filtering
and Target IP address also matches one of the valid IP4AT filters.

IPv4 6 0b Directed IPv4 Packet Received.

IPv6 7 0b Directed IPv6 Packet Received.

Reserved 8 0b
Reserved.
Write 0b, ignore on read.

NS 9 0b
IPV6 Neighbor Solicitation Received.
When set to 1b, indicates a match on a NS packet that passed main filtering.

NS Directed 10 0b
IPV6 Neighbor Solicitation with Directed DA filter Match Received.
When set to 1b, indicates a match on a NS packet and target IP address that also
matches a valid IPV6AT filter.

ARP 11 0b
ARP Request Packet Received.
When set to 1b indicates a match on any ARP request packet that passed main
filtering.

Reserved 15:12 0x0
Reserved.
Write 0x0, ignore on read.

FLX0 16 0b Flexible Filter 0 Match.

FLX1 17 0b Flexible Filter 1 Match.

FLX2 18 0b Flexible Filter 2 Match.

FLX3 19 0b Flexible Filter 3 Match.

FLX4 20 0b Flexible Filter 4 Match.

FLX5 21 0b Flexible Filter 5 Match.

FLX6 22 0b Flexible Filter 6 Match.

FLX7 23 0b Flexible Filter 7 Match.

Reserved 31:24 0b
Reserved.
Write 0b, ignore on read.

Ethernet Controller I211 — Programming Interface

370

Note: If additional packets are received that matches one of the wake-up filters, after the original
wake-up packet is received, the PROXYS register is updated with the matching filters
accordingly.

8.18.9 Wake Flex UDP/TCP Ports Filter - WFUTPF (0x5500 + 4*n
[n=0...31]; RW)

Each 32-bit register (n=0...31) refers to one UDP/TCP port filters.

Field Bit(s) Initial Value Description

mDNS 0 0b mDNS matched.

mDNS_mDirected 1 0b mDNS_mDirected matched.

mDNS_uDirected 2 0b mDNS_uDirected matched.

IPv4_mDirected 3 0b IPv4_mDirected matched.

IPv6_mDirected 4 0b IPv6_mDirected matched.

IGMP 5 0b IGMP matched.

IGMP_mDirected 6 0b IGMP_mDirected matched.

ARP_RES 7 0b ARP_RES matched.

ARP_RES_Directed 8 0b ARP_RES_Directed matched.

ICMPv4 9 0b ICMPv4 matched.

ICMPv4_Directed 10 0b ICMPv4_Directed matched.

ICMPv6 11 0b ICMPv6 matched.

ICMPv6_Directed 12 0b ICMPv6_Directed matched.

DNS 13 0b DNS matched.

Reserved 23:14 0x0
Reserved.
Write 0x0, ignore on read.

RA8 24 0b RA8 matched.

RA9 25 0b RA9 matched.

RA10 26 0b RA10 matched.

RA11 27 0b RA11 matched.

RA12 28 0b RA12 matched.

RA13 29 0b RA13 matched.

RA14 30 0b RA14 matched.

RA15 31 0b RA15 matched.

Field Bit(s) Initial Value Description

Port 15:0 0x0 Flex TCP/UDP Destination Port Value.

Control 17:16 00b

Flex Port Control.
00b = Port filter disabled.
01b = UDP port.
10b =TCP port.
11b = TCP port and TCP flag SYN set, TCP flag RESET clear.

Action 18 0b Reserved

Reserved 31:19 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

371

8.18.10 Range Flex UDP/TCP Port Filter - RFUTPF (0x5580; RW)

8.18.11 Range and Wake Port Filter Control - RWPFC (0x5584; RW)

8.18.12 Wake Flex UDP/TCP Ports Status - WFUTPS (0x5588, R/W1C)

Field Bit(s) Initial Value Description

LowPort 15:0 0x0
Range Flex UDP/TCP Ports Filter Low.
This port filter marks the lowest port value for the range port filter.

HighPort 31:16 0x0
Range Flex UDP/TCP Ports Filter High.
This port filter marks the highest port value for the range port filter.

Field Bit(s) Initial Value Description

RangeControl 1:0 00b

Range Port Filter Control.
00b = Port Filter disabled.
01b = UDP port.
10b = TCP port.
11b = TCP port and TCP flag SYN set; TCP flag RESET clear.

RangeAction 2 0b

The Range Action bit defines the action to take on a match to the range
port filter.
0b = Host wake up.
1b = Reserved.

Reserved 7:3 0x0 Reserved.

NonIPsecKA 8 0b

Non IPSEC Keep Alive to UDP 4500.
Packet structure- UDP packet UDP destination port 4500, the first byte after
the UDP header is not 0xFF.
Refer to RFC 3948 for more information.

TCP_SSH_Data 9 0b
TCP SSH Data - port 22 (RESET, SYN, FIN - cleared).
Packet structure- TCP packet with TCP destination port of 22; TCP flags
doesn't have the RESET, SYN and FIN flag set.

MagicUDP 10 0b

UDP 3283 Magic WU Packet.
Packet structure - DP packet UDP destination port 3283, first 2 bytes after
the UDP header are 0x13, 0x88, UDP payload is >=100 bytes, and contains
a Magic Packet structure in it.

Reserved 31:11 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

Port0 0 0b Flex Port 0 matched.

Port1 1 0b Flex Port 1 matched.

Port2 2 0b Flex Port 2 matched.

Port3 3 0b Flex Port 3 matched.

Port4 4 0b Flex Port 4 matched.

Port5 5 0b Flex Port 5 matched.

Port6 6 0b Flex Port 6 matched.

Ethernet Controller I211 — Programming Interface

372

8.18.13 Wake Control Status - WCS (0x558C, R/W1C)

Port7 7 0b Flex Port 7 matched.

Port8 8 0b Flex Port 8 matched.

Port9 9 0b Flex Port 9 matched.

Port10 10 0b Flex Port 10 matched.

Port11 11 0b Flex Port 11 matched.

Port12 12 0b Flex Port 12 matched.

Port13 13 0b Flex Port 13 matched.

Port14 14 0b Flex Port 14 matched.

Port15 15 0b Flex Port 15 matched.

Port16 16 0b Flex Port 16 matched.

Port17 17 0b Flex Port 17 matched.

Port18 18 0b Flex Port 18 matched.

Port19 19 0b Flex Port 19 matched.

Port20 20 0b Flex Port 20 matched.

Port21 21 0b Flex Port 21 matched.

Port22 22 0b Flex Port 22 matched.

Port23 23 0b Flex Port 23 matched.

Port24 24 0b Flex Port 24 matched.

Port25 25 0b Flex Port 25 matched.

Port26 26 0b Flex Port 26 matched.

Port27 27 0b Flex Port 27 matched.

Port28 28 0b Flex Port 28 matched.

Port29 29 0b Flex Port 29 matched.

Port30 30 0b Flex Port 30 matched.

Port31 31 0b Flex Port 31 matched.

Field Bit(s) Initial Value Description

RangeControl 0 0b RangeControl Matched.

NonIPsecKA 1 0b NonIPsecKA Matched.

TCP_SSH_Data 2 0b TCP_SSH_Data Matched.

MagicUDP 3 0b MagicUDP Matched.

Reserved 29:4 0x0
Reserved.
Write 0x0, ignore on read.

LocalIPOrNameCo
nflict 30 0b

Local IP Conflict or Name Conflict Detected by Proxy.
A firmware write of 1b sets the field, while a software write of 1b clears the
field. Firmware writes to set are not blocked if other fields of the status are
already set.

mDNS Proxy Error
Recovery 31 0b

mDNS Proxy Error Recovery.
A firmware write of 1b sets the field, while a software write of 1b clears the
field. Firmware writes to set are not blocked if other fields of the status are
already set.

Field Bit(s) Initial Value Description

Programming Interface — Ethernet Controller I211

373

8.18.14 IP Address Valid - IPAV (0x5838; R/W)

The IP address valid indicates whether the IP addresses in the IP address table are valid.

8.18.15 IPv4 Address Table - IP4AT (0x5840 + 8*n [n=0...3]; R/W)

The IPv4 address table is used to store the four IPv4 addresses for the ARP/IPv4 request packet and
directed IP packet wake up.

8.18.16 IPv6 Address Table - IP6AT (0x5880 + 4*n [n=0...3]; R/W)

The IPv6 address table is used to store the IPv6 addresses for neighbor discovery packet filtering and
directed IP packet wake up.

Field Bit(s) Initial Value Description

V40 0 0b IPv4 Address 0 Valid.

V41 1 0b IPv4 Address 1 Valid.

V42 2 0b IPv4 Address 2 Valid.

V43 3 0b IPv4 Address 3 Valid.

Reserved 15:4 0x0
Reserved.
Write 0x0, ignore on read.

V60 16 0b IPv6 Address 0 Valid.

Reserved 31:17 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

IP Address 31:0 X
IPv4 Address n.
Note: These registers are written in Big Endian order (LS byte is first on

the wire and is the MS byte of the IPV4 address).

Field Dword # Address Bit(s) Initial Value Description

IPV4ADDR0 0 0x5840 31:0 X IPv4 Address 0.

IPV4ADDR1 2 0x5848 31:0 X IPv4 Address 1.

IPV4ADDR2 4 0x5850 31:0 X IPv4 Address 2.

IPV4ADDR3 6 0x5858 31:0 X IPv4 Address 3.

Field Bit(s) Initial Value Description

IP Address 31:0 X
IPv6 Address bytes 4*n+1:4*n +4.
Note: These registers appear in Big Endian order (LS byte, LS address is

first on the wire and is the MS byte of the IPV6 address).

Ethernet Controller I211 — Programming Interface

374

8.18.17 Flexible Host Filter Table Registers - FHFT (0x9000 + 4*n
[n=0...255]; RW)

Each of the 8 Flexible Host Filters Table registers (FHFT and FHFT_EXT) contains a 128 byte pattern and
a corresponding 128-bit mask array. If enabled, the first 128 bytes of the received packet are
compared against the non-masked bytes in the FHFT register.

Each 128 byte filter is composed of 32 Dword entries, where each 2 Dwords are accompanied by an 8-
bit mask, one bit per filter byte. When a bit in the 8-bit mask field is set the corresponding byte in the
filter is compared.

The 8 LSB bits of the last Dword of each filter contains a length field defining the number of bytes from
the beginning of the packet compared by this filter, the length field should be 8 bytes aligned value. If
actual packet length is less than (length - 8) (length is the value specified by the length field), the filter
fails. Otherwise, it depends on the result of actual byte comparison. The value should not be greater
than 128.

Note: The length field must be 8 bytes aligned. For filtering packets shorter than 8 bytes aligned,
the values should be rounded down to the previous 8 bytes aligned value.

Bits 31:8 of the last Dword of each filter also includes a Queueing field (refer to Section 8.18.17.1).
When the I211 is in the D0 state, the WUFC.FLEX_HQ bit is set to 1b, MRQC.Multiple Receive Queues =
010b or 000b and the packet matches the flex filter, the Queueing field defines the receive queue for
the packet, priority of the filter and actions to be initiated.

Field Dword # Address Bit(s) Initial Value Description

IPV6ADDR0

0 0x5880 31:0 X IPv6 Address 0, bytes 1-4.

1 0x5884 31:0 X IPv6 Address 0, bytes 5-8.

2 0x5888 31:0 X IPv6 Address 0, bytes 9-12.

3 0x588C 31:0 X IPv6 Address 0, bytes 16-13.

Field Bit(s) Initial Value Description

Bit Vector 31:0 X The details of the bit vector are described in Table 8-23.

Table 8-23. FHFT Filter Description

31 0 31 8 7 0 31 0 31 0

Reserved Reserved Mask [7:0] DW 1 Dword 0

Reserved Reserved Mask [15:8] DW 3 Dword 2

Reserved Reserved Mask [23:16] DW 5 Dword 4

Reserved Reserved Mask [31:24] DW 7 Dword 6

Programming Interface — Ethernet Controller I211

375

....

Accessing the FHFT registers during filter operation can result in a packet being mis-classified if the
write operation collides with packet reception. It is therefore advised that the flex filters are disabled
prior to changing their setup.

8.18.17.1 Flex Filter Queueing Field

The Queueing field resides in bits 31:8 of last Dword (Dword 63) of flex filter. The Queueing field
defines the receive queue to forward the packet (RQUEUE), the filter priority (FLEX_PRIO) and
additional filter actions. Operations defined in Queueing field are enabled when the I211 is in the D0
state, MRQC.Multiple Receive Queues = 010b or 000b, WUFC.FLEX_HQ is 1b and relevant WUFC.FLX[n]
bit is set.

31 8 7 0 31 8 7 0 31 0 31 0

Reserved Reserved Reserved Mask [119:112] DW 29 Dword 28

Queueing Length Reserved Mask [127:120] DW 31 Dword 30

Field Bit(s) Initial Value Description

Length 7:0 X
Length.
Filter length in bytes. Should be 8 bytes aligned and not greater than
128 bytes.

RQUEUE 10:8 X
Receive Queue.
Defines receive queue associated with this flex filter. When a match
occurs in D0 state, the packet is forwarded to the receive queue.

Reserved 15:11 X
Reserved.
Write 0x0, ignore on read.

FLEX_PRIO 18:16 X

Flex Filter Priority.
Defines the priority of the filter assuming two filters with the same
priority don’t match. If two filters with the same priority match the
incoming packet, the first filter (lowest address) is used in order to
define the queue destination of this packet.

Reserved 23:19 X
Reserved.
Write 0x0, ignore on read.

Immediate Interrupt 24 X Enables issuing an immediate interrupt when the flex filter matches the
incoming packet.

Reserved 31:25 X
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

376

8.18.17.2 Flex Filter 0 - Example

8.18.18 Flexible Host Filter Table Extended Registers - FHFT_EXT
(0x9A00 + 4*n [n=0...255]; RW)

Each of the four additional Flexible Host Filters table extended registers (FHFT_EXT) contains a 128
byte pattern and a corresponding 128-bit mask array. If enabled, the first 128 bytes of the received
packet are compared against the non-masked bytes in the FHFT_EXT register. The layout and access
rules of this table are the same as in FHFT.

8.18.19 Host Interface Buffer Base Address - HIBBA (0x8F40; RW)

Notes:
1. This register is reset by a firmware reset.
2. This resister is accessible to the host driver only if Memory Base Enable is set in HICR; otherwise,

the register is read only to the host driver.

Field Dword Address Bit(s) Initial Value

Filter 0 DW0 0 0x9000 31:0 X

Filter 0 DW1 1 0x9004 31:0 X

Filter 0 Mask[7:0] 2 0x9008 7:0 X

Reserved 3 0x900C 31:0 X

Filter 0 DW2 4 0x9010 31:0 X

‚Ä¶

Filter 0 DW30 60 0x90F0 31:0 X

Filter 0 DW31 61 0x90F4 31:0 X

Filter 0
Mask[127:120] 62 0x90F8 7:0 X

Length 63 0x90FC 7:0 X

Filter 0 Queueing 63 0x90FC 31:8 X

Field Bit(s) Initial Value Description

bit vector 31:0 X The details of the bit vector are described in Table 8-23.

Table 8-24. FTFT Filter Description

31 0 31 8 7 0 31 0 31 0

Reserved Reserved Mask [7:0] Dword 1 Dword 0

Reserved Reserved Mask [15:8] Dword 3 Dword 2

Reserved Reserved Mask [23:16] Dword 5 Dword 4

Reserved Reserved Mask [31:24] Dword 7 Dword 6

Programming Interface — Ethernet Controller I211

377

8.18.20 Host Interface Buffer Maximum Offset - HIBMAXOFF (0x8F44;
RO)

The register holds the maximum offset in bytes in the memory buffer that the host can access from
address 0x8800 in its address space. Any access above this value is blocked by hardware.

This register is reset by a firmware reset.

8.19 Memory Error Registers Description
Main internal memories are protected by Error Correcting Code (ECC) or parity bits. The I211 contains
several registers that enable and report detection of internal memory errors. Description and usage of
these registers can be found in Section 7.6.

8.19.1 Parity and ECC Error Indication- PEIND (0x1084; RC)

Field Bit(s) Initial Value Description

BA 19:0 0x17800

Host interface buffer base address in the device internal memory
space (in bytes). Base address for the CSR slave access.
The address must be 1 KB aligned (bits 9:0 are RO hardwired to
zero).

Reserved 31:20 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

MAXOFF 9:0 0x3FF
Maximum offset in the HIB for the CSR slave access.
The 2 LSBs are always set to 11b.

Reserved 31:10 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

lanport_parity_fatal_ind (LH) 0 0b
Fatal Error detected in LAN port memory.
Bit is latched high and cleared on read.

mng_parity_fatal_ind (RC) 1 0b
Fatal Error detected in management memory.
Bit is latched high and cleared on read.

pcie_parity_fatal_ind (RC) 2 0b
Fatal Error detected in PCIe memory.
Bit is latched high and cleared on read.

dma_parity_fatal_ind (RC) 3 0b
Fatal Error detected in DMA memory.
Bit is latched high and cleared on read.

Reserved 31:4 0x0
Reserved.
Write 0x0 ignore on read.

Ethernet Controller I211 — Programming Interface

378

8.19.2 Parity and ECC Indication Mask - PEINDM (0x1088; RW)

8.19.3 Packet Buffer ECC Status - PBECCSTS (0x245c; R/W)

8.19.4 PCIe Parity Control Register - PCIEERRCTL (0x5BA0; RW)

Field Bit(s) Initial Value Description

lanport_parity_fatal_ind 0 1b When set and PEIND.lanport_parity_fatal_ind is set, enable interrupt
generation by setting the ICR.FER bit.

mng_parity_fatal_ind 1 1b When set and PEIND.mng_parity_fatal_ind is set, enable interrupt
generation by setting the ICR.FER bit.

pcie_parity_fatal_ind 2 1b When set and PEIND.pcie_parity_fatal_ind is set, enable interrupt
generation by setting the ICR.FER bit.

dma_parity_fatal_ind 3 1b When set and PEIND.dma_parity_fatal_ind is set, enable interrupt
generation by setting the ICR.FER bit.

Reserved 31:4 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Init. Description

ecc_en 0 0x1 ECC Enable.

Reserved 1 0x0
Reserved
Write 0, ignore on read.

pb_cor_err_sta(R/
W1C) 2 0x0

DBU RAM correctable error indication.
Bit is clean by write 1b.

Reserved 31:3 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial
Value Description

GPAR_EN 0 0b
Global Parity Enable.
When cleared, parity checking of all RAMs is disabled.
Note: This bit resets only at LAN_PWR_GOOD.

Reserved 5:1 01000b
Reserved.
Write 0x0, ignore on read.

ERR EN RX CDQ 0 6 1b
RX CDQ 0 Parity Check Enable

Reserved 7 0b Reserved.

ERR EN RX CDQ 1 8 1b
RX CDQ 1 Parity Check Enable.

Reserved 9 0b Reserved.

ERR EN RX CDQ 2 10 1b
RX CDQ 2 Parity Check Enable.

Programming Interface — Ethernet Controller I211

379

8.19.5 PCIe Parity Status Register - PCIEERRSTS (0x5BA8; R/W1C)

Register logs uncorrectable parity errors detected in PCIe logic.

Reserved 11 0b Reserved.

ERR EN RX CDQ 3 12 1b
RX CDQ 3 Parity Check Enable.

Reserved 31:13 0x0 Reserved.

Field Bit(s) Initial
Value Description

Reserved 2:0 0x0
Reserved.
Write 0x0, ignore on read.

PAR ERR RX CDQ 0 3 0b

Rx CDQ 0 Parity Error.

Indicates detection of parity error in RAM if PCIEERRCTL.ERR EN RX CDQ 0 is set.
When set, stops all PCIe and DMA Rx and Tx activity from the function. To recover from
this condition, the software device driver should issue a software reset by asserting
CTRL.RST and re-initializing the port (refer to Section 7.6.1.1).
Note: PEIND.pcie_parity_fatal_ind and ICR.FER interrupts are asserted if bits are not

masked.

PAR ERR RX CDQ 1 4 0b

Rx CDQ 1 Parity Error.

Indicates detection of parity error in RAM if PCIEERRCTL.ERR EN RX CDQ 1 is set.
When set, stops all PCIe and DMA Rx and Tx activity from the function. To recover from
this condition, the software device driver should issue a software reset by asserting
CTRL.RST and re-initializing the port (refer to Section 7.6.1.1).
Note: PEIND.pcie_parity_fatal_ind and ICR.FER interrupts are asserted if bits are not

masked.

PAR ERR RX CDQ 2 5 0b

RX CDQ 2 Parity Error.

Indicates detection of parity error in RAM if PCIEERRCTL.ERR EN RX CDQ 2 is set.
When set, stops all PCIe and DMA Rx and Tx activity from the function. To recover from
this condition, the software device driver should issue a software reset by asserting
CTRL.RST and re-initializing the port (refer to Section 7.6.1.1).
Note: PEIND.pcie_parity_fatal_ind and ICR.FER interrupts are asserted if bits are not

masked.

PAR ERR RX CDQ 3 6 0b

RX CDQ 3 Parity Error.

Indicates detection of parity error in RAM if PCIEERRCTL.ERR EN RX CDQ 3 is set.
When set, stops all PCIe and DMA Rx and Tx activity from the function. To recover from
this condition, the software device driver should issue a software reset by asserting
CTRL.RST and re-initializing the port (refer to Section 7.6.1.1).
Note: PEIND.pcie_parity_fatal_ind and ICR.FER interrupts are asserted if bits are not

masked.

Reserved 31:7 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial
Value Description

Ethernet Controller I211 — Programming Interface

380

8.19.6 PCIe ECC Control Register - PCIEECCCTL (0x5BA4; RW)

8.19.7 PCIe ECC Status Register - PCIEECCSTS (0x5BAC; R/W1C)

8.19.8 PCIe ACL0 and ACL1 Register - PCIACL01 (0x5B7C; RO to Host)

Note: Reset by PCIe reset.

8.19.9 PCIe ACL2 and ACL3 Register - PCIACL23 (0x5B80; RO to Host)

Note: Reset by PCIe reset.

Field Bit(s) Initial
Value Description

Reserved 11:0 0x511 Reserved.

ERR EN TX WR DATA 12 1b Tx Write Request Data ECC Check Enable.

Reserved 13 0b Reserved.

ERR EN RETRY BUF 14 1b Tx Retry Buffer ECC Check Enable.

Reserved 31:15 0x0
Reserved.
Write 0x0, Ignore on read.

Field Bit(s) Initial
Value Description

Reserved 3:0 0 Reserved

ECC ERR TX WR DATA 4 0b
Tx Write Request Data ECC Correctable Error

ECC ERR RETRY BUF 5 0b
TX Retry Buffer ECC Correctable Error

Reserved 31:6 0x0
Reserved
Write 0, ignore on read

Field Bit(s) Initial
Value Description

ACL0 15:0 0 One of the four ACLs.

ACL1 31:16 0 One of the four ACLs.

Field Bit(s) Initial
Value Description

ACL2 15:0 0 One of the four ACLs.

ACL3 31:16 0 One of the four ACLs.

Programming Interface — Ethernet Controller I211

381

8.19.10 LAN Port Parity Error Control Register - LANPERRCTL (0x5F54;
RW)

8.19.11 LAN Port Parity Error Status Register - LANPERRSTS (0x5F58; R/
W1C)

8.20 Power Management Register Description
The following registers are used to control various power saving features.

Field Bit(s) Initial
Value Description

Reserved 8:0 0x0
Reserved.
Write 0x0, ignore on read.

retx_buf_en 9 1b
Enable retx_buf parity error indication
When set to 1b, enables the RETX buffer (re-transmit buffer) parity error detection and
indication.

Reserved 31:10 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial
Value Description

Reserved 8:0 0x0
Reserved.
Write 0x0, ignore on read.

retx_buf 9 0b

retx_buf Parity Error Indication.
When set to 1b, indicates detection of parity error in the RETX buffer (re-transmit buffer)
RAM if LANPERRCTL.retx_buf_en is set.
When set, disables packet transmission. To recover from this condition, the software
device driver should issue a software reset by asserting CTRL.RST and re-initializing the
port.
Note: PEIND.lanport_parity_fatal_ind and ICR.FER interrupts are asserted if bits are

not masked.

Reserved 31:10 0x0
Reserved.
Write 0x0, ignore on read.

Ethernet Controller I211 — Programming Interface

382

8.20.1 Energy Efficient Ethernet (EEE) Register - EEER (0x0E30; R/W)

Field Bit(s) Initial Value Description

Tw_system 15:0 0x0

Time expressed in microseconds that no data is transmitted following a move
from the EEE TX LPI link state to a link active state. This field holds the transmit
Tw_sys_tx value negotiated during EEE LLDP negotiation.
Notes:
1. If this value is lower than the minimum Tw_sys_tx value defined in

IEEE802.3az clause 78.5 (30 s for 100BASE-TX and 16.5 s for 1000BASE-
T) then the interval where no data is transmitted following a move out of
the EEE TX LPI state defaults to a minimum Tw_sys_tx .

2. Following a link disconnect or auto-negotiation the value of this field returns
to its default value until software re-negotiates a new tw_sys_tx value via
EEE LLDP.

Note: When transmitting flow control frames, the I211 waits the minimum
time defined in the IEEE802.3az standard before transmitting a flow
control packet. The I211 does not wait the Tw_system time following an
exit of LPI before transmitting a flow control frame.

TX_LPI_EN 16 0b

Enable Entry into EEE LPI on Tx Path.
0b = Disable entry into EEE LPI on Tx path.
1b = Enable entry into EEE LPI on Tx path.
Refer to Section 3.7.7.1 for additional information on EEE Tx LPI entry.
Notes:
1. Even when TX_LPI_EN is set to 1b, the I211 will not enable entry into the

Tx LPI state for at least 1 second following the change of link_status to OK
as defined in IEEE802.3az clause 78.1.2.1.

2. Even if the TX_LPI_EN bit is set, the I211 initiates entry into the Tx EEE LPI
link state only if EEE support at the link speed was negotiated during auto-
negotiation.

RX_LPI_EN 17 1b

Enable Entry into EEE LPI on Rx Path
0b = Disable entry into EEE LPI on Rx path.
1b = Enable entry into EEE LPI on Rx path.
Notes:
1. Even if the RX_LPI_EN bit is set, the I211 recognizes entry into Rx EEE LPI

link state only if EEE support at the link speed was negotiated during auto-
negotiation.

2. When set and link moves into Rx LPI, a LTR message with the value defined
in the LTRMAXV register is sent on the PCIe, if LTRC.EEEMS_EN is set.

LPI_FC 18 1b

Enable EEE Tx LPI Entry on Flow Control.
Enable EEE Tx LPI state entry when the link partner sent a PAUSE flow control
frame, even if the internal transmit buffer is not empty or transmit descriptors
are available.
Notes:
1. The I211 enters the Tx LPI state when no data is transmitted and not in

mid-packet.
2. Entry into Tx LPI on flow control is enabled only if either EEER.TX_LPI_EN is

set to 1b or EEER.Force_TLPI is set to 1b.
3. Receiving XON frame causes a move out of LPI if a transmit is pending.

Force_TLPI 19 0b

Force Tx LPI.
When set, the PHY is forced into the EEE Tx LPI state.
Notes:
1. The I211 enters the Tx LPI state when no data is transmitted and not in

mid-packet.
2. When set, the I211 enters Tx LPI even if EEER.TX_LPI_EN is set to 0b.

Reserved 27:20 0x0
Reserved.
Write 0x0, ignore on read.

Programming Interface — Ethernet Controller I211

383

8.21 Diagnostic Registers Description

8.21.1 PCIe Misc. Register - PCIEMISC (0x5BB8; RW)

Note: Reset by PCIe power good reset.

8.22 PHY Software Interface

8.22.1 Internal PHY Configuration - IPCNFG (0x0E38, RW)

The IPCNFG register controls PHY configuration.

EEE_FRC_AN 28 0b

Force EEE Auto-negotiation.
When this bit is set to 1b,it enables EEE operation in the internal MAC logic even
if the link partner does not support EEE. Should be set to 1b to enable testing of
EEE operation via MAC loopback (refer to y).

EEE NEG (RO) 29 X

EEE Support Negotiated on Link.
0b = EEE operation not supported on link.
1b = EEE operation supported on link.
Note: Status reported by this bit shall be ignored when the port is operated in
half duplex mode.

RX LPI Status (RO) 30 X
Rx Link in LPI State.
0b = Rx in active state.
1b = Rx in LPI state.

TX LPI Status (RO) 31 X
Tx Link in LPI State.
0b = Tx in active state.
1b = Tx in LPI state.

Field Bit(s) Initial
Value Description

Reserved 8:0 0x8A
Reserved
Ignore on read, write 0x8A.

DMA Idle Indication 9 0b1

1. Value loaded from iNVM.
Pulses shorter than the filter width are ignored.

Indication For DMA Idle
This bit indicates when DMA is considered idle (either when the DMA is idle or when PCIe
Link is idle).
0b = DMA is considered idle when there is no Rx or Tx.
1b = DMA is considered idle when there is no Rx or Tx AND when there are no TLPs
indicating that CPU is active detected on the PCIe link (such as the host executes CSR or
Configuration register read or write operation).
Note: The bit must be set to 1b each time programming the iNVM via CSR accesses.

Reserved 31:10 0x122
Reserved
Ignore on read, write 122.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

384

Note:

8.22.2 PHY Power Management - PHPM (0x0E14, RW)

The PHPM register controls internal PHY power management operation.

Field Bit(s) Initial Value Description

Enable Automatic
Crossover 0 1b1

1. Bit Loaded from bit 9 in the Initialization Control 3 iNVM word at power up.

When set, the device automatically determines whether or not it needs to
cross over between pairs so that an external cross-over cable is not
required.

10BASE-TE 1 0b

Enable Low Amplitude 10BASE-T Operation.
Setting this bit enables the I211 to operate in IEEE802.3az 10BASE-Te low
power operation.
0b = 10BASE-Te operation disabled.
1b = 10BASE-Te operation enabled.

Note: When operating in 10BASE-T mode and with this bitset,
supported cable length is reduced.

EEE_100M_AN 2 1b

Report EEE 100 Mb/s Capability in Auto-negotiation
0b = Do not report EEE 100 Mb/s capability in auto-negotiation.
1b = Report EEE 100 Mb/s capability in auto-negotiation.
Note: Changing value of bit causes link drop and re-negotiation.

EEE_1G_AN 3 1b

Report EEE 1 GbE Capability in Auto-negotiation.
0b = Do not report EEE 1 GbE capability in auto-negotiation.
1b = Report EEE 1 GbE capability in auto-negotiation.
Note: Changing the value of this bit causes link drop and re-

negotiation.

Reserved 31:4 0x0
Reserved.
Write 0x0, ignore on read.

Field Bit(s) Initial Value Description

SPD_EN 0 1b

Smart Power Down.
When set, enables PHY Smart Power Down mode.
This bit is loaded from the SPD Enable bit in the Initialization Control 4
iNVM word on reset.

D0LPLU 1 0b
D0 Low Power Link Up (LPLU).
When set, configures the PHY to negotiate for a low speed link in all
states.

LPLU 2 1b

Low Power on Link Up.
When set, enables the decrease in link speed while in non-D0a states
when the power policy and power management state specify it.
This bit is loaded from the LPLU bit in the Initialization Control 4 iNVM
word on reset.

Disable 1000 in non-D0a 3 1b
Disables 1000 Mb/s operation in non-D0a states.
This bit is loaded from the Disable 1000 in non-D0a bit in the Software
Defined Pins Control iNVM word on reset.

Link Energy Detect (RO,
LH) 4 0b

This bit is set when the PHY detects energy on the link. Note that this bit
is valid only if the PHPM.Go Link disconnect bit is set to 0b.
When PHPM.Go Link disconnect =1b, PHPM.link_energy_detect is fixed at
1b at all the link states.

Go Link disconnect 5 0b Setting this bit causes the PHY to enter link disconnect mode immediately.

Programming Interface — Ethernet Controller I211

385

8.22.3 Internal PHY Software Interface (PHYREG)
1. Base registers (page 0, registers 0 through 10 and 15) are defined in accordance with the

Reconciliation Sub layer and Media Independent Interface and Physical Layer Link Signaling for 10/
100/ 1000 Mb/s Auto-Negotiation sections of the IEEE 802.3 specification.

2. Additional registers are defined in accordance with the IEEE 802.3 specification for adding unique
chip functions.

3. Registers in the following table are accessed using the internal MDIO interface via the MDIC register
(Refer to Section 8.2.4).

Disable 1000 6 0b
When set, disables 1000 Mb/s in all power modes.
This bit is loaded from the Giga Disable bit in the Software Defined Pins
Control iNVM word on reset.

SPD_B2B_EN 7 1b SPD Back-to-Back Enable.

rst_compl (RO, LH) 8 0b Indicates PHY internal reset cleared.

Disable 100 in non-D0a 9 0b
Disables 100 Mb/s and 1000 Mb/s operation in non-D0a states.
This bit is loaded from the Disable 100 in non-D0a bit in the Software
Defined Pins Control iNVM word on reset.

Reserved 31:10 0x0
Reserved.
Write 0x0, ignore on read.

Register Name Register Address Section and Page

Copper Control Register Page 0, Register 0 section 8.22.3.1 on page 386.

Copper Status Register Page 0, Register 1 section 8.22.3.2 on page 388.

PHY Identifier 1 Page 0, Register 2 section 8.22.3.3 on page 389.

PHY Identifier 2 Page 0, Register 3 section 8.22.3.4 on page 389.

Copper Auto-Negotiation Advertisement Register Page 0, Register 4 section 8.22.3.5 on page 389.

Copper Link Partner Ability Register - Base Page Page 0, Register 5 section 8.22.3.6 on page 391.

Copper Auto-Negotiation Expansion Register Page 0, Register 6 section 8.22.3.7 on page 392.

Copper Next Page Transmit Register Page 0, Register 7 section 8.22.3.8 on page 393.

Copper Link Partner Next Page Register Page 0, Register 8 section 8.22.3.9 on page 393.

1000BASE-T Control Register Page 0, Register 9 section 8.22.3.10 on page 394.

1000BASE-T Status Register Page 0, Register 10 section 8.22.3.11 on page 395.

MMD Access Control Register Page 0, Register 13 section 8.22.3.12 on page 396.

MMD Access Address/Data Register Page 0, Register 14 section 8.22.3.13 on page 396.

Extended Status Register Page 0, Register 15 section 8.22.3.14 on page 396.

Copper Specific Control Register 1 Page 0, Register 16 section 8.22.3.15 on page 396.

Copper Specific Status Register 1 Page 0, Register 17 section 8.22.3.16 on page 398.

Copper Specific Interrupt Enable Register Page 0, Register 18 section 8.22.3.17 on page 399.

Copper Interrupt Status Register Page 0, Register 19 section 8.22.3.18 on page 400.

Copper Specific Control Register 2 Page 0, Register 20 section 8.22.3.19 on page 401.

Copper Specific Receive Error Counter Register Page 0, Register 21 section 8.22.3.20 on page 401.

Page Address Page Any, Register 22 section 8.22.3.21 on page 401.

Copper Specific Control Register 3 Page 0, Register 23 section 8.22.3.22 on page 402.

Field Bit(s) Initial Value Description

Ethernet Controller I211 — Programming Interface

386

8.22.3.1 Copper Control Register - Page 0, Register 0

MAC Specific Control Register 1 Page 2, Register 16 section 8.22.3.23 on page 403.

MAC Specific Interrupt Enable Register Page 2, Register 18 section 8.22.3.24 on page 403.

MAC Specific Status Register Page 2, Register 19 section 8.22.3.25 on page 404.

Copper RX_ER Byte Capture Page 2, Register 20 section 8.22.3.26 on page 404.

MAC Specific Control Register 2 Page 2, Register 21 section 8.22.3.27 on page 405.

jt_led_s[3:0] Function Control Register Page 3, Register 16 section 8.22.3.28 on page 406.

jt_led_s[3:0] Polarity Control Register Page 3, Register 17 section 8.22.3.29 on page 408.

LED Timer Control Register Page 3, Register 18 section 8.22.3.30 on page 408.

jt_led_s[5:4] Function Control and Polarity Register Page 3, Register 19 section 8.22.3.31 on page 409.

1000BASE-T Pair Skew Register Page 5, Register 20 section 8.22.3.32 on page 410.

1000BASE-T Pair Swap and Polarity Page 5, Register 21 section 8.22.3.33 on page 411.

Copper Port Packet Generation Page 6, Register 16 section 8.22.3.34 on page 411.

Copper Port CRC Counters Page 6, Register 17 section 8.22.3.35 on page 412.

Checker Control Page 6, Register 18 section 8.22.3.36 on page 412.

Misc Test Page 6, Register 26 section 8.22.3.37 on page 412.

PHY Cable Diagnostics Pair 0 Length Page 7, Register 16 section 8.22.3.38 on page 413.

PHY Cable Diagnostics Pair 1 Length Page 7, Register 17 section 8.22.3.39 on page 413.

PHY Cable Diagnostics Pair 2 Length Page 7, Register 18 section 8.22.3.40 on page 413.

PHY Cable Diagnostics Pair 3 Length Page 7, Register 19 section 8.22.3.41 on page 413.

PHY Cable Diagnostics Results Page 7, Register 20 section 8.22.3.42 on page 413.

PHY Cable Diagnostics Control Page 7, Register 21 section 8.22.3.43 on page 414.

Bits Field Mode HW Rst SW Rst Description

15 Copper Reset R/W, SC 0x0 SC

Copper Software Reset.
Affects pages 0, 2, 3, 5, and 7. Writing a 1b to this bit causes the
PHY state machines to be reset. When the reset operation
completes, this bit is cleared to 0b automatically. The reset occurs
immediately.
1b = PHY reset.
0b = Normal operation.

14 Loopback R/W 0x0 0x0

When loopback is activated, the transmitter data presented on
TXD is looped back to RXD internally. Link is broken when
loopback is enabled. Loopback speed is determined by Registers
21_2.2:0.
1b = Enable loopback.
0b = Disable loopback.

Programming Interface — Ethernet Controller I211

387

13 Speed Select
(LSB) R/W 0x0 Update

Changes to this bit are disruptive to the normal operation. As a
result, any changes to these registers must be followed by a
software reset to take effect.
A write to this register bit does not take effect until any one of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2) transitions from power

down to normal operation.
Bits 6and 13:
11b = Reserved.
10b = 1000 Mb/s.
01b = 100 Mb/s.
00b = 10 Mb/s.

12 Auto-Negotiation
Enable R/W 0x1 Update

Changes to this bit are disruptive to the normal operation. A write
to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2) transitions from power

down to normal operation.
If register 0_0.12 is set to 0b and speed is manually forced to
1000 Mb/s in registers 0.13 and 0.6, then auto-negotiation is still
enabled and only 1000BASE-T full-duplex is advertised if register
0_0.8 is set to 1b, and 1000BASE-T half-duplex is advertised if
0.8 is set to 0.
Registers 4.8:5 and 9.9:8 are ignored. Auto-negotiation is
mandatory per IEEE for proper operation in 1000BASE-T.
1b = Enable auto-negotiation process.
0b = Disable auto-negotiation process.

11 Power Down R/W Retain

Power down is controlled via register 0_0.11 and 16_0.2. Both
bits must be set to 0b before the PHY transitions from power
down to normal operation.
When the port is switched from power down to normal operation,
software reset and restart auto-negotiation are performed even
when bits Reset (0_0.15) and Restart Auto-Negotiation (0_0.9)
are not set by the user.
1b = Power down.
0b = Normal operation.

10 Isolate RO 0x0 0x0 This bit has no effect.

9 Restart Copper
Auto-Negotiation R/W, SC 0x0 SC

Auto-negotiation automatically restarts after hardware or
software reset regardless of whether or not the restart bit (0.9) is
set.
1b = Restart auto-negotiation process.
0b = Normal operation.

8 Copper Duplex
Mode R/W 0x1 Update

Changes to this bit are disruptive to the normal operation.As a
result, any changes to these registers must be followed by a
software reset to take effect.
A write to this register bit does not take effect until any one of the
following also occurs:
• Software reset is asserted (Register 0_0.15).
• Restart Auto-Negotiation is asserted (Register 0_0.9).
• Power down (Register 0_0.11, 16_0.2) transitions from

power down to normal operation.
1 = Full duplex.
0 = Half duplex.

Ethernet Controller I211 — Programming Interface

388

8.22.3.2 Copper Status Register - Page 0, Register 1

7 Collision Test RO 0x0 0x0 This bit has no effect.

6 Speed Selection
(MSB) R/W 0x1 Update

Changes to this bit are disruptive to the normal operation;.As a
result, any changes to these registers must be followed by a
software reset to take effect.
A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (Register 0_0.15).
• Restart Auto-Negotiation is asserted (Register 0_0.9).
• Power down (Register 0_0.11, 16_0.2) transitions from

power down to normal operation.
Bits 6 and 13:
11b = Reserved.
10b = 1000 Mb/s.
01b = 100 Mb/s.
00b = 10 Mb/s.

5:0 Reserved RO Always 0x0 Always
0x0 Reserved.

Bits Field Mode HW Rst SW Rst Description

15 100BASE-T4 RO Always 0b Always 0b
100BASE-T4. This protocol is not available.
0 = PHY not able to perform 100BASE-T4.

14 100BASE-X Full-
Duplex RO Always 1b Always 1b 1b = PHY able to perform full-duplex 100BASE-X.

13 100BASE-X Half-
Duplex RO Always 1b Always 1b 1b = PHY able to perform half-duplex 100BASE-X.

12 10 Mb/s Full-
Duplex RO Always 1b Always 1b 1b = PHY able to perform full-duplex 10BASE-T.

11 10 Mb/s Half-
Duplex RO Always 1b Always 1b 1b = PHY able to perform half-duplex 10BASE-T.

10 100BASE-T2 Full-
Duplex RO Always 0b Always 0b

This protocol is not available.
0b = PHY not able to perform full-duplex.

9 100BASE-T2 Half-
Duplex RO Always 0b Always 0b

This protocol is not available.
0b = PHY not able to perform half-duplex.

8 Extended Status RO Always 1b Always 1b 1b = Extended status information in register 15.

7 Reserved RO Always 0b Always 0b Reserved.

6 MF Preamble
Suppression RO Always 1b Always 1b 1b = PHY accepts management frames with preamble

suppressed.

5
Copper Auto-
Negotiation
Complete

RO 0x0 0x0
1b = Auto-negotiation process complete.
0b = Auto-negotiation process not complete.

4 Copper Remote
Fault RO,LH 0x0 0x0

1b = Remote fault condition detected.
0b = Remote fault condition not detected.

3 Auto-Negotiation
Ability RO Always 1b Always 1b 1b = PHY able to perform Auto-Negotiation.

Programming Interface — Ethernet Controller I211

389

8.22.3.3 PHY Identifier 1 - Page 0, Register 2

8.22.3.4 PHY Identifier 2 - Page 0, Register 3

8.22.3.5 Copper Auto-Negotiation Advertisement Register - Page 0, Register 4

2 Copper Link
Status RO,LL 0x0 0x0

This register bit indicates when link was lost since the last read.
For the current link status, either read this register back-to-back
or read register 17_0.10 Link Real Time.
1b = Link is up.
0b = Link is down.

1 Jabber Detect RO,LH 0x0 0x0
1b = Jabber condition detected.
0b = Jabber condition not detected.

0 Extended
Capability RO Always 1b Always 1b 1b = Extended register capabilities.

Bits Field Mode HW Rst SW Rst Description

15:0
Organizationally
Unique Identifier
Bit 3:18

RO 0x0141 0x0141

Bits Field Mode HW Rst SW Rst Description

15:10 OUI LSB RO Always
000011b

Always
000011b Organizationally Unique Identifier bits 19:24 00 0011.

^.........^

bit 19...bit24.

9:4 Model RO

Number

3:0 Revision Number RO

Bits Field Mode HW Rst SW Rst Description

15 Next Page R/W 0x0 Update

A write to this register bit does not take effect until any one of the
following occurs:
Software reset is asserted (register 0_0.15).
Restart auto-negotiation is asserted (register 0_0.9).
Power down (register 0_0.11, 16_0.2); transitions from power
down to normal operation and the copper link goes down.
If 1000BASE-T is advertised then the required next pages are
automatically transmitted. Register 4.15 should be set to 0b if no
additional next pages are needed.
1b = Advertise.
0b = Not advertised.

14 Ack RO Always
0b

Always
0b Must be 0b.

Ethernet Controller I211 — Programming Interface

390

13 Remote Fault R/W 0x0 Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart Auto-Negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Set remote fault bit.
0b= Do not set remote fault bit.

12 Reserved R/W 0x0 Update Reserved.

11 Asymmetric Pause R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Asymmetric pause.
0b = No asymmetric pause.

10 Pause R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Pause.
0b = No pause.

9 100BASE-T4 R/W 0x0 Retain 0b = Not capable of 100BASE-T4.

8 100BASE-TX Full-
Duplex R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11and 16_0.2); transitions from

power down to normal operation and the copper link goes
down.

If register 0_0.12 is set to 0b and speed is manually forced to 1000
Mb/s in registers 0_0.13 and 0_0.6, then auto-negotiation will still
be enabled and only 1000BASE-T full-duplex is advertised if
register 0_0.8 is set to 1b, and 1000BASE-T half-duplex is
advertised if 0_0.8 set to 0b.
Registers 4_0.8:5 and 9_0.9:8 are ignored. Auto-negotiation is
mandatory per IEEE for proper operation in 1000BASE-T.
1b = Advertise.
0b = Not advertised.

7 100BASE-TX Half-
Duplex R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
If register 0_0.12 is set to 0b and speed is manually forced to 1000
Mb/s in registers 0.13 and 0.6, then auto-negotiation will still be
enabled and only 1000BASE-T full-duplex is advertised if register
0_0.8 is set to 1b, and 1000BASE-T half-duplex is advertised if 0.8
set to 0b.
Registers 4.8:5 and 9.9:8 are ignored.
Auto-negotiation is mandatory per IEEE for proper operation in
1000BASE-T. 1b = Advertise.
0b = Not advertised.

Programming Interface — Ethernet Controller I211

391

8.22.3.6 Copper Link Partner Ability Register (Base Page) - Page 0, Register 5

6 10BASE-TX Full-
Duplex R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
If register 0_0.12 is set to 0b and speed is manually forced to 1000
Mb/s in registers 0_0.13 and 0_0.6, then auto-negotiation will still
be enabled and only 1000BASE-T full-duplex is advertised if
register 0_0.8 is set to 1b, and 1000BASE-T half-duplex is
advertised if 0_0.8 set to 0b.
Registers 4_0.8:5 and 9_0.9:8 are ignored.
Auto-negotiation is mandatory per IEEE for proper operation in
1000BASE-T. 1b = Advertise.
0b = Not advertised.

5 10BASE-TX Half-
Duplex R/W Update

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
If register 0_0.12 is set to 0b and speed is manually forced to 1000
Mb/s in registers 0_0.13 and 0_0.6, then auto-negotiation will still
be enabled and only 1000BASE-T full-duplex is advertised if
register 0_0.8 is set to 1b, and 1000BASE-T half-duplex is
advertised if 0_0.8 set to 0b.
Registers 4_0.8:5 and 9_0.9:8 are ignored.
Auto-negotiation is mandatory per IEEE for proper operation in
1000BASE-T. 1b = Advertise.
0b = Not advertised.

4:0 Selector Field R/W 0x01 Retain
Selector Field Mode.
00001b = 802.3.

Bits Field Mode HW Rst SW Rst Description

15 Next Page RO 0x0 0x0
Received Code Word Bit 15.
1b = Link partner capable of next page.
0b = Link partner not capable of next page.

14 Acknowledge RO 0x0 0x0
Acknowledge Received Code Word Bit 14.
1b = Link partner received link code word.
0b = Link partner does not have Next Page ability.

13 Remote Fault RO 0x0 0x0
Remote Fault Received Code Word Bit 13.
1b = Link partner detected remote fault.
0b = Link partner has not detected remote fault.

12 Technology Ability
Field RO 0x0 0x0 Received Code Word Bit 12.

11 Asymmetric Pause RO 0x0 0x0
Received Code Word Bit 11.
1b = Link partner requests asymmetric pause.
0b = Link partner does not request asymmetric pause.

10 Pause Capable RO 0x0 0x0
Received Code Word Bit 10.
1b = Link partner is capable of pause operation.
0b = Link partner is not capable of pause operation.

9 100BASE-T4
Capability RO 0x0 0x0

Received Code Word Bit 9.
1b = Link partner is 100BASE-T4 capable.
0b = Link partner is not 100BASE-T4 capable.

Ethernet Controller I211 — Programming Interface

392

8.22.3.7 Copper Auto-Negotiation Expansion Register - Page 0, Register 6

8 100BASE-TX Full-
Duplex Capability RO 0x0 0x0

Received Code Word Bit 8.
1b = Link partner is 100BASE-TX full-duplex capable.
0b = Link partner is not 100BASE-TX full-duplex capable.

7 100BASE-TX Half-
Duplex Capability RO 0x0 0x0

Received Code Word Bit 7.
1b = Link partner is 100BASE-TX half-duplex capable.
0b = Link partner is not 100BASE-TX half-duplex capable.

6 10BASE-T Full-
Duplex Capability RO 0x0 0x0

Received Code Word Bit 6.
1b = Link partner is 10BASE-T full-duplex capable.
0b = Link partner is not 10BASE-T full-duplex capable.

5 10BASE-T Half-
Duplex Capability RO 0x0 0x0

Received Code Word Bit 5.
1b = Link partner is 10BASE-T half-duplex capable.
0b = Link partner is not 10BASE-T half-duplex capable.

4:0 Selector Field RO 0x00 0x00 Selector Field Received Code Word Bit 4:0.

Bits Field Mode HW Rst SW Rst Description

15:5 Reserved RO 0x000 0x000 Reserved.

4 Parallel Detection
Fault RO,LH 0x0 0x0

Register 6_0.4 is not valid until the auto-negotiation complete bit
(Reg 1_0.5) indicates completed.
1b = A fault has been detected via the parallel detection function.
0b = A fault has not been detected via the parallel detection
function.

3 Link Partner Next
page Able RO 0x0 0x0

Register 6_0.3 is not valid until the auto-negotiation complete bit
(Reg 1_0.5) indicates completed.
1b = Link partner is next page able.
0b = Link partner is not next page able.

2 Local Next Page
Able RO 0x1 0x1

Register 6_0.2 is not valid until the auto-negotiation complete bit
(Reg 1_0.5) indicates completed.
1b = Local device is next page able.
0b = Local device is not next page able.

1 Page Received RO, LH 0x0 0x0

Register 6_0.1 is not valid until the auto-negotiation complete bit
(Reg 1_0.5) indicates completed.
1b = A new page has been received.
0b = A new page has not been received.

0 Link Partner Auto-
Negotiation Able RO 0x0 0x0

Register 6_0.0 is not valid until the auto-negotiation complete bit
(Reg 1_0.5) indicates completed.
1b = Link partner is auto-negotiation able.
0b = Link partner is not auto-negotiation able.

Programming Interface — Ethernet Controller I211

393

8.22.3.8 Copper Next Page Transmit Register - Page 0, Register 7

8.22.3.9 Copper Link Partner Next Page Register - Page 0, Register 8

Bits Field Mode HW Rst SW Rst Description

15 Next Page R/W 0x0 0x0
A write to register 7_0 implicitly sets a variable in the auto-
negotiation state machine indicating that the next page has been
loaded. Link fail clears Reg 7_0. Transmit Code Word Bit 15.

14 Reserved RO 0x0 0x0 Reserved.

13 Message Page
Mode R/W 0x1 0x1 Transmit Code Word Bit 13.

12 Acknowledge2 R/W 0x0 0x0 Transmit Code Word Bit 12.

11 Toggle RO 0x0 0x0 Transmit Code Word Bit 11.

10:0 Message/
Unformatted Field R/W 0x001 0x001 Transmit Code Word Bit 10:0.

Bits Field Mode HW Rst SW Rst Description

15 Next Page RO 0x0 0x0 Received Code Word Bit 15.

14 Acknowledge RO 0x0 0x0 Received Code Word Bit 14.

13 Message Page RO 0x0 0x0 Received Code Word Bit 13.

12 Acknowledge2 RO 0x0 0x0 Received Code Word Bit 12.

11 Toggle RO 0x0 0x0 Received Code Word Bit 11.

10:0 Message/
Unformatted Field RO 0x000 0x000 Received Code Word Bit 10:0.

Ethernet Controller I211 — Programming Interface

394

8.22.3.10 1000BASE-T Control Register - Page 0, Register 9

Bits Field Mode HW Rst SW Rst Description

15:13 Test Mode R/W 0x0 Retain

TX_CLK comes from the RX_CLK pin for jitter testing in test modes
2 and 3. After exiting the test mode, hardware reset or software
reset (register 0_0.15) should be issued to ensure normal
operation.
A restart of auto-negotiation clears these bits.
000b = Normal mode.
001b = Test Mode 1 - Transmit waveform test.
010b = Test Mode 2 - Transmit jitter test (master mode).
011b = Test Mode 3 - Transmit jitter test (slave mode).
100b = Test Mode 4 - Transmit distortion test.
101b, 110b, and 111b = Reserved.

12

MASTER/SLAVE
Manual
Configuration
Enable

R/W 0x0 Update

A write to this register bit does not take effect until any of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Manual master/slave configuration.
0b = Automatic master/slave configuration.

11
MASTER/SLAVE
Configuration
Value

R/W Update

A write to this register bit does not take effect until any of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Manual configure as master.
0b = Manual configure as slave.

10 Port Type R/W Update

A write to this register bit does not take effect until any of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
Register 9_0.10 is ignored if register 9_0.12 is equal to 1b.
1b = Prefer multi-port device (master).
0b = Prefer single port device (slave).

Programming Interface — Ethernet Controller I211

395

8.22.3.11 1000BASE-T Status Register - Page 0, Register 10

9 1000BASE-T Full-
Duplex R/W 0x1 Update

A write to this register bit does not take effect until any of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Advertise.
0b = Not advertised.

8 1000BASE-T Half-
Duplex R/W Update

A write to this register bit does not take effect until any of the
following also occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Advertise.
0b = Not advertised.

7:0 Reserved R/W 0x00 Retain Reserved.

Bits Field Mode HW Rst SW Rst Description

15
Master/Slave
Configuration
Fault

RO,LH 0x0 0x0
This register bit clears on read.
1b = Master/slave configuration fault detected.
0b = No master/slave configuration fault detected.

14
Master/Slave
Configuration
Resolution

RO 0x0 0x0
1b = Local PHY configuration resolved to master.
0 = Local PHY configuration resolved to slave.

13 Local Receiver
Status RO 0x0 0x0

1b = Local receiver OK.
0b = Local receiver is Not OK.

12 Remote Receiver
Status RO 0x0 0x0

1b = Remote receiver OK.
0b = Remote receiver Not OK.

11
Link Partner
1000BASE-T Full-
Duplex Capability

RO 0x0 0x0
1b = Link partner is capable of 1000BASE-T full-duplex.
0b = Link partner is not capable of 1000BASE-T full-duplex

10
Link Partner
1000BASE-T Half-
Duplex Capability

RO 0x0 0x0
1b = Link partner is capable of 1000BASE-T half-duplex.
0b = Link partner is not capable of 1000BASE-T half-duplex.

9:8 Reserved RO 0x0 0x0 Reserved.

7:0 Idle Error Count RO, SC 0x00 0x00

MSB of Idle Error Counter.
These register bits report the idle error count since the last time
this register was read. The counter reachesit‚Äôs maximum count
at 11111111b and does not roll over.

Ethernet Controller I211 — Programming Interface

396

8.22.3.12 MMD Access Control Register (MMDAC) - Page 0, Register 13

8.22.3.13 MMD Access Address/Data Register (MMDAAD) - Page 0, Register 14

8.22.3.14 Extended Status Register - Page 0, Register 15

8.22.3.15 Copper Specific Control Register 1 - Page 0, Register 16

Bits Field Mode HW Rst SW Rst Description

15:14 Function R/W 0x0 0x0

00b = Address.
01b = Data, no post increment.
10b = Data, post increment on reads and writes.
11b = Data, post increment on writes only.

13:5 Reserved RO 0x000 0x000 Reserved.

4:0 DEVAD RO 0x00 0x00 Device Address.

Bits Field Mode HW Rst SW Rst Description

15:0 Address Data R/W 0x0000 0x0000
If 13.15:14 = 00b, MMD DEVAD’s address register. Otherwise,
MMD DEVAD is data register as indicated by the contents of its
address register.

Bits Field Mode HW Rst SW Rst Description

15 1000BASE-X Full-
Duplex RO Always

0b
Always
0b 0b = Not 1000BASE-X full-duplex capable.

14 1000BASE-X Half-
Duplex RO Always

0b
Always
0b 0b = Not 1000BASE-X half-duplex capable.

13 1000BASE-T Full-
Duplex RO Always

1b
Always
1b 1b = 1000BASE-T full-duplex capable.

12 1000BASE-T Half-
Duplex RO Always

1b
Always
1b 1b = 1000BASE-T half-duplex capable.

11:0 Reserved RO 0x000 0x000 Reserved.

Bits Field Mode HW Rst SW Rst Description

15 Disable Link Pulses R/W 0x0 0x0
1b = Disable link pulse.
0b = Enable link pulse.

14:12 Downshift counter R/W 0x3 Update

Changes to these bits are disruptive to the normal operation. As a
result, any changes to these registers must be followed by
software reset to take effect. 1x, 2x, ...8x is the number of times
the PHY attempts to establish GbE link before the PHY downshifts
to the next highest speed.
000b = 1x 100 = 5x.
001b = 2x 101 = 6x.
010b = 3x 110 = 7x 011 = 4x.
111b = 8x.

Programming Interface — Ethernet Controller I211

397

11 Downshift Enable R/W 0x0 Update

Changes to these bits are disruptive to the normal operation. As a
result, any changes to these registers must be followed by
software reset to take effect.
1b = Enable downshift.
0b = Disable downshift.

10 Force Copper Link
Good R/W 0x0 Retain

If link is forced to be good, the link state machine is bypassed and
the link is always up. In 1000BASE-T mode this has no effect.
1b = Force link good.
0b = Normal operation.

9:7 Energy Detect R/W Update

0xxb = Off.
100b = Sense only on receiver (energy detect), auto wake up.
101b = Sense only on receiver (energy detect), SW wake up.
110b = Sense and periodically transmit NLP (energy detect and
TM), auto wake up.
111b = Sense and periodically transmit NLP (energy detect and
TM), software wake up.

6:5 MDI Crossover
Mode R/W See

Descr. Update

Changes to these bits are disruptive to the normal operation. As a
result, any changes to these registers must be followed by a
software reset to take effect.
Upon hardware reset or auto-negotiation restart, this field takes its
default value from the setting of IPCNFG.Enable Automatic
Crossover bit, either 00b or 11b.
00b = Manual MDI configuration.
01b = Manual MDIX configuration.
10b = Reserved.
11b = Enable automatic crossover for all modes.

4 Energy Detect
wake up control

R/W or
RO, SC 0x0 0x0

This bit controls how PHYG wakes up from the energy detect state.
If 16_0.7 = 0b (software wake up), this register bit is in R/W
mode. When software writes a 1b to this bit , it wakes up the PHYG
from the energy detect state. If 16_0.7 = 1b, PHYG wakes up from
the energy detect state automatically based on the energy
detected from line. This bit self clears after PHYG leaves the energy
detect state.

3 Copper Transmitter
Disable R/W 0x0 Retain

1b = Transmitter disable.
0b = Transmitter enable.

2 Power Down R/W 0x0 Retain

Power down is controlled via register 0_0.11 and 16_0.2. Both bits
must be set to 0b before the PHY transitions from power down to
normal operation.
When the port is switched from power down to normal operation,
software reset and restart auto-negotiation are performed even
when bits Reset (0_0.15) and Restart Auto-Negotiation (0_0.9) are
not set by the user.
1b = Power down.
0b = Normal operation.

1 Polarity Reversal
Disable R/W 0x0 Retain

If polarity is disabled, then the polarity is forced to be normal in
10BASE-T.
1b = Polarity reversal disabled.
0b = Polarity reversal enabled The detected polarity status is
shown in register 17_0.1, or in 1000BASE-T mode, 21_5.3:0.

0 Disable Jabber R/W 0x0 Retain
Jabber has effect only in 10BASE-T half-duplex mode.
1b = Disable jabber function.
0b = Enable jabber function.

Ethernet Controller I211 — Programming Interface

398

8.22.3.16 Copper Specific Status Register 1 - Page 0, Register 17

Bits Field Mode HW Rst SW Rst Description

15:14 Speed RO 0x2 Retain

These status bits are valid only after resolved bit 17_0.11 = 1b.
The resolved bit is set when auto-negotiation completes or auto-
negotiation is disabled.
11b = Reserved.
10b = 1000 Mb/s.
01b = 100 Mb/s.
00b = 10 Mb/s.

13 Duplex RO 0x0 Retain

This status bit is valid only after resolved bit 17_0.11 = 1b. The
resolved bit is set when auto-negotiation completes or auto-
negotiation is disabled.
1b = Full duplex.
0b = Half duplex.

12 Page Received RO, LH 0x0 0x0
1b = Page received.
0b = Page not received.

11 Speed and
Duplex Resolved RO 0x0 0x0

When auto-negotiation is not enabled 17_0.11 = 1b.
1b = Resolved.
0 = Not resolved.

10 Copper Link (real
time) RO 0x0 0x0

1b = Link up.
0b = Link down.

9 Transmit Pause
Enabled RO 0x0 0x0

This is a reflection of the MAC pause resolution. This bit is for
information purposes and is not used by the device. This status bit
is valid only after resolved bit 17_0.11 = 1b. The resolved bit is set
when auto-negotiation completes or auto-negotiation is disabled.
1b = Transmit pause enabled.
0b = Transmit pause disable.

8 Receive Pause
Enabled RO 0x0 0x0

This is a reflection of the MAC pause resolution. This bit is for
information purposes and is not used by the device. This status bit
is valid only after resolved bit 17_0.11 = 1b. The resolved bit is set
when auto-negotiation completes or auto-negotiation is disabled.
1b = Receive pause enabled.
0b = Receive pause disabled.

7 Reserved RO 0x0 0x0 Reserved.

6 MDI Crossover
Status RO 0x1 Retain

This status bit is valid only after resolved bit 17_0.11 = 1b. The
resolved bit is set when auto-negotiation completes or auto-
negotiation is disabled. This bit is 0b or 1b depending on what is
written to 16.6:5 in manual configuration mode. Register 16.6:5
are updated with a software reset.
1b = MDI-X.
0b = MDI.

5 Downshift Status RO 0x0 0x0
1b = Downshift.
0b = No downshift.

4 Copper Energy
Detect Status RO 0x0 0x0

1b = Sleep.
0b = Active.

3 Global Link
Status RO 0x0 0x0

1b = Copper link is up.
0b = Copper link is down.

Programming Interface — Ethernet Controller I211

399

8.22.3.17 Copper Specific Interrupt Enable Register - Page 0, Register 18

2 Reserved RO 0x0 0x0 Reserved for future use.

1 Polarity (real
time) RO 0x0 0x0

1b = Reversed.
0b = Normal polarity reversal can be disabled by writing to register
16_0.1. In 1000BASE-T mode, polarity of all pairs are shown in
register 21_5.3:0.

0 Jabber (real
time) RO 0x0 0x0

1b = Jabber.
0b = No jabber.

Bits Field Mode HW Rst SW Rst Description

15
Auto-Negotiation
Error Interrupt
Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

14 Speed Changed
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

13 Duplex Changed
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

12 Page Received
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

11
Auto-Negotiation
Completed
Interrupt Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

10
Link Status
Changed Interrupt
Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

9 Symbol Error
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

8 False Carrier
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

7 Reserved R/W 0x0 Retain Reserved.

6
MDI Crossover
Changed Interrupt
Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

5 Downshift
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

4
Copper Energy
Detect Interrupt
Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

3

FLP Exchange
Complete but no
Link Interrupt
Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

Ethernet Controller I211 — Programming Interface

400

8.22.3.18 Copper Interrupt Status Register - Page 0, Register 19

2 Reserved R/W 0x0 Retain Reserved for future use. This bit must be 0.

1 Polarity Changed
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

0 Jabber Interrupt
Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

Bits Field Mode HW Rst SW Rst Description

15 Copper Auto-
Negotiation Error RO,LH 0x0 0x0

An error is said to occur if master/slave does not resolve, parallel
detect fault, no common HCD, or link does not come up after auto-
negotiation completes.
1b = Auto-negotiation error.
0b = No auto-negotiation error.

14 Copper Speed
Changed RO,LH 0x0 0x0

1b = Speed changed.
0b = Speed not changed.

13 Copper Duplex
Changed RO,LH 0x0 0x0

1b = Duplex changed.
0b = Duplex not changed.

12 Copper Page
Received RO,LH 0x0 0x0

1b = Page received.
0b = Page not received.

11
Copper Auto-
Negotiation
Completed

RO,LH 0x0 0x0
1b = Auto-negotiation completed.
0b = Auto-negotiation not completed.

10 Copper Link
Status Changed RO,LH 0x0 0x0

1b = Link status changed.
0b = Link status not changed.

9 Copper Symbol
Error RO,LH 0x0 0x0

1b = Symbol error.
0b = No symbol error.

8 Copper False
Carrier RO,LH 0x0 0x0

1b = False carrier.
0b = No false carrier.

7 Reserved RO Always
0b

Always
b0 Reserved.

6 MDI Crossover
Changed RO,LH 0x0 0x0

1b = Crossover changed.
0b = Crossover not changed.

5 Downshift
Interrupt RO,LH 0x0 0x0

1b = Downshift detected.
0b = No down shift.

4 Copper Energy
Detect Changed RO,LH 0x0 0x0

1b = Energy detect state changed.
0b = No energy detect state change detected.

3
FLP Exchange
Complete but no
Link

RO,LH 0x0 0x0
1b = FLP exchange completed but link not established.
0b = No event detected.

2 Reserved RO,LH 0x0 0x0 Reserved for future use.

1 Polarity Changed RO,LH 0x0 0x0
1b = Polarity changed.
0b = Polarity not changed.

0 Jabber RO,LH 0x0 0x0
1b = Jabber.
0b = No jabber.

Programming Interface — Ethernet Controller I211

401

8.22.3.19 Copper Specific Control Register 2 - Page 0, Register 20

8.22.3.20 Copper Specific Receive Error Counter Register - Page 0, Register 21

8.22.3.21 Page Address - Page Any, Register 22

Bits Field Mode HW Rst SW Rst Description

15:8 Reserved R/W 0x000 Retain Reserved.

7 10Base-Te Enable R/W 0b Retain
0b = Disable 10BASE-Te.
1b = Enable 10BASE-Te.

6 Break Link On
Insufficient IPG R/W 0x0 Retain

0b = Break link on insufficient IPGs in 10BASE-T and 100BASE-TX.
1b = Do not break link on insufficient IPGs in 10BASE-T and
100BASE-TX.

5
100BASE-T
Transmitter Clock
Source

R/W 0x1 Update
1b = Local clock.
0b = Recovered clock.

4
Accelerate
100BASE-T Link
Up

R/W 0x0 Retain
0b = No acceleration.
1b = Accelerate.

3
Reverse MDIP/
N[3] Transmit
Polarity

R/W 0x0 Retain
0b = Normal transmit polarity.
1b = Reverse transmit polarity.

2
Reverse MDIP/
N[2] Transmit
Polarity

R/W 0x0 Retain
0b = Normal transmit polarity.
1b = Reverse transmit polarity.

1
Reverse MDIP/
N[1] Transmit
Polarity

R/W 0x0 Retain
0b = Normal transmit polarity.
1b = Reverse transmit polarity.

0
Reverse MDIP/
N[0] Transmit
Polarity

R/W 0x0 Retain
0b = Normal transmit polarity.
1b = Reverse transmit polarity.

Bits Field Mode HW Rst SW Rst Description

15:0 Receive Error
Count RO, LH 0x0000 Retain Counter reaches its maximum count at 0xFFFF and does not roll

over. Both false carrier and symbol errors are reported.

Bits Field Mode HW Rst SW Rst Description

15:14 Reserved R/W 0x0 Retain Reserved. These bits must be 0x0.

13:8 Reserved RO 0x00 0x00 Reserved.

7:0 Page select for
registers 0 to 28 R/W 0x00 Retain Page Number.

Ethernet Controller I211 — Programming Interface

402

8.22.3.22 Copper Specific Control Register 3 - Page 0, Register 23

Bits Field Mode HW Rst SW Rst Description

15 1000BASE-T
Transmitter type R/W 0 Retain

0 = Class B.
1 = Class A.

14 Disable
1000BASE-T R/W Retain

When set to disabled, 1000BASE-T isnot advertised even if
registers 9_0.9 or 9_0.8 are set to 1b. A write to this register bit
does not take effect until any one of the following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1 = Disable 1000BASE-T advertisement .
0 = Enable 1000BASE-T advertisement.

13 Reverse Autoneg R/W Retain

A write to this register bit does not take effect until any one of the
following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Reverse auto-negotiation.
0b = Normal auto-negotiation.

12 Disable 100BASE-
T R/W Retain

When set to disabled, 100BASE-TX is not advertised even if
registers 4_0.8 or 4_0.7 are set 1b. A write to this register bit does
not take effect until any one of the following occurs:
• Software reset is asserted (register 0_0.15).
• Restart auto-negotiation is asserted (register 0_0.9).
• Power down (register 0_0.11, 16_0.2); transitions from power

down to normal operation and the copper link goes down.
1b = Disable 100BASE-TX advertisement.
0b = Enable 100BASE-TX advertisement.

11:10 Gigabit Link Down
Delay R/W 0x0 Retain

This register only has effect if register 23_0.9 is set to 1b.
00b = 0 ms.
01b = 10 ¬± 2ms.
10b = 20 ¬± 2ms.
11b = 40 ¬± 2ms.

9 Speed Up Gigabit
Link Down Time R/W 0x0 Retain

1b = Enable faster gigabit link down. This mode shall not be
selected if EEE is enabled.
0b = Use IEEE gigabit link down.

8:4 Reserved R/W 0x0 Update Reserved for future use. These bits must be 0x4.

Programming Interface — Ethernet Controller I211

403

8.22.3.23 MAC Specific Control Register 1 - Page 2, Register 16

8.22.3.24 MAC Specific Interrupt Enable Register - Page 2, Register 18

3:2 100 MB test select R/W 0x0 Retain
0xb = Normal 0peration.
10b = Select 112 ns sequence.
11b = Select 16 ns sequence.

1 10 BT polarity
force R/W 0x0 Retain

1b = Force negative polarity for receive only.
0b = Normal operation.

0 Reserved R/W 0x0 Retain Reserved.

Bits Field Mode HW Rst SW Rst Description

15:14 Copper Transmit
FIFO Depth R/W Retain

00b = ± 16 bits.
01b = ± 24 bits.
10b = ± 32 bits.
11b = ± 40 bits.

13:10 Reserved R/W 0x8 Update Reserved.

9 fi_125_clk control R/W Retain
1b = Stop fi_125_clk.
0b = Enable fi_125_clk.

8 fi_50_clk control R/W Retain
1b = Stop fi_50_clk.
0b = Enable fi_50_clk.

7:4 Reserved R/W 0x0 Update Reserved.

3 MAC Interface
Power Down R/W 0x1 Update

Changes to this bit are disruptive to the normal operation.As a
result, any changes to these registers must be followed by a
software reset to take effect.
This bit determines whether the MAC interface powers down when
register 0_0.11, 16_0.2 are used to power down the device or
when the PHY enters the energy detect state.
1b = Always power up.
0b = OK to power down.

2:0 Reserved R/W 0x0 Retain
Reserved

Bits Field Mode HW Rst SW Rst Description

15:8 Reserved R/W 0x0 Retain 0x0.

7
FIFO Over/
Underflow
Interrupt Enable

R/W 0x0 Retain
1b = Interrupt enable.
0b = Interrupt disable.

6:4 Reserved R/W 0x0 Retain 0x0.

Ethernet Controller I211 — Programming Interface

404

8.22.3.25 MAC Specific Status Register - Page 2, Register 19

8.22.3.26 Copper RX_ER Byte Capture Register - Page 2, Register 20

3 FIFO Idle Inserted
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

2 FIFO Idle Deleted
Interrupt Enable R/W 0x0 Retain

1b = Interrupt enable.
0b = Interrupt disable.

1:0 Reserved R/W 0x0 Retain 0x0.

Bits Field Mode HW Rst SW Rst Description

15:8 Reserved RO Always
0x0

Always
0x0 Reserved.

7 Copper FIFO Over/
Underflow RO,LH 0x0 0x0

1b = Over/underflow error.
0b = No FIFO error.

6:4 Reserved RO Always
0x0

Always
0x0 Reserved.

3 Copper FIFO Idle
Inserted RO,LH 0x0 0x0

1b = Idle inserted.
0b = No idle inserted.

2 Copper FIFO Idle
Deleted RO,LH 0x0 0x0

1b = Idle deleted.
0b = Idle not deleted.

1:0 Reserved RO Always
0x0

Always
0x0 Reserved.

Bits Field Mode HW Rst SW Rst Description

15 Capture Data Valid RO 0x0 0x0
1b = Bits 14:0 valid,
0b = Bits 14:0 invalid.

14 Reserved RO 0x0 0x0 Reserved.

13:12 Byte Number RO 0x0 0x0

00b = 4 bytes before RX_ER asserted,
01b = 3 bytes before RX_ER asserted,
10b = 2 bytes before RX_ER asserted,
11b = 1 byte before RX_ER asserted,
The byte number increments after every read when register
20_2.15 is set to 1b.

11:10 Reserved RO 0x0 0x0 Reserved.

9 RX_ER RO 0x0 0x0

RX Error.
Normally this bit is low since the capture is triggered by RX_ER
being high. However, it is possible to see an RX_ER high when the
capture is re-enabled after reading the fourth byte and there
happens to be a long sequence of RX_ER when the capture
restarts.

8 RX_DV RO 0x0 0x0 RX Data Valid.

7:0 RXD[7:0] RO 0x0 0x0 RX Data.

Programming Interface — Ethernet Controller I211

405

8.22.3.27 MAC Specific Control Register 2 - Page 2, Register 21

Bits Field Mode HW Rst SW Rst Description

15 Reserved R/W 0x0 0x0 Reserved.

14 Copper Line
Loopback R/W 0x0 0x0

1b = Enable loopback of MDI-to-MDI.
0b = Normal operation.

13:12 Reserved R/W 0x1 Update Reserved.

11:7 Reserved R/W 0x0 0x0 Reserved.

6 Reserved R/W 0x1 Update Reserved.

5:4 Reserved R/W 0x0 Retain Reserved.

3 Block Carrier
Extension Bit R/W 0x0 Retain

1b = Enable block carrier extension.
0b = Disable block carrier extension.

2:0 Default MAC
Interface Speed R/W 0x6 Update

Changes to these bits are disruptive to the normal operation. As a
result, any changes to these registers must be followed by
software reset to take effect.
MAC interface speed during link down while auto-negotiation is
enabled.
Bit speed:
0XXb = Reserved.
100b = 10 Mb/s.
101b = 100 Mb/s.
110b = 1000 Mb/s.
111b = Reserved.

Ethernet Controller I211 — Programming Interface

406

8.22.3.28 jt_led_s[3:0] Function Control Register - Page 3, Register 16

Bits Field Mode HW Rst SW Rst Description

15:12 jt_led_s[3] Control R/W 0x1 Retain

If 16_3.11:10 is set to 11b then 16_3.15:12 has no effect.
0000b = On - off - else.
0001b = On - link, blink - activity, off - no link.
0010b = On - link, blink - receive, off - no link.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off - no activity.
0101b = Sync-E recovered clock.
0110b = On - 10 Mb/s or 1000 Mb/s master, off - else.
0111b = On - full duplex, off - half duplex.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
11xxb = Reserved.

Programming Interface — Ethernet Controller I211

407

11:8 jt_led_s[2] Control R/W 0x7 Retain

0000b = On - link, off - no link.
0001b = On - link, blink - activity, off - no link.
0010b = Reserved.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off -no activity.
0101b = On - transmit, off - no transmit.
0110b = On - 10/1000 Mb/s link, off - else.
0111b = On - 10 Mb/s Link, off - else.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
1100b = MODE 1 (dual LED mode).
1101b = MODE 2 (dual LED mode).
1110b = MODE 3 (dual LED mode).
1111b = MODE 4 (dual LED mode).

7:4 jt_led_s[1] Control R/W 0x7 Retain

If 16_3.3:2 is set to 11b then 16_3.7:4 has no effect.
0000b = On - copper link, off - else.
0001b = On - link, blink - activity, off - no link.
0010b = On - link, blink - receive, off - no link.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off -no activity.
0101b = On - 100 Mb/s link off - else.
0110b = On - 100/1000 Mb/s link, off - else.
0111b = On - 100 Mb/s link, off - else.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
11xxb = Reserved.

3:0 jt_led_s[0] Control R/W 0x7 Retain

0000b = On - link, off - no link.
0001b = On - link, blink - activity, off - no link.
0010b = 3 blinks - 1000 Mb/s.
 2 blinks - 100 Mb/s.
 1 blink - 10 Mb/s.
 0 blink - No link.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off -no activity.
0101b = On - transmit, off - no transmit.
0110b = On - copper link, off - else.
0111b = On - 1000 Mb/s link, off - else.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
1100b = MODE 1 (dual LED mode).
1101b = MODE 2 (dual LED mode).
1110b = MODE 3 (dual LED mode).
1111b = MODE 4 (dual LED mode).

Ethernet Controller I211 — Programming Interface

408

8.22.3.29 jt_led_s[3:0] Polarity Control Register - Page 3, Register 17

8.22.3.30 LED Timer Control Register - Page 3, Register 18

Bits Field Mode HW Rst SW Rst Description

15:12

jt_led_s[5],
jt_led_s[3],
jt_led_s[1] Mix
Percentage

R/W 0x8 Retain

When using 2 terminal bi-color LEDs the mixing percentage should
not be set greater than 50%.
0000b = 0%.
0001b = 12.5%,
0111b = 87.5%.
1000b = 100%.
1001b to 1111b = Reserved.

11:8

jt_led_s[4],
jt_led_s[2],
jt_led_s[0] Mix
Percentage

R/W 0x8 Retain

When using 2 terminal bi-color LEDs the mixing percentage should
not be set greater than 50%.
0000b = 0%.
0001b = 12.5%,
0111b = 87.5%.
1000b = 100%.
1001b to 1111b = Reserved.

7:6 jt_led_s[3]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[3] low, off - drive jt_led_s[3] high.
01b = On - drive jt_led_s[3] high, off - drive jt_led_s[3] low.
10b = On - drive jt_led_s[3] low, off - tristate jt_led_s[3].
11b = On - drive jt_led_s[3] high, off - tristate jt_led_s[3].

5:4 jt_led_s[2]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[2] low, off - drive jt_led_s[2] high.
01b = On - drive jt_led_s[2] high, off - drive jt_led_s[2] low.
10b = On - drive jt_led_s[2] low, off - tristate jt_led_s[2].
11b = On - drive jt_led_s[2] high, off - tristate jt_led_s[2].

3:2 jt_led_s[1]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[1] low, off - drive jt_led_s[1] high.
01b = On - drive jt_led_s[1] high, off - drive jt_led_s[1] low.
10b = On - drive jt_led_s[1] low, off - tristate jt_led_s[1].
11b = On - drive jt_led_s[1] high, off - tristate jt_led_s[1].

1:0 jt_led_s[0]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[0] low, off - drive jt_led_s[0] high.
01b = On - drive jt_led_s[0] high, off - drive jt_led_s[0] low.
10b = On - drive jt_led_s[0] low, off - tristate jt_led_s[0].
11b = On - drive jt_led_s[0] high, off - tristate jt_led_s[0].

Bits Field Mode HW Rst SW Rst Description

15 Force INT R/W 0x0 Retain
1b = jt_int_out_s pin forced to be asserted.
0b = Normal operation.

14:12 Pulse Stretch
Duration R/W 0x4 Retain

000b = no pulse stretching.
001b = 21 ms to 42 ms.
010b = 42 ms to 84 ms.
011b = 84 ms to 170 ms.
100b = 170 ms to 340 ms.
101b = 340 ms to 670 ms.
110b = 670 ms to 1.3 s.
111b = 1.3s to 2.7 s.

11 Interrupt Polarity R/W 0x1 Retain
0b = Interrupt active high.
1b = Interrupt active low.

Programming Interface — Ethernet Controller I211

409

8.22.3.31 jt_led_s[5:4] Function Control and Polarity Register - Page 3, Register
19

10:8 Blink Rate R/W 0x1 Retain

000b = 42 ms.
001b = 84 ms.
010b = 170 ms.
011b = 340 ms.
100b = 670 ms.
101b to 111b = Reserved.

7:4 Reserved R/W 0x0 Retain 0x0.

3:2 Speed Off Pulse
Period R/W 0x1 Retain

00b = 84 ms.
01b= 170 ms.
10b = 340 ms.
11b = 670 ms

1:0 Speed On Pulse
Period R/W 0x1 Retain

00b = 84 ms.
01b = 170 ms.
10b = 340 ms.
11b = 670 ms.

Bits Field Mode HW Rst SW Rst Description

15
jt_led_s[3]
function pin
mapping

R/W 0x0 Retain
0b = Map jt_led_s[3] function to jt_led_s3] pin.
1b = Map jt_led_s[5] function to jt_led_s[3] pin.

14
jt_led_s[2]
function pin
mapping

R/W 0x0 Retain
0b = Map jt_led_s[2] function to jt_led_s[2] pin.
1b = Map jt_led_s[4] function to jt_led_s[2] pin.

13:12 Reserved R/W 0x0 Retain Reserved.

11:10 jt_led_s[5]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[5] low, off - drive jt_led_s[5] high.
01b = On - drive jt_led_s[5] high, off - drive jt_led_s[5] low.
10b= On - drive jt_led_s[5] low, off - tristate jt_led_s[5].
11b = On - drive jt_led_s[5] high, off - tristate jt_led_s[5].

Ethernet Controller I211 — Programming Interface

410

8.22.3.32 1000BASE-T Pair Skew Register - Page 5, Register 20

9:8 jt_led_s[4]
Polarity R/W 0x0 Retain

00b = On - drive jt_led_s[4] low, Off - drive jt_led_s[4] high.
01b = On - drive jt_led_s[4] high, Off - drive jt_led_s[4] low.
10b = On - drive jt_led_s[4] low, Off - tristate jt_led_s[4].
11b = On - drive jt_led_s[4] high, Off - tristate jt_led_s[4].

7:4 jt_led_s[5]
Control R/W 0x7 Retain

If 19_3.3:2 is set to 11b then 19_3.7:4 has no effect.
0000b = On - receive, off - no receive.
0001b = On - link, blink - activity, off - no link.
0010b = On - link, blink - receive, off - no link.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off -no activity.
0101b = On - transmit, off - no transmit.
0110b = On - full duplex, off - half duplex.
0111b = On - full duplex, blink - collision off - half duplex.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
11xxb = Reserved.

3:0 jt_led_s[4]
Control R/W 0x3 Retain

0000b = On - receive, off - no receive.
0001b = On - link, blink - activity, off - no link.
0010b = On - link, blink - receive, off - no link.
0011b = On - activity, off - no activity.
0100b = Blink - activity, off -no activity.
0101b = On - transmit, off - no transmit.
0110b = On - full duplex, off - half duplex.
0111b = On - full duplex, blink - collision, off - half duplex.
1000b = Force off.
1001b = Force on.
1010b = Force hi-Z.
1011b = Force blink.
1100b = MODE 1 (dual LED mode).
1101b = MODE 2 (dual LED mode).
1110b = MODE 3 (dual LED mode).
1111b = MODE 4 (dual LED mode).

Bits Field Mode HW Rst SW Rst Description

15:12 Pair 7,8
(MDI[3]¬±) RO 0x0 0x0 Skew = bit value x 8 ns. Value is correct to within ¬± 8 ns. The

contents of 20_5.15:0 are valid only if register 21_5.6 = 1b.

11:8 Pair 4,5
(MDI[2]¬±) RO 0x0 0x0 Skew = bit value x 8 ns. Value is correct to within ¬± 8ns.

7:4 Pair 3,6
(MDI[1]¬±) RO 0x0 0x0 Skew = bit value x 8 ns. Value is correct to within ¬± 8ns.

3:0 Pair 1,2
(MDI[0]¬±) RO 0x0 0x0 Skew = bit value x 8 ns. Value is correct to within ¬± 8ns.

Programming Interface — Ethernet Controller I211

411

8.22.3.33 1000BASE-T Pair Swap and Polarity - Page 5, Register 21

8.22.3.34 Copper Port Packet Generation - Page 6, Register 16

Bits Field Mode HW Rst SW Rst Description

15:7 Reserved RO 0x0 0x0 Reserved.

6 Register 20_5 and
21_5 Valid RO 0x0 0x0

The contents of 21_5.5:0 and 20_5.15:0 are valid only if Register
21_5.6 = 1b
1b = Valid.
0b = Invalid.

5 C, D Crossover RO 0x0 0x0

1b = Channel C received on MDI[2]¬± channel D received on
MDI[3]¬±.
0b = Channel D received on MDI[2]¬± channel C received on
MDI[3]¬±.

4 A, B Crossover RO 0x0 0x0

1b = Channel A received on MDI[0]¬± channel B received on
MDI[1]¬±.
0b = Channel B received on MDI[0]¬± channel A received on
MDI[1]¬±.

3 Pair 7,8 (MDI[3]¬±)
Polarity RO 0x0 0x0

1b = Negative.
0b = Positive.

2 Pair 4,5 (MDI[2]¬±)
Polarity 0x0 0x0

1b = Negative.
0b = Positive.

1 Pair 3,6 (MDI[1]¬±)
Polarity RO 0x0 0x0

1b = Negative.
0b = Positive.

0 Pair 1,2 (MDI[0]¬±)
Polarity RO 0x0 0x0

1b = Negative.
0b = Positive.

Bits Field Mode HW Rst SW Rst Description

15:8 Packet Burst R/W 0x0 Retain
0x00 = Continuous.
0x01 to 0xFF = burst 1 to 255 packets.

7:6 Reserved R/W 0x0 Retain Reserved.

4 Enable CRC
checker R/W 0x0 Retain 1b = Enable.

3 Enable packet
generator R/W 0x0 Retain 1b = Enable.

2 Payload of packet
to transmit R/W 0x0 Retain

0b = Pseudo random.
1b = 5A,A5,5A,A5,....

1 Length of packet
to transmit R/W 0x0 Retain

1b = 1518 bytes.
0b = 64 bytes.

0 Transmit an
Errored packet R/W 0x0 Retain

1b = Tx packets with CRC errors and symbol error.
0b = No error.

Ethernet Controller I211 — Programming Interface

412

8.22.3.35 Copper Port CRC Counters - Page 6, Register 17

8.22.3.36 Checker Control - Page 6, Register 18

8.22.3.37 Misc Test - Page 6, Register 26

Bits Field Mode HW Rst SW Rst Description

15:8 Packet Count RO 0x0 Retain
0x00 = no packets received.
0xFF = 256 packets received (max count).
Bit 16_6.4 must be set to 1b in order for register to be valid.

7:0 CRC Error Count RO 0x0 Retain

0x00 = no CRC errors detected in the packets received.
0xFF = 256 CRC errors detected in the packets received (max
count).
Bit 16_6.4 must be set to 1b in order for register to be valid.

Bits Field Mode HW Rst SW Rst Description

15:5 Reserved R/W 0x000 Retain Reserved.

4 CRC Counter
Reset R/W, SC 0x0 0x0

1b = Reset.
This bit self clears after write to 1b..

3 Enable Stub Test R 0x0 Retain
1b = Enable stub test.
0b = Normal operation.

2:0 Reserved R/W 0x0 Retain Reserved.

Bits Field Mode HW Rst SW Rst Description

15 TX_TCLK Enable R/W 0x0 0x0

The highest numbered enabled port drives the transmit clock to the
HSDACP/N pin.
1b = Enable.
0b = Disable.

14:13 Reserved R/W 0x0 Retain Reserved.

12:8 Reserved R/W 0x19 Retain Reserved.

7 Reserved R/W 0x0 Retain Reserved.

6 Reserved RO, LH 0x0 0x0 Reserved.

5 Reserved R/W 0x0 Retain Reserved.

4:0 Reserved RO xxxxx xxxxx Reserved.

Programming Interface — Ethernet Controller I211

413

8.22.4 XMDIO Register Description

8.22.4.1 PCS Control 1 Register - Device 3, Register 0

8.22.4.2 PCS Status 1 Register - Device 3, Register 1

Register Name Register Address Table and Page

PCS Control 1 Register Device 3, register 0 section 8.22.4.1 on page 415.

PCS Status 1 Register Device 3, register 1 section 8.22.4.2 on page 415.

PCS EEE Capability Register Device 3, register 20 section 8.22.4.3 on page 415.

PCS EEE Wake Error Counter Device 3, register 22 section 8.22.4.4 on page 416.

EEE Advertisement Register Device 7, register 60 section 8.22.4.5 on page 416.

EEE Link Partner Advertisement Register Device 7, register 61 section 8.22.4.6 on page 416.

Bits Field Mode HW Rst SW Rst Description

15:11 Reserved RO 0x00 Retain Reserved.

10 Clock Stoppable R/W 0x0 Retain
1b = Clock stoppable during LPI.
0b = Clock not stoppable.

9:0 Reserved RO 0x000 Retain Reserved.

Bits Field Mode HW Rst SW Rst Description

15:12 Reserved RO 0x0 Retain Reserved.

11 Tx LP Idle
Received RO/LH 0x0 Retain

1b = Tx PCS has received LP idle.
0b = LP Idle not received.

10 Rx LP Idle
Received RO/LH 0x0 Retain

1b = Rx PCS has received LP idle.
0b = LP Idle not received.

9 Tx LP Idle
Indication RO 0x0 Retain

1b = Tx PCS is currently receiving LP idle.
0b = PCS is not currently receiving LP idle.

8 Rx LP Idle
Indication RO 0x0 Retain

1b = Rx PCS is currently receiving LP idle.
0b = PCS is not currently receiving LP idle.

7:3 Reserved RO 0x0 Retain Reserved.

2 PCS Receive Link
status RO 0x0 Retain

1b = PCS receive link up.
0b = PCS receive link down.

1 Low-power Ability RO 0x0 Retain
1b = PCS supports low-power mode.
0b = PCS does not support low-power mode.

0 Reserved RO 0x0 Retain Reserved.

Ethernet Controller I211 — Programming Interface

414

8.22.4.3 PCS EEE Capability Register - Device 3, Register 20

8.22.4.4 PCS EEE Wake Error Counter - Device 3, Register 22

8.22.4.5 EEE Advertisement Register - Device 7, Register 60

Bits Field Mode HW Rst SW Rst Description

15:7 Reserved RO 0x000 Retain Reserved

6:4 Reserved RO 0x0 Retain Reserved.

3 10GBASE-T EEE RO 0x0 Retain
1b = EEE is supported for 10GBASE-T.
0b = EEE is not supported for 10GBASE-T.

2 1000BASE-T EEE RO 0x0 Retain
1b = EEE is supported for 1000BASE-T.
0b = EEE is not supported for 1000BASE-T.

1 100BASE-TX EEE RO 0x0 Retain
1b = EEE is supported for 100BASE-TX.
0b = EEE is not supported for 100BASE-TX.

0 Reserved RO 0x0 Retain Reserved.

Bits Field Mode HW Rst SW Rst Description

15:0 EEE wake error
counter RO,NR 0x0000 Retain

Bits Field Mode HW Rst SW Rst Description

15:4 Reserved RO 0x0 Retain Reserved.

3 10GBASE-T EEE RO 0x0 Retain
1b = EEE is supported for 10GBASE-T.
0b = EEE is not supported for 10GBASE-T.

2 1000BASE-T EEE R/W 0x0 Retain
1b = EEE is supported for 1000BASE-T.
0b = EEE is not supported for 1000BASE-T.

1 100BASE-TX EEE R/W 0x0 Retain
1b = EEE is supported for 100BASE-TX.
0b = EEE is not supported for 100BASE-TX.

0 Reserved RO 0x0 Retain Reserved.

Programming Interface — Ethernet Controller I211

415

8.22.4.6 EEE Link Partner Advertisement Register - Device 7, Register 61

8.22.5 PHY Registers

8.22.5.1 PRBS Control - Page 26, Register 23

Bits Field Mode HW Rst SW Rst Description

15:4 Reserved RO 0x000 Retain Reserved.

3 LP 10GBASE-T EEE RO 0x0 Retain
1b = EEE is supported for 10GBASE-T.
0b = EEE is not supported for 10GBASE-T.

2 LP 1000BASE-T
EEE RO 0x0 Retain

1b = EEE is supported for 1000BASE-T.
0b = EEE is not supported for 1000BASE-T.

1 LP 100BASE-TX
EEE RO 0x0 Retain

1b = EEE is supported for 100BASE-TX.
0b = EEE is not supported for 100BASE-TX.

0 Reserved RO 0x0 Retain Reserved.

Register Name Register Address Table and Page

PRBS Control Page 26, register 23 section 8.22.5.1 on page 417.

PRBS Error Counter LSB Page 26, register 24 section 8.22.5.2 on page 417.

PRBS Error Counter MSB Page 26, register 25 section 8.22.5.3 on page 417.

Polarity Control Page 26, register 27 section 8.22.5.4 on page 418.

Voltage Regulator Control Page 26, register 30 section 8.22.5.5 on page 419.

Bits Field Mode HW Rst SW Rst Description

15:8 Reserved R/W 0x0 Retain Set to 0x0.

7 Invert Checker
Polarity R/W 0x0 Retain

0 = Normal.
1 = Invert.

6 Invert Generator
Polarity R/W 0x0 Retain

0 = Normal.
1 = Invert.

5 PRBS Lock R/W 0x0 Retain
0 = Counter free runs.
1 = Do not start counting until PRBS locks first.

4 Clear Counter R/W, SC 0x0 0x0
0 = Normal.
1 = Clear counter.

3:2 Pattern Select R/W 00 Retain

00b = PRBS 7.
01b = PRBS 23.
10b = PRBS 31.
11b = Generate 1010101010... pattern.

1 PRBS Checker
Enable R/W 0x0 0x0

0b = Disable.
1b = Enable.

0 PRBS Generator
Enable R/W 0x0 0x0

0b = Disable.
1b = Enable.

Ethernet Controller I211 — Programming Interface

416

8.22.5.2 PRBS Error Counter LSB- Page 26, Register 24

8.22.5.3 PRBS Error Counter MSB- Page 26, Register 25

8.22.5.4 Polarity Control - Page 26, Register 27

Bits Field Mode HW Rst SW Rst Description

15:0 PRBS Error Count
LSB RO 0x0 Retain A read to this register freezes register 25_26. Cleared only when

register 23_26.4 is set to 0b.

Bits Field Mode HW Rst SW Rst Description

15:0 PRBS Error Count
MSB RO 0x0 Retain This register does not update unless register 24_26 is read first.

Cleared only when register 23_26.4 is set to 1b.

Bits Field Mode HW Rst SW Rst Description

15 Invert rxp/n
Polarity R/W Retain

The latest event that occurs between the register write and pin
control determines the polarity.
0b = Normal.
1b = Invert.

14 Invert txp/n
Polarity R/W Retain

The latest event that occurs between the register write and pin
control determines the polarity.
0b = Normal.
1b = Invert.

13:2 Reserved R/W 0x0 Retain Reserved for future use.

1:0 SQ Control
Selection R/W 0x Retain

Squelch detector threshold control.
00b = 30 mV.
01b = 60 mV.
10b = 90 mV.
11b = 120 mV.

Programming Interface — Ethernet Controller I211

417

8.22.5.5 Voltage Regulator Control - Page 26, Register 30

Bits Field Mode HW Rst SW Rst Description

15:7 Reserved R/W 0x0 Retain 0x0.

6:3 scr09 Output
Voltage Select R/W Retain

The latest event that occurs between the register write and pin
control determines the current output amplitude setting.
0000b = 0.70V
0001b = 0.725V
0010b = 0.75V
0011b = 0.775V
0100b = 0.80V
0101b = 0.825V
0110b = 0.85V
0111b = 0.875V
1000b = 0.90V (default)
1001b = 0.925V (not recommended)
1010b = 0.95V (not recommended)
1011b = 0.975V (not recommended)
1100b = 1.00V (not recommended)
1101b = 1.025V (not recommended)
1110b = 1.05V (not recommended)
1111b = 1.075V (not recommended)

2:0 scr15 Output
Voltage Select R/W Retain

The latest event that occurs between the register write and pin
control determines the current output amplitude setting.
000b = 1.35V.
001b = 1.40V.
010b = 1.45V.
011b = 1.50V, default.
100b to 111b= Reserved.

Ethernet Controller I211 — Programming Interface

418

Note: This page intentionally left blank.

PCIe Programming Interface—Ethernet Controller I211

421

9.0 PCIe Programming Interface

9.1 PCIe* Compatibility
PCIe is completely compatible with existing deployed PCI software. To achieve this, PCIe hardware
implementations conform to the following requirements:

• All devices required to be supported by deployed PCI software must be enumerable as part of a tree
through PCI device enumeration mechanisms.

• Devices in their default operating state must conform to PCI ordering and cache coherency rules
from a software viewpoint.

• PCIe devices must conform to PCI power management specifications and must not require any
register programming for PCI-compatible power management beyond those available through PCI
power management capabilities registers. Power management is expected to conform to a standard
PCI power management by existing PCI bus drivers.

• PCIe devices implement all registers required by the PCI specification as well as the power
management registers and capability pointers specified by the PCI power management
specification. In addition, PCIe defines a PCIe capability pointer to indicate support for PCIe
extensions and associated capabilities.

The function contain the following regions of the PCI configuration space:

• Mandatory PCI configuration registers
• Power management capabilities
• MSI and MSI-X capabilities
• PCIe extended capabilities

9.2 PCIe Register Map

9.2.1 Register Attributes

Configuration registers are assigned one of the attributes described in the following table.

Table 9-1. Configuration Registers

Rd/Wr Description

RO Read-only register: Register bits are read-only and cannot be altered by software.

RW Read-write register: Register bits are read-write and can be either set or reset.

R/W1C Read-only status, write-1-to-clear status register, writing a 0b to R/W1C bits has no effect.

ROS
Read-only register with sticky bits: Register bits are read-only and cannot be altered by software. Bits are not
cleared by reset and can only be reset with the PWRGOOD signal. Devices that consume AUX power are not
allowed to reset sticky bits when AUX power consumption (either via AUX power or PME enable) is enabled.

Ethernet Controller I211 —PCIe Programming Interface

422

The PCI configuration registers map is listed in Table 9-2. Refer to a detailed description for registers
loaded from the iNVM at initialization time. Note that initialization values of the configuration registers
are marked in parenthesis.

9.2.2 PCIe Configuration Space Summary

RWS

Read-write register: Register bits are read-write and can be either set or reset by software to the desired
state. Bits are not cleared by reset and can only be reset with the PWRGOOD signal. Devices that consume
AUX power are not allowed to reset sticky bits when AUX power consumption (either via AUX power or PME
enable) is enabled.

R/W1CS

Read-only status, write-1-to-clear status register: Register bits indicate status when read, a set bit indicating
a status event can be cleared by writing a 1b. Writing a 0b to R/W1C bits has no effect. Bits are not cleared
by reset and can only be reset with the PWRGOOD signal. Devices that consume AUX power are not allowed
to reset sticky bits when AUX power consumption (either via AUX power or PME enable) is enabled.

HwInit
Hardware initialized: Register bits are initialized by firmware or hardware mechanisms such as pin strapping
or serial iNVM. Bits are read-only after initialization and can only be reset (for write-once by firmware) with
PWRGOOD signal.

RsvdP Reserved and preserved: Reserved for future R/W implementations; software must preserve value read for
writes to bits.

RsvdZ Reserved and zero: Reserved for future R/W1C implementations; software must use 0b for writes to bits.

Table 9-2. PCIe Configuration Registers Map -

Section Byte
Offset Byte 3 Byte 2 Byte 1 Byte 0

Mandatory PCI
register

0x0 Device ID Vendor ID

0x4 Status Register Control Register

0x8 Class Code (0x020000/0x010000) Revision ID

0xC BIST (0x00) Header Type (0x0/
0x80) Latency Timer Cache Line Size (0x10)

0x10 Base Address Register 0

0x14 Base Address Register 1

0x18 Base Address Register 2

0x1C Base Address Register 3

0x20 Base Address Register 4

0x24 Base Address Register 5

0x28 CardBus CIS pointer (0x0000)

0x2C Subsystem Device ID Subsystem Vendor ID

0x30 Expansion ROM Base Address

0x34 Reserved Cap Ptr (0x40)

0x38 Reserved

0x3C Max Latency (0x00) Min Grant (0x00) Interrupt Pin
(0x01...0x04) Interrupt Line (0x00)

Power
management
capability

0x40 Power Management Capabilities Next Pointer (0x50) Capability ID (0x01)

0x44 Data Bridge Support
Extensions Power Management Control & Status

Table 9-1. Configuration Registers (Continued)

PCIe Programming Interface—Ethernet Controller I211

423

MSI capability

0x50 Message Control (0x0080) Next Pointer (0x70) Capability ID (0x05)

0x54 Message Address

0x58 Message Upper Address

0x5C Reserved Message Data

0x60 Mask bits

0x64 Pending bits

MSI-X capability

0x70 Message Control (0x00090) Next Pointer (0xA0) Capability ID (0x11)

0x74 Table Offset

0x78 PBA offset

CSR Access
Registers

0x98 IOADDR

0x9C IODATA

PCIe capability

0xA0 PCIe Capability Register (0x0002) Next Pointer (0xE0) Capability ID (0x10)

0xA4 Device Capability

0xA8 Device Status Device Control

0xAC Link Capabilities

0xB0 Link Status Link Control

0xB4 Reserved

0xB8 Reserved Reserved

0xBC Reserved

0xC0 Reserved Reserved

0xC4 Device Capability 2

0xC8 Reserved Device Control 2

0xCC Reserved

0xD0 Link Status 2 Link Control 2

0xD4 Reserved

0xD8 Reserved Reserved

AER capability

0x100 Next Capability Ptr.
(0x140) Version (0x2) AER Capability ID (0x0001)

0x104 Uncorrectable Error Status

0x108 Uncorrectable Error Mask

0x10C Uncorrectable Error Severity

0x110 Correctable Error Status

0x114 Correctable Error Mask

0x118 Advanced Error Capabilities and Control Register

0x11C:
0x128 Header Log

Serial ID
capability

0x140 Next Capability Ptr.
(0x1A0) Version (0x1) Serial ID Capability ID (0x0003)

0x144 Serial Number Register (Lower Dword)

0x148 Serial Number Register (Upper Dword)

Table 9-2. PCIe Configuration Registers Map (Continued)-

Section Byte
Offset Byte 3 Byte 2 Byte 1 Byte 0

Ethernet Controller I211 —PCIe Programming Interface

424

A description of the registers is provided in the following sections.

9.3 Mandatory PCI Configuration Registers

9.3.1 Vendor ID (0x0; RO)

This value can be loaded automatically from iNVM address 0x0E at power up or reset. A value of
0x8086 is the default for this field at power up if the iNVM does not respond or is not programmed.

Note: To avoid a system hang situation, if a value of 0xFFFF is read from the iNVM, the value of the
Vendor ID field defaults back to 0x8086.

9.3.2 Device ID (0x2; RO)

This is a read-only register. This field identifies individual I211 functions. It can be auto-loaded from the
during initialization with a different value. For the I211 it can be loaded from iNVM during initialization
for a different value. The following table lists the possible values according to the SKU and functionality.

1. Default Device ID for embedded use and empty iNVM operation.

9.3.3 Command Register (0x4; R/W)
This is a read/write register.

TPH Requester
capability

0x1A0 Next Capability Ptr.
(0x1C0) Version (0x1) TPH Capability ID (0x17)

0x1A4 TPH Requester Capability Register

0x1A8 TPH Requester Control Register

0x1AC:
0x1B8

TPH Steering Table

PCI
Function

Default
Value

Flash
Address Description

LAN 0
0x1539 for
the I211
SKUs with a
programmed
iNVM

0x0D
 The I211 with a blank iNVM (tools only, not for driver)1

0x1534 - Reserved
 The I211 with a programmed iNVM (Device ID for driver)

Bit(s) R/W Initial Value Description

0 R/W1 0b I/O Access Enable

1 R/W 0b Memory Access Enable

2 R/W 0b Bus Master Enable (BME)

3 RO 0b
Special Cycle Monitoring
Hardwired to 0b.

Table 9-2. PCIe Configuration Registers Map (Continued)-

Section Byte
Offset Byte 3 Byte 2 Byte 1 Byte 0

PCIe Programming Interface—Ethernet Controller I211

425

9.3.4 Status Register (0x6; RO)

9.3.5 Revision (0x8; RO)

The default revision ID for the I211 A1 stepping is 0x01 and 0x03 for A2 stepping. The value of the rev
ID is a logic XOR between the default value and the value in iNVM word 0x1E.

4 RO 0b
MWI Enable
Hardwired to 0b.

5 RO 0b
Palette Snoop Enable
Hardwired to 0b.

6 RW 0b Parity Error Response

7 RO 0b
Wait Cycle Enable
Hardwired to 0b.

8 RW 0b SERR# Enable

9 RO 0b Fast Back-to-Back Enable

10 RW 0b Interrupt Disable2

15:11 RO 0x0 Reserved

1. If IO_Sup bit in PCIe Init Configuration 2 iNVM Word (0x19) is 0, I/O Access Enable bit is RO with a value of 0.
2. The Interrupt Disable register bit is a read-write bit that controls the ability of a PCIe device to generate a legacy interrupt message.

When set, devices are prevented from generating legacy interrupt messages.

Bits R/W Initial Value Description

2:0 000b Reserved

3 RO 0b Interrupt Status1

1. The Interrupt Status field is a RO field that indicates that an interrupt message is pending internally to the device.

4 RO 1b

New Capabilities
Indicates that a device implements extended capabilities. The I211 sets this bit, and
implements a capabilities list, to indicate that it supports PCI power management, Message
Signaled Interrupts (MSI), Enhanced Message Signaled Interrupts (MSI-X), and the PCIe
extensions.

5 0b
66 MHz Capable
Hardwired to 0b.

6 0b Reserved

7 0b
Fast Back-to-Back Capable
Hardwired to 0b.

8 R/W1C 0b Data Parity Reported

10:9 00b
DEVSEL Timing
Hardwired to 0b.

11 R/W1C 0b Signaled Target Abort

12 R/W1C 0b Received Target Abort

13 R/W1C 0b Received Master Abort

14 R/W1C 0b Signaled System Error

15 R/W1C 0b Detected Parity Error

Bit(s) R/W Initial Value Description

Ethernet Controller I211 —PCIe Programming Interface

426

9.3.6 Class Code (0x9; RO)
The class code is a RO hard coded value that identifies the I211’s functionality.

• 0x020000/0x010000 - Ethernet

9.3.7 Cache Line Size (0xC; R/W)

This field is implemented by PCIe devices as a read-write field for legacy compatibility purposes but has
no impact on any PCIe device functionality. Field is loaded from the PCIe Init Configuration 3 (Word
0x1A) iNVM word and defines cache line size in Dwords. In iNVM systems, the value is 0x10.

9.3.8 Latency Timer (0xD; RO)

Not used. Hardwired to zero.

9.3.9 Header Type (0xE; RO)

This indicates if a device is single function or multifunction. If a single LAN function is the only active
one then this field has a value of 0x00 to indicate a single function device.

9.3.10 BIST (0xF; RO)

BIST is not supported in the I211.

9.3.11 Base Address Registers (0x10...0x27; R/W)

The Base Address registers (BARs) are used to map the I211 register space. The I211 has a memory
BAR, IO BAR and MSI-X BAR described in Table 9-3 below.

9.3.11.1 32-bit LAN BARs Mode Mapping

This mapping is selected when bit 10 in the Functions Control iNVM word is equal to 1b.

Table 9-3. Base Address Registers Description -

Mapping Windows Mapping Description

Memory BAR

The internal registers memories and external Flash device are accessed as direct memory mapped offsets
from the Base Address register. Software can access a Dword or 64 bits.
The Flash space in this BAR is enabled by the FLBARSize and CSRSize fields in the BARCTRL register.
Address 0 in the Flash device is mapped to address 128K in the Memory BAR. When the usable Flash size
+ CSR space is smaller than the memory BAR, then accessing addresses above the top of the Flash
wraps back to the beginning of the Flash.

IO BAR
All internal registers and memories can be accessed using I/O operations. There are two 4-byte registers
in the IO mapping window: Addr Reg and Data Reg accessible as Dword entities. I/O BAR support
depends on the IO_Sup bit in the iNVM “PCIe Init Configuration 2” word.

MSI-X BAR The MSI-X vectors and Pending bit array (PBA) structures are accessed as direct memory mapped offsets
from the MSI-X BAR. Software can access Dword entities.

PCIe Programming Interface—Ethernet Controller I211

427

9.3.11.2 64-bit LAN BARs Mode Mapping

This mapping is selected when bit 10 in the Functions Control iNVM word is equal to 0b.

9.3.11.3 Base Address Register Fields

All base address registers have the following fields.

Table 9-4. Base Address Setting in 32bit BARs Mode (BARCTRL.BAR32 = 1b)

BAR Addr 31 -5 4 3 2 1 0

0 0x10 Memory CSR + FLASH BAR (R/W - 31:17; RO - 16:4 (0x0)) 0/1 0 0 0

1 0x14 Reserved (read as all 0b’s)

2 0x18 IO BAR (R/W - 31:5) 0 0 0 0 1

3 0x1C MSI-X BAR (R/W - 31:14; RO - 13:4 (0x0)) 0/1 0 0 0

4 0x20 Reserved (read as all 0b’s)

5 0x24 Reserved (read as all 0b’s)

Table 9-5. Base Address Setting in 64bit BARs Mode (BARCTRL.BAR32 = 0b)

BAR Addr 31 -5 4 3 2 1 0

0 0x10 Memory CSR + FLASH BAR Low (RW - 31:17;RO - 16:4 (0x0)) 0/1 1 0 0

1 0x14 Memory CSR + FLASH BAR High (RW)

2 0x18 IO BAR (R/W - 31:5) 0 0 0 0 1

3 0x1C Reserved (RO - 0)

4 0x20 MSI-X BAR Low (RW - 31:14; RO - 13:4 (0x0)) 0/1 1 0 0

5 0x24 MSI-X BAR High (RW)

Table 9-6. Base Address Registers' Fields

Field Bits R/W Description

Mem / IO Space
Indication 0 RO

0b = Indicates memory space.
1b = Indicates I/O.

Memory Type 2:1 RO
00b = 32-bit BAR (BAR32 in the iNVM equals 1b)
10b = 64-bit BAR (BAR32 in the iNVM equals 0b)

Prefetch Memory 3 RO

0b = Non-prefetchable space.
1b = Prefetchable space (device default).
This bit is loaded from the PREFBAR bit in the iNVM. This bit should be set only on systems
that do not generate prefetchable cycles.

Address Space
(Low register for
64bit Memory
BARs)

31:4 R/W

The length of the RW bits and RO 0b bits depend on the mapping window sizes. Init value of
the RW fields is 0x0.

Mapping Window RO bits

Memory CSR + FLASH BAR size depends on BARCTRL.FLBARSize and
BARCTRL.CSRSize fields.

16:4 for 128KB
17:4 for 256KB
and so on...

MSI-X space is 16KB 13:4

I/O spaces size is 32 bytes 4

Ethernet Controller I211 —PCIe Programming Interface

428

9.3.12 CardBus CIS (0x28; RO)
Not used. Hardwired to zero.

9.3.13 Subsystem Vendor ID (0x2C; RO)

This value can be loaded automatically from iNVM address 0x0C at power up or reset. A value of
0x8086 is the default for this field at power up if the iNVM does not respond or is not programmed.

9.3.14 Subsystem ID (0x2E; RO)

This value can be loaded automatically from iNVM address 0x0B at power up with a default value of
0x0000.

9.3.15 Expansion ROM Base Address (0x30; RW)

This register is used to define the address and size information for boot-time access to the optional
Flash memory. Expansion ROM is enabled by placing 0b in the LAN Boot Disable Flash bit. This register
returns a zero value for function without an Expansion ROM window.

9.3.16 Cap_Ptr (0x34; RO)

The Capabilities Pointer field (Cap_Ptr) is an 8-bit field that provides an offset in the device's PCI
configuration space for the location of the first item in the Capabilities Linked List (CLL). The I211 sets
this bit and implements a capabilities list to indicate that it supports PCI power management, Message
Signaled Interrupts (MSIs), and PCIe extended capabilities. Its value is 0x40, which is the address of
the first entry: PCI power management.

9.3.17 Interrupt Line (0x3C; RW)

Read/write register programmed by software to indicate which of the system interrupt request lines this
I210's interrupt pin is bound to. See the PCIe definition for more details.

9.3.18 Interrupt Pin (0x3D; RO)

Read only register. Always report INTA#.

Field Bit(s) R/W Initial Value Description

En 0 RO 0b
1b = Enables Expansion ROM access.
0b = Disables Expansion ROM access.

Reserved 10:1 RO 0b Always read as 0b. Writes are ignored.

Address 31:11 R/W 0b
Read-write bits are hard wired to 0b and dependent on the memory mapping
window size. The LAN Expansion ROM spaces can be either 512 KB to 8 MB in
powers of 2. Mapping window size is set by the FLBAR_size Flash field.

PCIe Programming Interface—Ethernet Controller I211

429

9.3.19 Max_Lat/Min_Gnt (0x3E; RO)
Not used. Hardwired to zero.

9.4 PCI Capabilities
The first entry of the PCI capabilities link list is pointed by the Cap_Ptr register. The following tables
describes the capabilities supported by the I211.

9.4.1 PCI Power Management Capability

All fields are reset on full power-up. All of the fields except PME_En and PME_Status are reset on exit
from D3cold state. If aux power is not supplied, the PME_En and PME_Status fields also reset on exit
from D3cold state.

See the detailed description for registers loaded from the iNVM at initialization time. Behavior of some
fields in this section depend on the Power Management bit in iNVM word 0x0A.

9.4.1.1 Capability ID (0x40; RO)

This field equals 0x01 indicating the linked list item as being the PCI Power Management registers.

9.4.1.2 Next Pointer (0x41; RO)

This field provides an offset to the next capability item in the capability list. In LAN function, a value of
0x50 points to the MSI capability.

9.4.1.3 Power Management Capabilities - PMC (0x42; RO)

This field describes the I211’s functionality at the power management states as described in the
following table. Note that each device function has its own register.

Table 9-7. PCI capabilities

Address Item Next Pointer

0x40-47 PCI Power Management 0x50

0x50-67 Message Signaled Interrupt 0x70

0x70-8B Extended Message Signaled Interrupt 0xA0

0xA0-DB PCIe Capabilities 0xE0/0x001

1. IniNVM mode, the PCIe capability is the last capabilities section.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x40 Power Management Capabilities Next Pointer (0x50) Capability ID (0x01)

0x44 Data Bridge Support
Extensions Power Management Control & Status

Ethernet Controller I211 —PCIe Programming Interface

430

9.4.1.4 Power Management Control / Status Register - PMCSR (0x44; R/W)

This register is used to control and monitor power management events in the I211. Note that each
device function has its own PMCSR register.

Bits Default R/W Description

15:11

01001b
See value in
description
column

RO

PME_Support - This 5-bit field indicates the power states in which the function might assert
PME#. A value of 0b for any bit indicates that the function is not capable of asserting the
PME# signal while in that power state.
bit(11) X XXX1b - PME# can be asserted from D0
bit(12) X XX1Xb - PME# can be asserted from D1
bit(13) X X1XXb - PME# can be asserted from D2
bit(14) X 1XXXb - PME# can be asserted from D3hot
bit(15) 1 XXXXb - PME# can be asserted from D3cold

Value of bit 15 is a function of Aux Pwr availability and Power Management (PM Ena) bit in
Initialization Control Word 1 (word 0x0A) iNVM word.
Conditionaaaaaaaaaaa Functionalityaaaaaaaaaaaaa aValue
PM Dis in iNVM No PME at all states 00000b
PM Ena & NoAux Pwr PME at D0 and D3hot aaaaaaaaa 01001b
PM Ena & Aux Pwr PME at D0, D3hot and D3coldaa 11001b
Note: Aux Pwr is considered available if AUX_PWR pin is connected to 3.3V and
D3COLD_WAKEUP_ADVEN iNVM bit is set to 1b.

10 0b RO
D2_Support
The I211 does not support D2 state.

9 0b RO
D1_Support
The I211 does not support D1 state.

8:6 000b RO AUX Current – Required current defined in the Data Register.

5 1b RO
DSI
The I211 requires its device driver to be executed following transition to the D0 uninitialized
state.

4 0b RO Reserved

3 0b RO
PME_Clock
Disabled. Hardwired to 0b.

2:0 011b RO
Version
The I211 complies with the PCI PM specification, revision 1.2.

Bits Default R/W Description

15
0b
(at power
up)

R/W1CS
PME_Status
This bit is set to 1b when the function detects a wake-up event independent of the state of the
PME_En bit. Writing a 1b clears this bit.

14:13 01b RO

Data_Scale
This field indicates the scaling factor to be used when interpreting the value of the Data
register.
This field equals 01b (indicating 0.1 watt units) if power management is enabled in the Power
Management (PM Ena) bit in Initialization Control Word 1 (word 0x0A) iNVM word and the
Data_Select field is set to 0, 3, 4, 7, (or 8). Otherwise, this field equals 00b.

12:9 0000b R/W

Data_Select
This four-bit field is used to select which data is to be reported through the Data register and
Data_Scale field. These bits are writable only when power management is enabled by setting
the Power Management (PM Ena) bit in Initialization Control Word 1 (word 0x0A) iNVM word.

PCIe Programming Interface—Ethernet Controller I211

431

9.4.1.5 Bridge Support Extensions - PMCSR_BSE (0x46; RO)

This register is not implemented in the I211. Values are set to 0x00.

9.4.1.6 Data Register (0x47; RO)

This optional register is used to report power consumption and heat dissipation. Reported register is
controlled by the Data_Select field in the PMCSR and the power scale is reported in the Data_Scale field
in the PMCSR. The data of this field is loaded from the iNVM if power management is enabled in the
iNVM or with a default value of 0x00. The values for the I211 are read from iNVM word 0x22.

For other Data_Select values, the Data register output is reserved (0x0).

8
0b
(at power
up)

R/WS

PME_En
If power management is enabled in the iNVM, writing a 1b to this register enables wake up.
If power management is disabled in the iNVM, writing a 1b to this bit has no effect and does
not set the bit to 1b.

7:4 000000b RO Reserved

3 1b1 RO

No_Soft_Reset
No_Soft_Reset - When set (“1”), this bit indicates that when the I211 transitions from D3hot to
D0 because of modifying Power State bits in the PMCSR register, no internal reset is issued and
Configuration Context is preserved. Upon transition from the D3hot to the D0 Initialized state,
no additional operating system intervention is required to preserve Configuration Context
beyond writing the Power State bits.
When clear (“0”), the I211 performs an internal reset upon transitioning from D3hot to D0 via
software control of the Power State bits in the PMCSR register. Configuration Context is lost
when performing the soft reset. Upon transition from the D3hot to the D0 state, full re
initialization sequence is needed to return the device to D0 Initialized.
Regardless of this bit, devices that transition from D3hot to D0 by a system or bus segment
reset returns to the device state D0 Uninitialized with only PME context preserved if PME is
supported and enabled.

2 0b RO Reserved for PCIe.

1:0 00b R/W

Power State
This field is used to set and report the power state of a function as follows:
00b = D0
01b = D1 (cycle ignored if written with this value)
10b = D2 (cycle ignored if written with this value)
11b = D3 (cycle ignored if power management is not enabled in the iNVM)

1. Loaded from iNVM (See Section 6.2.15).

Function D0 (Consume/
Dissipate)

D3 (Consume/
Dissipate) Common

PMCSR.Data Select 0x0 / 0x4 0x3 / 0x7 0x8

Function 0 iNVM addr 0x22 iNVM addr 0x22 iNVM addr 0x22

Bits Default R/W Description

Ethernet Controller I211 —PCIe Programming Interface

432

9.4.2 MSI Configuration

This structure is required for PCIe devices.

9.4.2.1 Capability ID (0x50; RO)

This field equals 0x05 indicating the linked list item as being the MSI registers.

9.4.2.2 Next Pointer (0x51; RO)

This field provides an offset to the next capability item in the capability list. Its value of 0x70 points to
the MSI-X capability structure.

9.4.2.3 Message Control (0x52; R/W)

The register fields are described in the following table. There is a dedicated register per PCI function to
separately enable their MSI.

9.4.2.4 Message Address Low (0x54; R/W)

Written by the system to indicate the lower 32 bits of the address to use for the MSI memory write
transaction. The lower two bits always return 0b regardless of the write operation.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x50 Message Control (0x0180) Next Pointer (0x70) Capability ID (0x05)

0x54 Message Address

0x58 Message Upper Address

0x5C Reserved Message Data

0x60 Mask bits

0x64 Pending bits

Bits Default R/W Description

0 0b R/W
MSI Enable
If set to 1b, equals MSI. In this case, the I211 generates an MSI for interrupt assertion instead
of INTx signaling.

3:1 000b RO
Multiple Message Capable
The I211 indicates a single requested message.

6:4 000b RO
Multiple Message Enable
The I211 returns 000b to indicate that it supports a single message.

7 1b RO
64-bit capable
A value of 1b indicates that the I211 is capable of generating 64-bit message addresses.

8 1b1

1. Default value is read from the iNVM.

RO
MSI per-vector masking.
A value of 1b indicates that the I211 is capable of per-vector masking.
This field is loaded from the MSI-X Configuration (Offset 0x16) iNVM word.

15:9 0b RO
Reserved
Write 0 ignore on read.

PCIe Programming Interface—Ethernet Controller I211

433

9.4.2.5 Message Address High (0x58; R/W)

Written by the system to indicate the upper 32-bits of the address to use for the MSI memory write
transaction.

9.4.2.6 Message Data (0x5C; R/W)

Written by the system to indicate the lower 16 bits of the data written in the MSI memory write Dword
transaction. The upper 16 bits of the transaction are written as 0b.

9.4.2.7 Mask bits (0x60; R/W)

The Mask Bits and Pending Bits registers enable software to disable or defer message sending on a per-
vector basis. As the I211 supports only one message, only bit 0 of these register is implemented.

9.4.2.8 Pending Bits (0x64; R/W)

9.4.3 MSI-X Configuration

More than one MSI-X capability structure is prohibited, but a function is permitted to have both an MSI
and an MSI-X capability structure.

In contrast to the MSI capability structure, which directly contains all of the control/status information
for the function's vectors, the MSI-X capability structure instead points to an MSI-X table structure and
a MSI-X Pending Bit Array (PBA) structure, each residing in memory space.

Each structure is mapped by a Base Address Register (BAR) belonging to the function, located
beginning at 0x10 in configuration space. A BAR Indicator Register (BIR) indicates which BAR, and a
Qword-aligned offset indicates where the structure begins relative to the base address associated with
the BAR. The BAR is permitted to be either 32-bit or 64-bit, but must map to memory space. A function
is permitted to map both structures with the same BAR, or to map each structure with a different BAR.

The MSI-X table structure, listed in Section 8.8, typically contains multiple entries, each consisting of
several fields: message address, message upper address, message data, and vector control. Each entry
is capable of specifying a unique vector.

The PBA structure, described in the same section, contains the function's pending bits, one per Table
entry, organized as a packed array of bits within Qwords. Note that the last Qword might not be fully
populated.

To request service using a given MSI-X table entry, a function performs a Dword memory write
transaction using:

Bits Default R/W Description

0 0b R/W
MSI Vector 0 Mask
If set, the I211 is prohibited from sending MSI messages.

31:1 000b RO Reserved

Bits Default R/W Description

0 0b RO If set, the I211 has a pending MSI message.

31:1 000b RO Reserved

Ethernet Controller I211 —PCIe Programming Interface

434

• The contents of the Message Data field entry for data.
• The contents of the Message Upper Address field for the upper 32 bits of the address.
• The contents of the Message Address field entry for the lower 32 bits of the address.

A memory read transaction from the address targeted by the MSI-X message produces undefined
results.

The MSI-X table and MSI-X PBA are permitted to co-reside within a naturally aligned 4 KB address
range, though they must not overlap with each other.

MSI-X table entries and Pending bits are each numbered 0 through N-1, where N-1 is indicated by the
Table Size field in the MSI-X Message Control register. For a given arbitrary MSI-X table entry K, its
starting address can be calculated with the formula:

Entry starting address = Table base + K*16

For the associated Pending bit K, its address for Qword access and bit number within that Qword can be
calculated with the formulas:

Qword address = PBA base + (K div 64)*8
Qword bit# = K mod 64

Software that chooses to read Pending bit K with Dword accesses can use these formulas:

Dword address = PBA base + (K div 32)*4
Dword bit# = K mod 32

The I211 also supports the table-less MSI-X mode, where a single interrupt vector is provided. The
MSI-X table and MSI-X PBA are not used. Instead, the capability structure includes several additional
fields (Message Address, Message Address Upper, and Message Data) for vector configuration. The
I211 embeds the number of the original MSI-X vectors (i.e. the vectors supported if the number of
vectors was not limited to 1) in the LSB bits of the Message Data field.

9.4.3.1 Capability ID (0x70; RO)

This field equals 0x11 indicating the linked list item as being the MSI-X registers.

9.4.3.2 Next Pointer (0x71; RO)

This field provides an offset to the next capability item in the capability list. Its value of 0xA0 points to
the PCIe capability.

Table 9-8. MSI-X Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x70 Message Control (0x00090) Next Pointer (0xA0) Capability ID (0x11)

0x74 Table Offset

0x78 PBA offset

PCIe Programming Interface—Ethernet Controller I211

435

9.4.3.3 Message Control (0x72; R/W)

The register fields are described in the following table. There is a dedicated register per PCI function to
separately configure their MSI-X functionality.

Bits Default R/W Description

10:0 0x0041

1. Default value is read from the iNVM.

RO

TS - Table Size
System software reads this field to determine the MSI-X Table Size N, which is encoded as N-
1. For example, a returned value of 0x00F indicates a table size of 16.
The I211 supports 5 MSI-X vectors.
This field is loaded from the MSI-X Configuration (Offset 0x16) iNVM word.

13:11 000b RO
Reserved
Always return 000b on read. Write operation has no effect.

14 0b R/W

FM - Function Mask
If set to 1b, all of the vectors associated with the function are masked, regardless of their per-
vector Mask bit states.
If set to 0b, each vector’s Mask bit determines whether the vector is masked or not.
Setting or clearing the MSI-X Function Mask bit has no effect on the state of the per-vector
Mask bits.

15 0b R/W

En - MSI-X Enable
If set to 1b and the MSI Enable bit in the MSI Message Control (MMC) register is 0b, the
function is permitted to use MSI-X to request service and is prohibited from using its INTx#
pin.
System configuration software sets this bit to enable MSI-X. A software device driver is
prohibited from writing this bit to mask a function’s service request.
If set to 0b, the function is prohibited from using MSI-X to request service.

Ethernet Controller I211 —PCIe Programming Interface

436

9.4.3.4 MSI-X Table Offset (0x74; R/W)

9.4.3.5 MSI-X Pending Bit Array - PBA Offset (0x78; R/W)

9.4.4 CSR Access Via Configuration Address Space

9.4.4.1 IOADDR Register (0x98; R/W)

This is a read/write register. Register is cleared at Power-up or PCIe reset.

Note: When function is in D3 state Software should not attempt to access CSRs via the IOADDR and
IODATA registers.

Bits Default Type Description

31:3 0x000 RO

Table Offset
Used as an offset from the address contained by one of the function’s BARs to point to the base
of the MSI-X table. The lower three table BIR bits are masked off (set to zero) by software to
form a 32-bit Qword-aligned offset.

2:0 0x3/0x4 RO

Table BIR
Indicates which one of a function’s BARs, located beginning at 0x10 in configuration space, is
used to map the function’s MSI-X table into memory space.
BIR values: 0...5 correspond to BARs 0x10…0x 24 respectively. A BIR value of 3 indicates that
the table is mapped in BAR 3 (address 0x1C).
When BARCTRL.BAR32 equals 0b (64 bit MMIO mapping) the table BIR equals 0x4. When
BARCTRL.BAR32 equals 1b (32 bit MMIO mapping) the table BIR equals 0x3.

Bits Default Type Description

31:3 0x400 RO

PBA Offset
Used as an offset from the address contained by one of the function’s BARs to point to the base
of the MSI-X PBA. The lower three PBA BIR bits are masked off (set to zero) by software to
form a 32-bit Qword-aligned offset.

2:0 0x3 RO

PBA BIR: Indicates which one of a function’s Base Address registers, located beginning at 10h
in Configuration Space, is used to map the function’s MSI-X PBA into Memory Space.
BIR values: 0...5 correspond to BARs 0x10…0x 24 respectively. A BIR value of 3 indicates that
the table is mapped in BAR 3 (address 0x1C).
When BARCTRL.BAR32 equals 0b (64 bit MMIO mapping) the table BIR equals 0x4. When
BARCTRL.BAR32 equals 1b (32 bit MMIO mapping) the table BIR equals 0x3.

Bit(s) R/W Initial Value Description

30:0 R/W1

1. In the event that the CSR_conf_en bit in the PCIe Init Configuration 2 iNVM word is cleared, accesses to the IOADDR register via
configuration address space is ignored and has no effect on the register and the CSRs referenced by the IOADDR register.

0x0
Internal Register or Internal Memory location Address.
0x00000-0x1FFFF – Internal Registers and Memories
0x20000-0x7FFFFFFF – Undefined

31 R/W 0b

Configuration IO Access Enable.
0b - CSR configuration read or write disabled.
1b - CSR Configuration read or write enabled
When bit is set accesses to the IODATA register actually generate transactions to the
device. Otherwise, accesses to the IODATA register are don't-cares (write are discarded
silently, reads return arbitrary results).

PCIe Programming Interface—Ethernet Controller I211

437

9.4.4.2 IODATA Register (0x9C; R/W)

This is a read/write register. Register is cleared at Power-up or PCIe reset.

9.4.5 PCIe Configuration Registers

PCIe provides two mechanisms to support native features:

• PCIe defines a PCI capability pointer indicating support for PCIe.
• PCIe extends the configuration space beyond the 256 bytes available for PCI to 4096 bytes.

The I211 implements the PCIe capability structure for endpoint devices as follows:

9.4.5.1 Capability ID (0xA0; RO)

This field equals 0x10 indicating the linked list item as being the PCIe Capabilities registers.

9.4.5.2 Next Pointer (0xA1; RO)

Offset to the next capability item in the capability list. Ifoperating iniNVM mode, a value of 0x00 value
indicates that it is the last item in the capability-linked list.

Bit(s) R/W Initial Value Description

31:0 R/W1

1. In the event that the CSR_conf_en bit in the PCIe Init Configuration 2 iNVM word is cleared, access to the IODATA register via
configuration address space is ignored and has no effect on the register and the CSRs referenced by the IOADDR register.

0x0 Data field for reads or writes to the Internal register or internal memory location as
identified by the current value in IOADDR. All 32 bits of this register are read/write-able.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0xA0 PCI Express Capability Register (0x0002) Next Pointer (0xE0/
0x00) Capability ID (0x10)

0xA4 Device Capability

0xA8 Device Status Device Control

0xAC Link Capabilities

0xB0 Link Status Link Control

0xB4 Reserved

0xB8 Reserved Reserved

0xBC Reserved

0xC0 Reserved Reserved

0xC4 Device Capabilities 2

0xC8 Reserved Device Control 2

0xCC Reserved

0xD0 Link Status 2 Link Control 2

0xD4 Reserved

0xD8 Reserved Reserved

Ethernet Controller I211 —PCIe Programming Interface

438

9.4.5.3 PCIe CAP (0xA2; RO)

The PCIe capabilities register identifies the PCIe device type and associated capabilities. This is a read
only register.

9.4.5.4 Device Capabilities (0xA4; RO)

This register identifies the PCIe device specific capabilities. It is a read only register.

Bits Default R/W Description

3:0 0010b RO
Capability Version
Indicates the PCIe capability structure version number. The I211 supports both version
1 and version 2 as loaded from the PCIe Capability Version bit in the iNVM.

7:4 0000b RO
Device/Port Type
Indicates the type of PCIe function. a native PCI function with a value of 0000b.

8 0b RO
Slot Implemented
The I211 does not implement slot options therefore this field is hardwired to 0b.

13:9 00000b RO
Interrupt Message Number
The I211 does not implement multiple MSI interrupts, therefore this field is hardwired
to 0x0.

15:14 00b RO Reserved

Bits R/W Default Description

2:0 RO 010b
Max Payload Size Supported
This field indicates the maximum payload that the I211 can support for TLPs. It is loaded from
the iNVM’s PCIe Init Configuration 3 word, 0x1A (with a default value of 512 bytes.

4:3 RO 00b
Phantom Function Supported
Not supported by the I211.

5 RO 0b
Extended Tag Field Supported
Max supported size of the Tag field. The I211 supported 5-bit Tag field.

8:6 RO 011b

Endpoint L0s Acceptable Latency
This field indicates the acceptable latency that the I211 can withstand due to the transition
from the L0s state to the L0 state. value loaded from the iNVM PCIe Init Configuration 1 word,
0x18 (See Section 6.2.12).

11:9 RO 110b

Endpoint L1 Acceptable Latency
This field indicates the acceptable latency that the I211 can withstand due to the transition
from the L1 state to the L0 state. value loaded from the iNVM PCIe L1 Exit latencies word,
0x14 (See Section 6.2.9).

12 RO 0b
Attention Button Present
Hardwired in the I211 to 0b.

13 RO 0b
Attention Indicator Present
Hardwired in the I211 to 0b.

14 RO 0b
Power Indicator Present
Hardwired in the I211 to 0b.

15 RO 1b

Role-Based Error Reporting
This bit, when set, indicates that the I211 implements the functionality originally defined in the
Error Reporting ECN for PCIe Base Specification 1.0a and later incorporated into PCIe Base
Specification 1.1. Set to 1b in the I211.

17:16 RO 000b Reserved

25:18 RO 0x00
Slot Power Limit Value
Hardwired in the I211 to 0x00, as the I211 consumes less than the 25 W allowed for its form
factor.

PCIe Programming Interface—Ethernet Controller I211

439

9.4.5.5 Device Control (0xA8; RW)

This register controls the PCIe specific parameters.

27:26 RO 00b
Slot Power Limit Scale
Hardwired in the I211 to 0b, as the I211 consumes less than the 25 W allowed for its form
factor.

28 RO 1b1 Function Level Reset (FLR) Capability
A value of 1b indicates the function supports the optional FLR mechanism.

31:29 RO 000b Reserved

1. Loaded from iNVM

Bits R/W Default Description

0 RW 0b
Correctable Error Reporting Enable
Enable report of correctable errors.

1 RW 0b
Non-Fatal Error Reporting Enable
Enable report of non fatal errors.

2 RW 0b
Fatal Error Reporting Enable
Enable report of fatal errors.

3 RW 0b
Unsupported Request Reporting Enable
Enable report of unsupported requests error.

4 RW 1b

Enable Relaxed Ordering
If this bit is set, the I211 is permitted to set the Relaxed Ordering bit in the attribute field of
write transactions that do not need strong ordering. For more details, refer to the description
about the RO_DIS bit in the CTRL_EXT register bit in Section 8.2.3.

7:5 RW 000b (128
bytes)

Max Payload Size
This field sets maximum TLP payload size for the I211. As a receiver, the I211 must handle
TLPs as large as the set value. As a transmitter, the I211 must not generate TLPs exceeding the
set value.
The max payload size supported in the I211 Device capabilities register indicates permissible
values that can be programmed.
Note: According to PCIe spec, this field shall not be reset on FLR.

8 R0 0b
Extended Tag field Enable
Not implemented in the I211.

9 R0 0b
Phantom Functions Enable
Not implemented in the I211.

10 RWS 0b
Auxiliary Power PM Enable
When set, enables the I211 to draw AUX power independent of PME AUX power.

Bits R/W Default Description

Ethernet Controller I211 —PCIe Programming Interface

440

9.4.5.6 Device Status (0xAA; R/W1C)

This register provides information about PCIe device’s specific parameters.

11 RW 1b
Enable No Snoop
Snoop is gated by NONSNOOP bits in the GCR register in the CSR space.

14:12 RW 010b

Max Read Request Size - this field sets maximum read request size for the Device as a
requester.
000b = 128 bytes
001b = 256 bytes.
010b = 512 bytes (the default value).
011b = 1 KB.
100b = Reserved.
101b = Reserved.
110b = Reserved.
111b = Reserved.

15 RW 0b
Initiate Function Level Reset
A write of 1b initiates an FLR to the function. The value read by software from this bit is always
0b.

Bits R/W Default Description

0 R/W1C 0b
Correctable Error Detected
Indicates status of correctable error detection.

1 R/W1C 0b
Non-Fatal Error Detected
Indicates status of non-fatal error detection.

2 R/W1C 0b
Fatal Error Detected
Indicates status of fatal error detection.

3 R/W1C 0b
Unsupported Request Detected
Indicates that the I211 received an unsupported request.

4 RO 0b
Aux Power Detected
If aux power is detected, this field is set to 1b. It is a strapping signal from the periphery.
Reset on LAN_PWR_GOOD and GIO Power Good only.

5 RO 0b
Transactions Pending
Indicates whether the I211 has any transaction pending.

15:6 RO 0x00 Reserved

Bits R/W Default Description

PCIe Programming Interface—Ethernet Controller I211

441

9.4.5.7 Link Capabilities Register (0xAC; RO)

This register identifies PCIe link specific capabilities. This is a read only register

Bits Rd/Wr Default Description

3:0 RO 0010b

Max Link Speed
This field indicates the supported Link speed(s) of the associated link port. Defined
encodings are:
0001b = 2.5 Gb/s Link speed supported.
0010b = Not supported (5 Gb/s and 2.5 Gb/s Link speeds)

 9:4 RO 0x01

Max Link Width
Indicates the maximum link width. The I211 can support by 1 link width.
Relevant encoding:
000000b = Reserved.
000001b = x1.
000010b = x2 Not supported.
000100b = x4 Not supported.

11:10 RO 11b

Active State Power Management (ASPM) Support – This field indicates the level of
ASPM supported on the I211 PCI Express Link.
Defined encodings are:
00b = No ASPM Support.
01b = L0s Supported.
10b = L1 Supported.
11b = L0s and L1 Supported.

14:12 RO
Usage depended.
See default values in
Section 6.2.12.

L0s Exit Latency
Indicates the exit latency from L0s to L0 state.
000b = Less than 64ns.
001b = 64ns – 128ns.
010b = 128ns – 256ns.
011b = 256ns - 512ns.
100b = 512ns - 1 s.
101b = 1 s – 2 s.
110b = 2 s – 4 s.
111b = Reserved.
Depending on usage of common clock or separate clock the value of this field is
loaded from PCIe Init Config 1 iNVM word, 0x18 (See Section 6.2.12).

17:15 RO

Usage depended.
See default values in
Section 6.2.9.

L1 Exit Latency
Indicates the exit latency from L1 to L0 state.
000b = Less than 1 s.
001b = 1 s - 2 s.
010b = 2 s - 4 s.
011b = 4 s - 8 s.
100b = 8 s - 16 s.
101b = 16 s - 32 s.
110b = 32 s - 64 s.
111b = L1 transition not supported.
Depending on usage of common clock or separate clock the value of this field is
loaded from PCIe L1 Exit latencies iNVM word, 0x14 (See Section 6.2.9).

18 RO 0b
Clock Power Management Status
Not supported in the I211. RO as zero.

19 RO 0b
Surprise Down Error Reporting Capable Status
Not supported in the I211. RO as zero

20 RO 0b
Data Link Layer Link Active Reporting Capable Status
Not supported in the I211. RO as zero.

Ethernet Controller I211 —PCIe Programming Interface

442

9.4.5.8 Link Control Register (0xB0; RO)

This register controls PCIe link specific parameters.

21 RO 0b
Link Bandwidth Notification Capability Status
Not supported in the I211. RO as zero.

22 RO 1b
ASPM Optionality Compliance
Software is permitted to use the value of this bit to help determine whether to
enable ASPM or whether to run ASPM compliance tests.

23 RO 00b Reserved

31:24 HwInit 0x0
Port Number
The PCIe port number for the given PCIe link. Field is set in the link training phase.

Bits R/W Default Description

1:0 RW 00b

Active State Power Management (ASPM) Control – This field controls the level of Active
State Power Management (ASPM) supported on the I211 PCI Express Link.
Defined encodings are:
00b = PM disabled.
01b = L0s entry supported.
10b = L1 Entry Enabled.
11b = L0s and L1 supported.
Note: “L0s Entry Enabled” enables the Transmitter to enter L0s is supported. If L0s is

supported, the Receiver must be capable of entering L0s even when the
Transmitter is disabled from entering L0s (00b or 10b).
According to PCIe spec, this field shall not be reset on FLR.

2 RO 0b Reserved

3 RW 0b

Read Completion Boundary
Read Completion Boundary (RCB) – Optionally Set by configuration software to indicate the
RCB value of the Root Port Upstream from the Endpoint or Bridge.
Defined encodings are:
0b = 64 byte
1b = 128 byte
Configuration software must only Set this bit if the Root Port Upstream from the Endpoint
or Bridge reports an RCB value of 128 bytes (a value of 1b in the Read Completion
Boundary bit).

4 RO 0b
Link Disable
Not applicable for endpoint devices; hardwired to 0b.

5 RO 0b
Retrain Clock
Not applicable for endpoint devices; hardwired to 0b.

6 RW 0b

Common Clock Configuration
When this bit is set, it indicates that the I211 and the component at the other end of the
link are operating with a common reference clock. A value of 0b indicates that both operate
with an asynchronous clock. This parameter affects the L0s exit latencies.
Note: According to PCIe spec, this field shall not be reset on FLR.

7 RW 0b

Extended Synch
When this bit is set, it forces an extended Tx of a FTS ordered set in FTS and an extra TS1
at exit from L0s prior to enter L0.
Note: According to PCIe spec, this field shall not be reset on FLR.

8 RO 0b
Enable Clock Power Management
Not supported in the I211. RO as zero.

9 RO 0b
Hardware Autonomous Width Disable
Not supported in the I211. RO as zero.

Bits Rd/Wr Default Description

PCIe Programming Interface—Ethernet Controller I211

443

9.4.5.9 Link Status (0xB2; RO)

This register provides information about PCIe link specific parameters. This is a read only register.

9.4.5.10 Reserved (0xB4-0xC0; RO)

Unimplemented reserved registers not relevant to PCIe endpoint.

The following registers are supported only if the capability version is two and above.

9.4.5.11 Device Capabilities 2 (0xC4; RO)

This register identifies PCIe device specific capabilities.

10 RO 0b
Link Bandwidth Management Interrupt Enable
Not supported in the I211. RO as zero.

11 RO 0b
Link Autonomous Bandwidth Interrupt Enable
Not supported in the I211. RO as zero.

15:12 RO 0000b Reserved

Bits R/W Default Description

3:0 RO 0001b

Link Speed
This field indicates the negotiated link speed of the given PCIe link.
Defined encodings are:
0001b = 2.5 Gb/s PCIe link.
0010b = Not supported (5 Gb/s PCIe link).
All other encodings are reserved.

9:4 RO 000001b

Negotiated Link Width
Indicates the negotiated width of the link.
Relevant encoding for the I211 are:
000001b = x1
000010b = Not supported (x2)
000100b = Not supported (x4)

10 RO 0b Reserved (was: Link Training Error)

11 RO 0b
Link Training
Indicates that link training is in progress.

12 HwInit 1b

Slot Clock Configuration
When set, indicates that the I211 uses the physical reference clock that the platform provides
on the connector. This bit must be cleared if the I211 uses an independent clock. The Slot
Clock Configuration bit is loaded from the Slot_Clock_Cfg bit in PCIe Init Configuration 3 Word
(Word 0x1A) iNVM word.

13 RO 0b
Data Link Layer Link Active
Not supported in the I211. RO as zero.

14 RO 0b
Link Bandwidth Management Status
Not supported in the I211. RO as zero.

15 RO 0b Reserved

Bits R/W Default Description

Ethernet Controller I211 —PCIe Programming Interface

444

.

9.4.5.12 Device Control 2 (0xC8; RW)

This register controls PCIe specific parameters.

Bit
Location R/W Default Description

3:0 RO 1111b

Completion Timeout Ranges Supported
This field indicates the I211 support for the optional completion timeout programmability
mechanism. This mechanism enables system software to modify the completion timeout value.
Description of the mechanism can be found in Section 3.1.3.2.
Four time value ranges are defined:
• Range A = 50 s to 10 ms
• Range B = 10 ms to 250 ms
• Range C = 250 ms to 4 s
• Range D = 4 s to 64 s

A value of 1111b indicates the I211 supports ranges A, B, C, & D.

4 RO 1b
Completion Timeout Disable Supported
A value of 1b indicates support for the completion timeout disable mechanism.

5 RO 0b
ARI Forwarding Supported
Applicable only to switch downstream ports and root ports; must be set to 0b for other function
types.

6 RO 0b AtomicOp Routing Supported - not supported in the I211.

7 RO 0b 32-bit AtomicOp Completer Supported – not supported in the I211.

8 RO 0b 64-bit AtomicOp Completer Supported – not supported in the I211.

9 RO 0b 128-bit CAS Completer Supported – not supported in the I211.

10 RO 0b No RO-enabled PR-PR Passing – not supported in the I211.

11 RO 1b1

1. Value loaded from iNVM word.

Reserved

13:12 RO 00b TPH Completer supported - the I211 does not use the hints as a completer

17:14 RO 0x0 Reserved

19:18 RO 00b1 Reserved

31:20 RO 0x0 Reserved

PCIe Programming Interface—Ethernet Controller I211

445

Bit
location R/W Default Description

3:0 RW 0000b

Completion Timeout Value1

In devices that support completion timeout programmability, this field enables system software to
modify the completion timeout value.
Encoding:
• 0000b = Allowable default range: 50 s to 50 ms. It is strongly recommended that the

completion timeout mechanism not expire in less than 10 ms. Actual completion timeout range
supported in the I211 is 16 ms to 32 ms.

Values available if Range A (50 s to 10 ms) programmability range is supported:
• 0001b = Allowable range is 50 s to 100 s. Actual completion timeout range supported in the

I211 is 50 s to 100 s.
• 0010b = Allowable range is 1 ms to 10 ms. Actual completion timeout range supported in the

I211 is 1 ms to 2 ms.
Values available if Range B (10 ms to 250 ms) programmability range is supported:
• 0101b = Allowable range is 16 ms to 55 ms. Actual completion timeout range supported in the

I211 is 16 ms to 32 ms.
• 0110b = Allowable range is 65 ms to 210 ms. Actual completion timeout range supported in

the I211 is 65 ms to 130 ms.
Values available if Range C (250 ms to 4 s) programmability range is supported:
• 1001b = Allowable range is 260 ms to 900 ms. Actual completion timeout range supported in

the I211 is 260 ms to 520 ms.
• 1010b = Allowable range is 1 s to 3.5 s. Actual completion timeout range supported in the I211

is 1 s to 2 s.
Values available if the Range D (4 s to 64 s) programmability range is supported:
• 1101b = Allowable range is 4 s to 13 s. Actual completion timeout range supported in the I211

is 4 s to 8 s.
• 1110b = Allowable range is 17 s to 64 s. Actual completion timeout range supported in the

I211 is 17s to 34 s.
Values not defined are reserved.
Software is permitted to change the value in this field at any time. For requests already pending
when the completion timeout value is changed, hardware is permitted to use either the new or the
old value for the outstanding requests and is permitted to base the start time for each request
either when this value was changed or when each request was issued.
The default value for this field is 0000b.

4 RW 0b

Completion Timeout Disable
When set to 1b, this bit disables the completion timeout mechanism.
Software is permitted to set or clear this bit at any time. When set, the completion timeout
detection mechanism is disabled. If there are outstanding requests when the bit is cleared, it is
permitted but not required for hardware to apply the completion timeout mechanism to the
outstanding requests. If this is done, it is permitted to base the start time for each request on
either the time this bit was cleared or the time each request was issued.
The default value for this bit is 0b.

5 RO 0b
Alternative RID Interpretation (ARI) Forwarding Enable
Applicable only to switch devices.

6 RO 0b AtomicOp Requester Enable - not supported in the I211.

7 RO 0b AtomicOp Egress Blocking - not supported in the I211.

8 RW 0b IDO Request Enable - If this bit is Set, the Function is permitted to set the ID-Based Ordering (IDO)
bit (Attribute[2]) of Requests it initiates

9 RW 0b IDO Completion Enable - If this bit is Set, the Function is permitted to set the ID-Based Ordering
(IDO) bit (Attribute[2]) of Completion it initiates

10 RW 0b • Reserved

12:11 RO 0x0 Reserved.

14:13 RW/
RO 00b Reserved.

15 RO 0 Reserved.

Ethernet Controller I211 —PCIe Programming Interface

446

9.4.5.13 Link Control 2 (0xD0; RW)

1. The completion timeout value must be programmed correctly in PCIe configuration space (in Device Control 2 Register); the value
must be set above the expected maximum latency for completions in the system in which the I211 is installed. This ensures that
the I211 receives the completions for the requests it sends out, avoiding a completion timeout scenario. It is expected that the
system BIOS sets this value appropriately for the system.

Bits R/W Default Description

3:0 RWS 0001b

Target Link Speed.
This field is used to set the target compliance mode speed when software is using the Enter
Compliance bit to force a link into compliance mode.
Defined encodings are:
0001b = 2.5 Gb/s Target Link Speed.
0010b = Not supported (5 Gb/s Target Link Speed).
All other encodings are reserved.
If a value is written to this field that does not correspond to a speed included in the Max
Link Speed field, the result is undefined.
The default value of this field is the highest link speed supported by the I211 (as reported
in the Max Link Speed field of the Link Capabilities register).

4 RWS 0b

Enter Compliance.
Software is permitted to force a link to enter compliance mode at the speed indicated in the
Target Link Speed field by setting this bit to 1b in both components on a link and then
initiating a hot reset on the link.
The default value of this field following a fundamental reset is 0b.

5 RO 0b

Hardware Autonomous Speed Disable.
When set to 1b, this bit disables hardware from changing the link speed for reasons other
than attempting to correct unreliable link operation by reducing link speed.
Bit is Hard wired to 0b.

6 RO 0b
Selectable De-emphasis
This bit is not applicable and reserved for Endpoints.

9:7 RWS 000b

Transmit Margin
This field controls the value of the non de emphasized voltage level at the Transmitter pins.
Encodings:
000b = Normal operating range
001b = 800-1200 mV for full swing
010b = (n-1) - Values must be monotonic with a non-zero slope. The value of n must be
greater than 3 and less than 7. At least two of these must be below the normal operating
range of n: 200-400 mV for full-swing
n = 111b reserved.
Note: No support to half-swing (low-swing).

10 RWS 0b
Enter Modified Compliance
When this bit is set to 1b, the device transmits modified compliance pattern if the LTSSM
enters Polling.Compliance state.

11 RWS 0b
Compliance SOS
When set to 1b, the LTSSM is required to send SOS periodically in between the (modified)
compliance patterns.

12 RWS 0b

Compliance De-emphasis
This bit sets the de-emphasis level in Polling.Compliance state if the entry occurred due to
the Enter Compliance bit being 1b.
Encodings:
1b -3.5 dB
0b -6 dB
When the Link is operating at 2.5 GT/s, the setting of this bit has no effect.

15:13 RO 0x0 Reserved

PCIe Programming Interface—Ethernet Controller I211

447

9.4.5.14 Link Status 2 (0xD2; RW)

9.5 PCIe Extended Configuration Space
PCIe extended configuration space is located in a flat memory-mapped address space. PCIe extends
the configuration space beyond the 256 bytes available for PCI to 4096 bytes. The I211 decodes an
additional 4-bits (bits 27:24) to provide the additional configuration space as shown in Table 9-9. PCIe
reserves the remaining 4 bits (bits 31:28) for future expansion of the configuration space beyond 4096
bytes.

The configuration address for a PCIe device is computed using a PCI-compatible bus, device, and
function numbers as follows.

PCIe extended configuration space is allocated using a linked list of optional or required PCIe extended
capabilities following a format resembling PCI capability structures. The first PCIe extended capability is
located at offset 0x100 in the device configuration space. The first Dword of the capability structure
identifies the capability/version and points to the next capability.

The I211 supports the following PCIe extended capabilities.

Bits R/W Default Description

0 RO 0b

Current De-emphasis Level – When the Link is operating at 5 GT/s speed, this bit reflects
the level of de-emphasis. it is undefined when the Link is operating at 2.5 GT/s speed
Encodings:
1b -3.5 dB
0b -6 dB

15:1 RO 0x0 Reserved

Table 9-9. PCIe Extended Configuration Space

31 28 27 20 19 15 14 12 11 2 1 0

0000b Bus # Device # Fun # Register Address (offset) 00b

Table 9-10. PCIe Extended Capability Structure

Capability Offset Next Header1

1. Some of the capabilities might be skipped if disabled via iNVM.

Advanced Error Reporting 0x100 0x140

Serial Number 0x140 0x1A0

TLP processing hints 0x1A0 0x1C0

Latency Tolerance Requirement Reporting 0x1C0 0x000

Ethernet Controller I211 —PCIe Programming Interface

448

9.5.1 Advanced Error Reporting (AER) Capability

The PCIe AER capability is an optional extended capability to support advanced error reporting. The
following table lists the PCIe AER extended capability structure for PCIe devices.

9.5.1.1 PCIe CAP ID (0x100; RO)

9.5.1.2 Uncorrectable Error Status (0x104; R/W1CS)

The Uncorrectable Error Status register reports error status of individual uncorrectable error sources on
a PCIe device. An individual error status bit that is set to 1b indicates that a particular error occurred;
software can clear an error status by writing a 1b to the respective bit.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x100 Next Capability Ptr.
(0x140)1

1. This value might change if the SEID capability is disabled. In this case the next header is the next enabled feature.

Version (0x2) AER Capability ID (0x0001)

0x104 Uncorrectable Error Status

0x108 Uncorrectable Error Mask

0x10C Uncorrectable Error Severity

0x110 Correctable Error Status

0x114 Correctable Error Mask

0x118 Advanced Error Capabilities and Control Register

0x11C... 0x128 Header Log

Bit
Location Attribute Default

Value Description

15:0 RO 0x0001
Extended Capability ID
PCIe extended capability ID indicating AER capability.

19:16 RO 0x21

1. Loaded from iNVM (See Section 6.2.17).

AER Capability Version
PCIe AER extended capability version number.

31:20 RO
0x140

Next Capability Pointer
Next PCIe extended capability pointer. A value of 0x140 points to the serial ID capability.

Bit
Location Attribute Default

Value Description

3:0 RO 0x0 Reserved

4 R/W1CS 0b Data Link Protocol Error Status

5 RO 0b
Surprise Down Error Status (Optional)
Not supported in the I211.

11:6 RO 0x0 Reserved

12 R/W1CS 0b Poisoned TLP Status

13 R/W1CS 0b Flow Control Protocol Error Status

14 R/W1CS 0b Completion Timeout Status

PCIe Programming Interface—Ethernet Controller I211

449

9.5.1.3 Uncorrectable Error Mask (0x108; RWS)

The Uncorrectable Error Mask register controls reporting of individual uncorrectable errors by device to
the host bridge via a PCIe error message. A masked error (respective bit set in mask register) is not
reported to the host bridge by an individual device. There is a mask bit per bit in the Uncorrectable
Error Status register.

15 R/W1CS 0b Completer Abort Status

16 R/W1CS 0b Unexpected Completion Status

17 R/W1CS 0b Receiver Overflow Status

18 R/W1CS 0b Malformed TLP Status

19 R/W1CS 0b ECRC Error Status

20 R/W1CS 0b Unsupported Request Error Status

21 RO 0b
ACS Violation Status
Not supported in the I211.

22 RO 0b
Uncorrectable Internal Error Status (Optional)
Not supported in the I211.

23 RO 0b
MC Blocked TLP Status (Optional)
Not supported in the I211.

24 RO 0b
AtomicOps Egress Blocked Status (Optional)
Not supported in the I211.

25 RO 0b
TLP Prefix Blocked Error Status (Optional)
Not supported in the I211.

31:26 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

3:0 RO 0x0 Reserved

4 RWS 0b Data Link Protocol Error Mask

5 RO 0b
Surprise Down Error Mask (Optional)
Not supported in the I211.

11:6 RO 0x0 Reserved

12 RWS 0b Poisoned TLP Mask

13 RWS 0b Flow Control Protocol Error Mask

14 RWS 0b Completion Timeout Mask

15 RWS 0b Completer Abort Mask

16 RWS 0b Unexpected Completion Mask

17 RWS 0b Receiver Overflow Mask

18 RWS 0b Malformed TLP Mask

19 RWS 0b ECRC Error Mask

20 RWS 0b Unsupported Request Error Mask

21 RO 0b
ACS Violation Mask
Not supported in the I211.

22 RO 0b
Uncorrectable Internal Error Mask (Optional)
Not supported in the I211.

Bit
Location Attribute Default

Value Description

Ethernet Controller I211 —PCIe Programming Interface

450

9.5.1.4 Uncorrectable Error Severity (0x10C; RWS)

The Uncorrectable Error Severity register controls whether an individual uncorrectable error is reported
as a fatal error. An uncorrectable error is reported as fatal when the corresponding error bit in the
severity register is set. If the bit is cleared, the corresponding error is considered non-fatal.

9.5.1.5 Correctable Error Status (0x110; R/W1CS)

The Correctable Error Status register reports error status of individual correctable error sources on a
PCIe device. When an individual error status bit is set to 1b, it indicates that a particular error occurred;
software can clear an error status by writing a 1b to the respective bit.

23 RO 0b
MC Blocked TLP Mask (Optional)
Not supported in the I211.

24 RO 0b
AtomicOps Egress Blocked Mask (Optional)
Not supported in the I211.

25 RO 0b
TLP Prefix Blocked Error Mask (Optional)
Not supported in the I211.

31:26 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

3:0 RO 0001b Reserved

4 RWS 1b Data Link Protocol Error Severity

5 RO 1b
Surprise Down Error Severity (Optional)
Not supported in the I211.

11:6 RO 0x0 Reserved

12 RWS 0b Poisoned TLP Severity

13 RWS 1b Flow Control Protocol Error Severity

14 RWS 0b Completion Timeout Severity

15 RWS 0b Completer Abort Severity

16 RWS 0b Unexpected Completion Severity

17 RWS 1b Receiver Overflow Severity

18 RWS 1b Malformed TLP Severity

19 RWS 0b ECRC Error Severity

20 RWS 0b Unsupported Request Error Severity

21 RO 0b
ACS Violation Severity
Not supported in the I211.

22 RO 1b
Uncorrectable Internal Error Severity (Optional)
Not supported in the I211.

23 RO 0b
MC Blocked TLP Severity (Optional)
Not supported in the I211.

24 RO 0b
AtomicOps Egress Blocked Severity (Optional)
Not supported in the I211.

25 RO 0b
TLP Prefix Blocked Error Severity (Optional)
Not supported in the I211.

31:26 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

PCIe Programming Interface—Ethernet Controller I211

451

9.5.1.6 Correctable Error Mask (0x114; RWS)

The Correctable Error Mask register controls reporting of individual correctable errors by device to the
host bridge via a PCIe error message. A masked error (respective bit set in mask register) is not
reported to the host bridge by an individual device. There is a mask bit per bit in the Correctable Error
Status register.

Bit
Location Attribute Default

Value Description

0 R/W1CS 0b Receiver Error Status

5:1 RO 0x0 Reserved

6 R/W1CS 0b Bad TLP Status

7 R/W1CS 0b Bad DLLP Status

8 R/W1CS 0b REPLAY_NUM Rollover Status

11:9 RO 000 Reserved

12 R/W1CS 0b Replay Timer Timeout Status

13 R/W1CS 0b Advisory Non-Fatal Error Status

14 RO 0b
Corrected Internal Error Status (Optional)
Not supported in the I211.

15 RO 0b
Header Log Overflow Status (Optional)
Not supported in the I211.

31:16 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

0 RWS 0b Receiver Error Mask

5:1 RO 0x0 Reserved

6 RWS 0b Bad TLP Mask

7 RWS 0b Bad DLLP Mask

8 RWS 0b REPLAY_NUM Rollover Mask

11:9 RO 000b Reserved

12 RWS 0b Replay Timer Timeout Mask

13 RWS 1b
Advisory Non-Fatal Error Mask.
This bit is Set by default to enable compatibility with software that
does not comprehend Role-Based Error Reporting.

14 RO 0b
Corrected Internal Error Mask (Optional)
Not supported in the I211.

15 RO 0b
Header Log Overflow Mask (Optional)
Not supported in the I211.

31:16 RO 0x0 Reserved

Ethernet Controller I211 —PCIe Programming Interface

452

9.5.1.7 Advanced Error Capabilities and Control Register (0x118; RWS)

9.5.1.8 Header Log (0x11C:0x128; RO)

The Header Log register captures the header for the transaction that generated an error. This register
is 16 bytes in length.

9.5.2 Serial Number

The PCIe device serial number capability is an optional extended capability that can be implemented by
any PCIe device. The device serial number is a read-only 64-bit value that is unique for a given PCIe
device.

Note: The I211 does not support this capability in an iNVM configuration.

Bit
Location Attribute Default

Value Description

4:0 ROS 0x0
First Error Pointer
The First Error Pointer is a field that identifies the bit position of the first error
reported in the Uncorrectable Error Status register.

5 RO 1b
ECRC Generation Capable
This bit indicates that the I211 is capable of generating ECRC.
This bit is loaded from iNVM PCIe Control 2 word (Word 0x28).

6 RWS 0b
ECRC Generation Enable
When set, enables ECRC generation.

7 RO 1b
ECRC Check Capable
If Set, this bit indicates that the Function is capable of checking ECRC.
This bit is loaded from iNVM PCIe Control 2 word (Word 0x28).

8 RWS 0b
ECRC Check Enable
When set, enables ECRC checking.

9 RO 0b
Multiple Header Recording Capable – If Set, this bit indicates that the Function is capable of
recording more than one error header.

10 RO 0b This bit enables the Function to record more than one error header.

11 RO 0b

TLP Prefix Log Present
If Set and the First Error Pointer is valid, indicates that the TLP Prefix Log register contains
valid information. If Clear or if First Error Pointer is invalid, the TLP Prefix Log register is
undefined.
Default value of this bit is 0b. This bit is RsvdP if the End-End TLP Prefix Supported bit is Clear.

31:12 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

127:0 ROS 0b Header of the packet in error (TLP or DLLP).

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x140 Next Capability Ptr.
0x1A01 Version (0x1) Serial ID Capability ID (0x0003)

0x144 Serial Number Register (Lower Dword)

0x148 Serial Number Register (Upper Dword)

PCIe Programming Interface—Ethernet Controller I211

453

9.5.2.1 Device Serial Number Enhanced Capability Header (0x140; RO)

The following table lists the allocation of register fields in the device serial number enhanced capability
header. It also lists the respective bit definitions. The extended capability ID for the device serial
number capability is 0x0003.

9.5.2.2 Serial Number Register (0x144:0x148; RO)

The Serial Number register is a 64-bit field that contains the IEEE defined 64-bit extended unique
identifier (EUI-64™). Table 9-11 lists the allocation of register fields in the Serial Number register.
Table 9-11 also lists the respective bit definitions.

Serial number definition in the I211:

Serial number uses the MAC address according to the following definition:

1. This value might change if the TPH capability is disabled. In this case the next header is the next enabled feature.

Bit(s)
Location

Default
value Attributes Description

15:0 0x0003 RO

PCIe Extended Capability ID
This field is a PCI-SIG defined ID number that indicates the nature and format of the
extended capability.
The extended capability ID for the device serial number capability is 0x0003.

19:16 0x1 RO
Capability Version
This field is a PCI-SIG defined version number that indicates the version of the current
capability structure.

31:20 0x1A0 RO
Next Capability Offset
This field contains the offset to the next PCIe capability structure or 0x000 if no other items
exist in the linked list of capabilities.

Table 9-11. Serial Number Register

31:0

Serial Number Register (Lower Dword)

Serial Number Register (Upper word)

63:32

Table 9-12. SN Definition

Bit(s)
Location Attributes Description

63:0 RO

PCIe Device Serial Number
This field contains the IEEE defined 64-bit extended unique identifier (EUI-64™). This identifier
includes a 24-bit company ID value assigned by IEEE registration authority and a 40-bit extension
identifier assigned by the manufacturer.

Field Extension identifier Company ID

Ethernet Controller I211 —PCIe Programming Interface

454

The serial number can be constructed from the 48-bit MAC address in the following form:

The MAC label in this case is 0xFFFF.

For example, assume that the company ID is (Intel) 00-A0-C9 and the extension identifier is 23-45-67.
In this case, the 64-bit serial number is:

The MAC address is the MAC address as loaded from the iNVM into the RAL and RAH registers.

The translation from iNVM words 0 to 2 to the serial number is as follows:

• Serial number ADDR+0 = iNVM byte 5
• Serial number ADDR+1 = iNVM byte 4
• Serial number ADDR+2 = iNVM byte 3
• Serial number ADDR+3 and 4 = 0xFF 0xFF
• Serial number ADDR+5 = iNVM byte 2
• Serial number ADDR+6 = iNVM byte 1
• Serial number ADDR +7 = iNVM byte 0iNVM

The official document defining EUI-64 is: http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

9.5.3 TLP Processing Hint Requester (TPH) Capability

The PCIe TPH Requester capability is an optional extended capability to support TLP Processing Hints.
The following table lists the PCIe TPH extended capability structure for PCIe devices.

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

Most significant byte Least significant byte

Most significant bit Least significant bit

Field Extension identifier MAC Label Company ID

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

Most significant bytes Least significant byte

Most significant bit Least significant bit

Field Extension identifier MAC Label Company ID

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

67 45 23 FF FF C9 A0 00

Most significant byte Least significant byte

Most significant bit Least significant bit

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

PCIe Programming Interface—Ethernet Controller I211

455

9.5.3.1 TPH CAP ID (0x1A0; RO)

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x1A0 Next Capability Ptr.
(0x1C0 Version (0x1) TPH Capability ID (0x17)

0x1A4 TPH Requester Capability Register

0x1A8 TPH Requester Control Register

0x1AC-0x1B8 TPH ST Table

Bit
Location Attribute Default

Value Description

15:0 RO 0x17
Extended Capability ID
PCIe extended capability ID indicating TPH capability.

19:16 RO 0x1
Version Number
PCIe TPH extended capability version number.

31:20 RO 0x1C0
Next Capability Pointer
This field contains the offset to the next PCIe capability structure.

Ethernet Controller I211 —PCIe Programming Interface

456

9.5.3.2 TPH Requester Capabilities (0x1A4; RO)

9.5.3.3 TPH Requester Control (0x1A8; R/W)

Bit
Location Attribute Default

Value Description

0 RO 1 No ST Mode Supported: When set indicates the Function is capable of generating Requests
without using ST.

1 RO 0 Interrupt Vector Mode Supported: Cleared to indicate that the I211 does not support Interrupt
Vector Mode of operation.

2 RO 1 Device Specific Mode: Set to indicate that the I211 supports Device Specific Mode of operation.

7:3 RO 0 Reserved

8 RO 0 Extended TPH Requester Supported – Cleared to indicate that the function is not capable of
generating requests with Extended TPH TLP Prefix.

10:9 RO 01b

ST Table Location – Value indicates if and where the ST Table is located. Defined Encodings
are:
00b: ST Table is not present.
01b: ST Table is located in the TPH Requester Capability structure.
10b: ST Table is located in the MSI-X Table structure.
11b: Reserved
Default value of 01b indicates that function supports ST table that’s located in the TPH
Requester Capability structure.

15:11 RO 0x0 Reserved

26:16 RO 0x7
ST_Table Size – System software reads this field to determine the ST_Table_Size N, which is
encoded as N-1.
The I211 supports a table with 8 entries.

31:27 RO 0x0 Reserved

Bit
Location Attribute Default

Value Description

2:0 RW 0x0

ST Mode Select – Indicates the ST mode of operation
selected. The ST mode encodings are as defined below
000b – No Table Mode
001b – Interrupt Vector Mode (not supported by the I211)
010b – Device Specific Mode
0thers – reserved for future use
The default value of 000 indicates No Table mode of operation.

7:3 RO 0x0 Reserved

9:8 RW 0x0

TPH Requester Enable:
Defined Encodings are:
00b: The I211 is not permitted to issue transactions with TPH or Extended TPH as Requester
01b: The I211 is permitted to issue transactions with TPH as Requester and is not permitted to
issue transactions with Extended TPH as Requester
10b: Reserved
11b: The I211 is permitted to issue transactions with TPH and Extended TPH as Requester (the
I211 does not issue transactions with Extended TPH).

31:10 RO 0x0 Reserved

PCIe Programming Interface—Ethernet Controller I211

457

9.5.3.4 TPH Steering Table (0x1AC - 0x1B8; R/W)

Bit
Location Attribute Default

Value Description

7:0 RW 0x0 Steering Table Lower Entry 2*n (n = 0...3). A value of zero indicates the tag is not valid

15:8 RO 0x0 Steering Table Upper Entry 2*n (n = 0...3) - RO zero in the I211, as extended tags are not
supported.

23:16 RW 0x0 Steering Table Entry 2*n + 1 (n = 0...3) - A value of zero indicates the tag is not valid

31:24 RO 0x0 Steering Table Upper Entry 2*n + 1 (n = 0...3) - RO zero in the I211, as extended tags are not
supported.

Ethernet Controller I211 —PCIe Programming Interface

458

Note: This page intentionally left blank.

Electrical/Mechanical Specification—Ethernet Controller I211

459

10.0 Electrical/Mechanical Specification

10.1 Introduction
These specifications are subject to change without notice.

This chapter describes the I211 DC and AC (timing) electrical characteristics. This includes absolute
maximum rating, recommended operating conditions, power sequencing requirements, DC and AC
timing specifications. The DC and AC characteristics include generic digital 3.3V I/O specification as well
as other specifications supported by the I211.

10.2 Operating Conditions
Table 10-1. Absolute Maximum Ratings

Note: Ratings in these tables are those beyond which permanent device damage is likely to occur.
These values should not be used as the limits for normal device operation. Exposure to
absolute maximum rating conditions for extended periods might affect device reliability.

Symbol Parameter
I211 (Commercial Temperature SKU)

Units

Min Max

Tcase Case Temperature Under Bias 0 85 C

Tstorage Storage Temperature Range -40 125 C

Vi/Vo 3.3V Compatible I/Os Voltage Vss–0.5 4.0 V

VCC3P3 3.3V DC Supply Voltage Vss – 0.5 4.0 V

Ethernet Controller I211 —Electrical/Mechanical Specification

460

10.2.1 Recommended Operating Conditions

Symbol Parameter

I211 (Commercial
Temperature SKU) Units Notes

Min Max

Ta Operating Temperature Range (Ambient; 0 CFS
airflow) 0 70 C 1, 2, 3

1. For normal device operation, adhere to the limits in this table. Sustained operations of a device at conditions exceeding these values,
even if they are within the absolute maximum rating limits, may result in permanent device damage or impaired device reliability.
Device functionality to stated DC and AC limits is not guaranteed if conditions exceed recommended operating conditions.

2. Recommended operation conditions require accuracy of power supply as defined in Section 10.3.1.
3. With external heat sink. Airflow required for operation in 85 °C ambient temperature.

Electrical/Mechanical Specification—Ethernet Controller I211

461

10.3 Power Delivery

10.3.1 Power Supply Specification

VCC3P3 (3.3V) Parameters

Parameter Description Min Max Units

Rise Time Time from 10% to 90% mark 0.1 50 mS

Monotonicity Voltage dip allowed in ramp N/A 0 mV

Slope

Ramp rate at any given time between 10%
and 90%
Min: 0.8*V(min)/Rise time (max)
Max: 0.8*V(max)/Rise time (min)

24 2880 V/S

Operational Range Voltage range for normal operating conditions 2.97 3.465 V

Ripple1 Maximum voltage ripple (peak to peak) N/A 70 mV

Overshoot Maximum overshoot allowed N/A 100 mV

Overshoot Settling Time
Maximum overshoot allowed duration.
(At that time delta voltage should be lower
than 5mv from steady state voltage)

N/A 0.05 mS

Decoupling Capacitance Capacitance range 15 μF

Capacitance ESR Equivalent series resistance of output
capacitance N/A 50 M Ω

VCC1P5 (1.5V) Parameters

Parameter Description Min Max Units

Rise Time Time from 10% to 90% mark 0.1 85 mS

Monotonicity Voltage dip allowed in ramp N/A 0 mV

Slope

Ramp rate at any given time between 10%
and 90%
Min: 0.8*V(min)/Rise time (max)
Max: 0.8*V(max)/Rise time (min)

14 1440 V/S

Operational Range Voltage range for normal operating conditions 1.425 1.575 V

Ripple1 Maximum voltage ripple (peak to peak) N/A 40 mV

Overshoot Maximum overshoot allowed N/A 100 mV

Overshoot Settling Time
Maximum overshoot allowed duration.
(At that time delta voltage should be lower
than 5mv from steady state voltage)

N/A 0.1 mS

Decoupling Capacitance Capacitance range 15 μF

Capacitance ESR Equivalent series resistance of output
capacitance N/A 50 mΩ

VCC0P9 (0.9V) Parameters

Parameter Description Min Max Units

Rise Time Time from 10% to 90% mark 0.1 80 mS

Monotonicity Voltage dip allowed in ramp N/A 0 mV

Slope

Ramp rate at any given time between 10%
and 90%
Min: 0.8*V(min)/Rise time (max)
Max: 0.8*V(max)/Rise time (min)

7.6 800 V/S

Operational Range Voltage range for normal operating conditions 0.855 0.945 V

Ripple1 Maximum voltage ripple (peak to peak) N/A 40 mV

Overshoot Maximum overshoot allowed N/A 100 mV

Ethernet Controller I211 —Electrical/Mechanical Specification

462

10.3.1.1 Power On/Off Sequence

On power-on, after 3.3V reaches 90% of its final value, all voltage rails (1.5V and 0.9V) are allowed 20
ms maximum to reach their final operating values. However, to keep leakage current at a minimum, it
is recommended to turn on power supplies almost simultaneously (with delay between supplies at most
a few milliseconds).

For power-down, it is recommended to turn off all power rails at the same time and let power supply
voltage decay.

Parameter Description Min Max Units

Overshoot Duration
Maximum overshoot allowed duration.
(At that time delta voltage should be lower
than 5mv from steady state voltage)

0.0 0.05 mS

Decoupling Capacitance Capacitance range 15 μF

Capacitance ESR Equivalent series resistance of output
capacitance 50 M Ω

1. Power supply voltage with ripple should not be below minimum power supply operating range.

Table 10-2. Power Sequencing

Symbol Parameter Min Max Units

T3_09
VCC3P3 (3.3V) power supply stable to VCC0P9 (0.9V) power
supply stable 13 20 ms

T3_15
VCC3P3 (3.3V) power supply stable to VCC1P5 (1.5V) power
supply stable 13 20 ms

Tm-per 3.3V power supply to PE_RST_N de-assertion1

1. If external LAN_PWR_GOOD is used, this time should be kept between LAN_PWR_GOOD assertion and PE_RST_N de-assertion.
2. Parameter relevant only if external LAN_PWR_GOOD used.
3. With external power supplies.

100 ms

Tlpg Power Supplies Stable to LAN_PWR_GOOD assertion 0 ms

Tlpg-per LAN_PWR_GOOD assertion to PE_RST_N de-assertion1 100 ms

Tper-m PE_RST_N off before 3.3V power supply down 0 ms

Tlpgw LAN_PWR_GOOD de-assertion time2 1 ms

Electrical/Mechanical Specification—Ethernet Controller I211

463

10.3.1.2 Power-On Reset Thresholds

The I211 internal power-on reset circuitry initiates a full chip reset when voltage levels of power
supplies reach certain thresholds at power-up.

Note: The POR circuit only generates a reset during the power up but does not monitor the power
levels after power is stable. Therefore, it does not generate any reset in power-down or when
power levels decrease.

10.4 Ball Summary
See Chapter 2.0 for balls description and ball out map.

Figure 10-1. Power and Reset Sequencing

Table 10-3. Power-on Reset Thresholds

Symbol Parameter
Specifications

Units
Min Typ Max

VTh3.3 Threshold for 3.3 V power supply in power-up 0.96 1.2 1.44 V

VTh0.9 Threshold for 0.9 V power supply in power-up 0.52 0.66 0.8 V

VTh1.5 Threshold for 1.5 V power supply in power-up 0.88 1.1 1.32 V

VCC1p5 (1.5V)

INTERNAL_POWER
_ON_RESET

VCCP (3.3V)

Aux power stable

Main power stable

Tlpg

Tlpg-per

Tm-per

Main Power stable

Tper-m

VCC/VCC0p9(0.9V)
T3_15

PE_RST_N

T3_09

Tlpgw

Typ 6.5 ms; Max 7.5 ms

Ethernet Controller I211 —Electrical/Mechanical Specification

464

10.5 Current Consumption

Condition Speed (Mb/s) Condition

Total
Power

Internal
SVR (mW)

0.9V
Current-
External

(mA)

1.5V
Current-
External

(mA)

3.3V
Current-
External

(mA)

Total Power
Ext. Regulator

(mW)

D0a - active link

10 Typ 381 48.3 16.3 85.1 348

100 Typ 373 54.4 24.9 75.5 334

1000 copper Typ 612 99.7 52.6 111.2 535

1000 copper Max-
Commercial 740 1601

1. Estimated values.

541 1221 6261

D0a - idle link
EEE disabled

No link Typ 185 37.1 11.3 33.3 160

10 Typ 242 38.2 16.4 44.6 206

100 Typ 258 43.1 24.9 54.5 227

1000 copper Typ 487 80.6 52.5 82.2 422

D0a - idle link
EEE enabled

No link Typ - - - - -

10 Typ 233 38.1 15.9 44.5 206

100 Typ 198 39.3 16 33.6 170

1000 copper Typ 200 41.1 21.1 33.8 180

D3cold - WoL
enabled

No link Typ 104 28.2 11.3 13.4 87

10 Typ 151 29.4 16.4 24.3 132

100 Typ 162 34.3 24.9 25.4 152

100 EEE enabled Typ 108 30.5 16.1 13.6 97

1000 Typ 404 72.1 52.5 62.1 349

1000 EEE enabled Typ 220 32.2 21.1 14.1 107

D3cold-WoL
disabled (PCIe L3) No link

Max-
Commercial 155

Max-IT 173

D0 uninitialized
disabled through
DEV_OFF_N

No link Typ 89 23.3 4.4 13.3 71

Notes:
Typ = Typical units, nominal voltage and room temperature.
Max = Typical units, high voltage, and hot temperature.

Electrical/Mechanical Specification—Ethernet Controller I211

465

10.6 DC/AC Specification

10.6.1 DC Specifications

10.6.1.1 Digital I/O

Table 10-4. Digital IO DC Electrical Characteristics

Symbol Parameter Conditions Min Max Units Note

VCC3P3 Periphery Supply 2.97 3.465 V 3.3V + 5%/3.3V -10%

VCC Core Supply 0.855 0.945 V 0.9V +/- 5%

VOH Output High Voltage IOH = -8 mA; VCC3P3 = Min 2.4 V 3

IOH = -100 A; VCC3P3 = Min VCC3P3-
0.2

VOL Output Low Voltage IOL = 8 mA; VCC=Min 0.4 V 4, 5

IOL = 100 A; VCC=Min 0.2 V

VIH Input High Voltage 0.7 x
VCC3P3

VCC3P3 +
0.4 V 1

VIL Input Low Voltage -0.4 0.3 x
VCC3P3 V 1

Iil Input Current VCC3P3 = Max; VI =3.6V/GND +/- 10 µA

PU Internal Pull Up VIL = 0V 40 150 K  2

Built-in Hysteresis 150 mV

Cin Input Pin Capacitance 5 pF

Vos Overshoot N/A 4 V

Vus Undershoot N/A -0.4 V

Notes:
1. Applies to PE_RST_N, LAN_PWR_GOOD, DEV_OFF_N, JTAG_CLK, JTAG_TDI, JTAG_TDO, JTAG_TMS, SDP0,SDP1, SDP2, and

SDP3. The input buffer also has hysteresis > 100mV.
2. Internal pull up max characterized at slow corner (125C, VCC3P3=min, process slow); internal pull up min characterized at

fast corner (0C, VCC3P3=max, process fast).
3. JTAG_TDO SDP[0], SDP[1], SDP[2], SDP[3].
4. JTAG_TDO SDP[0], SDP[1], SDP[2], SDP[3].

Ethernet Controller I211 —Electrical/Mechanical Specification

466

10.6.1.2 LEDs I/O

10.6.1.3 Open Drain I/Os

10.6.2 Digital I/F AC Specifications

10.6.2.1 Reset Signals

The timing between the power up sequence and the different reset signals is described in Figure 10-1
and in Table 10-2.

10.6.2.1.1 LAN_PWR_GOOD

Table 10-5. LED IO DC Electrical Characteristics

Symbol Parameter Conditions Min Max Units Note

VCC3P3 Periphery Supply 2.97 3.465 V

VCC Core Supply 0.855 0.945 V

VOH Output High Voltage IOH = -20 mA; VCC3P3 = Min 2.4 V

VOL Output Low Voltage IOL = 20 mA; VCC=Min 0.45 V

VIH Input High Voltage 0.7 x
VCC3P3

VCC3P3 +
0.4 V 1

VIL Input Low Voltage -0.4 0.3 x
VCC3P3 V 1

Iil Input Current VCC3P3 = Max; VI =3.6V/GND +/- 20 µA

Vos Overshoot N/A 4 V

Vus Undershoot N/A -0.4 V

Notes:
1. The input buffer also has hysteresis > 150 mV.
2. Applies to LED0, LED1, and LED2.

Table 10-6. Open Drain DC Specifications (Note 1, 4)

Symbol Parameter Condition Min Max Units Note

VCC3P3 Periphery Supply 2.97 3.465 V

VCC Core Supply 0.855 0.945 V

Vih Input High Voltage 2.0 5.5 V

Vil Input Low Voltage 0.7 V

Ileakage Output Leakage Current 0 < Vin < VCC3P3 +/-10 µA 2

Vol Output Low Voltage @ Ipullup 0.4 V 4

Iol Output Low Current Vol=0.4V 16 mA

Cin Input Pin Capacitance 5 pF 3

Ioffsmb Input Leakage Current VCC3P3 off or floating +/-10 µA 2

Notes:
1. Applies to SMB_DAT, SMB_CLK, SMB_ALRT_N, PE_WAKE_N and VR_EN pads.
2. Device meets this whether powered or not.
3. Characterized, not tested.
4. OD no high output drive. VOL max=0.4V at 6 mA, VOL max=0.2V at 0.1 mA.

Electrical/Mechanical Specification—Ethernet Controller I211

467

The I211 uses an internal power on detection circuit in order to generate the LAN_PWR_GOOD signal.
Reset can also be implemented when the external power on detection circuit determines that the device
is powered up and asserts the LAN_PWR_GOOD signal to reset the device.

10.6.2.2 JTAG AC Specification

The I211 is designed to support the IEEE 1149.1 standard. Following timing specifications are
applicable over recommended operating range from Ta = 0oC to +70oC, VCC3P3 = 3.3V, Cload = 16pF
(unless otherwise noted). For JTAG I/F timing specification see Table 10-7 and Figure 10-2.

Table 10-7. JTAG I/F Timing Parameters

Symbol Parameter Min Typ Max Units Note

tJCLK JTCK clock frequency 10 MHz

tJH JTMS and JTDI hold time 10 nS

tJSU JTMS and JTDI setup time 10 nS

tJPR JTDO propagation Delay 15 nS

Notes:
1. Table 10-7 applies to JTCK, JTMS, JTDI and JTDO.
2. Timing measured relative to JTCK reference voltage of VCC3P3/2.

Figure 10-2. JTAG AC Timing Diagram

Tjsu

JTM S
JTDI

JTDO

Tjh

Tjclk

JTCK

Tjpr

Ethernet Controller I211 —Electrical/Mechanical Specification

468

10.6.2.3 MDIO AC Specification

The I211 is designed to support the MDIO specifications defined in IEEE 802.3 clause 22. Following
timing specifications are applicable over recommended operating range from Ta = 0 oC to +70 oC,
VCC3P3 = 3.3V, Cload = 16pF (unless otherwise noted). For MDIO I/F timing specification see
Table 10-8, Figure 10-3 and Figure 10-4.

Table 10-8. MDIO I/F Timing Parameters

Symbol Parameter Min Typ Max Units Note

tMCLK MDC clock frequency 2 MHz

tMH MDIO hold time 10 nS

tMSU MDIO setup time 10 nS

tMPR MDIO propagation Delay 10 300 nS

Notes:
1. Table 10-8 applies to MDIO0, MDC0, MDIO1, MDC1, MDIO2, MDC2, MDIO3, and MDC3.
2. Timing measured relative to MDC reference voltage of 2.0V (Vih).

Figure 10-3. MDIO Input AC Timing Diagram

Tmsu Tmh

Tmclk

Electrical/Mechanical Specification—Ethernet Controller I211

469

10.6.2.4 PCIe Interface DC/AC Specification

The I211 PCIe Gen 1 interface supports the electrical specifications defined in:

• PCI Express* 2.0 Card Electro-Mechanical (CEM) Specification.
• PCI Express* 2.1 Base Specification, Chapter 4.

10.6.2.4.1 PCIe Specification - Input Clock

The input clock for PCIe must be a differential input clock in frequency of 100 MHz. For full
specifications please check the PCI Express* 2.0 Card Electro-Mechanical (CEM) Specification (refclk
specifications for Gen 1).

10.6.3 XTAL/Clock Specification

The 25 MHz reference clock of the I211 can be supplied either from a crystal or from an external
oscillator. The recommended solution is to use a crystal.

10.6.3.1 Crystal Specification

Figure 10-4. MDIO Output AC Timing Diagram

Table 10-9. Specification for External Crystal

Parameter Name Symbol Recommended Value Conditions

Frequency fo 25.000 [MHz] @25 [°C]

Vibration mode Fundamental

Cut AT

Operating /Calibration Mode Parallel

Frequency Tolerance @25°C f/fo @25°C ±30 [ppm] @25 [°C]

Tmpr

MDIO

Tmclk

MDC

Ethernet Controller I211 —Electrical/Mechanical Specification

470

10.6.3.2 External Clock Oscillator Specifications

When using an external oscillator the following connection must be used.

Figure 10-5. External Clock Oscillator Connectivity to The I211

Temperature Tolerance f/fo ±30 [ppm]

Operating Temperature Topr 0 to +70 [°C] Commercial grade

Non Operating Temperature Range Topr -30 to +85 [°C]

Equivalent Series Resistance (ESR) Rs 50 [] maximum @25 [MHz]

Shunt Capacitance Co 6 [pF] maximum

Load Capacitance Cload 16 pF

Max Drive Level DL 0.5 [mW]

Aging f/fo ±5 [ppm/year]

External Capacitors C1, C2 27 [pF]

Table 10-10.Specification for XTAL1 (In)

Parameter Name Symbol Value Conditions

Voltage Input High (minimum) VIH (min) 1.4 [V]

Voltage Input High (maximum) VIH (max) 2.0 [V]

Target XTAL1 (In) amplitude VIH (typ) 1.7 [V]

Voltage Input Low (maximum) VIL (max) 200 [mV]

Input Impedance High impedance

Table 10-11.Specification for External Clock Oscillator

Parameter Name Symbol Value Conditions

Frequency fo 25.0 [MHz] @25 [°C]

External OSC Supply Swing Vp-p 2.5 ± 0.25 [V] or 3.3 ± 0.33 [V]

Table 10-9. Specification for External Crystal (Continued)

Parameter Name Symbol Recommended Value Conditions

XTAL1 (In)

XTAL2 (Out)

VCC = 2.5V or 3.3V

External Clock
Oscillator

C1 = 100pF or 51pF

C2 = 47pF

Electrical/Mechanical Specification—Ethernet Controller I211

471

10.6.4 Switching Voltage Regulator (SVR) Capacitor Electrical
Specifications

The following table lists the electrical performance of the 0.9V/1.5V SVR.

10.7 Package
The I211 is assembled in one, single package type: 9 mm x 9 mm 64-pin QFN package.

10.7.1 Mechanical Specification for the 9 x 9 QFN Package

10.7.2 9 x 9 QFN Package Schematics

Refer to Figure 2-2.

Frequency Tolerance f/fo ±50 [ppm] -20 to +70 [°C]

Operating Temperature Topr 0 to +70 [°C] Commercial grade

Maximum jitter 12KHz-20 MHz RMS1 1.5 [ps]

1. At the XTAL1 input.

Parameter Min Typ Max Unit Comments

Regulator input voltage 2.97 3.3 3.465 V

Regulator output voltages
0.9
1.5

V

Output Voltage Accuracy 5 % Not including line and load regulation errors.

Load Current 0 175 mA 175mA (max) for each 0.9V and 1.5V rail.

Startup Time 4 5 6 ms

Load Capacitor 20 µF Ceramic bulk capacitors.

Flying Capacitor 39 nF Located close to package related pins.

Table 10-12.I211 9 x 9 Package Mechanical Specifications

Body Size Pin Count Pin Pitch Ball Matrix Center Matrix Substrate

9 x 9 64 0.5 mm N/A, peripheral N/A, exposed pad N/A, led frame-based
package

Table 10-11.Specification for External Clock Oscillator (Continued)

Ethernet Controller I211 —Electrical/Mechanical Specification

472

Note: This page intentionally left blank.

Design Considerations—Ethernet Controller I211

473

11.0 Design Considerations

This section provides general design considerations and recommendations when selecting components
and connecting special pins to the I211. Intel recommends that these design considerations be used in
conjunction with the following board design documents:

• Intel® Ethernet Controller I210-AT_I211-AT – Schematics / Diagrams
• Intel® 82574_82583 Gigabit Ethernet Controller to I210_I211 – Design Guide

11.1 PCIe

11.1.1 Port Connection to the I211

PCIe is a dual simplex point-to-point serial differential low-voltage interconnect with a signaling bit rate
of 2.5 Gb/s per direction. The I211’s PCIe port consists of an integral group of transmitters and
receivers. The link between the PCIe ports of two devices is a x1 lane that also consists of a transmitter
and a receiver pair. Note that each signal is 8b/10b encoded with an embedded clock.

The PCIe topology consists of a transmitter (Tx) located on one device connected through a differential
pair connected to the receiver (Rx) on a second device. The I211 can be located on a LOM or on an
add-in card using a connector specified by PCIe.

The lane is AC-coupled between its corresponding transmitter and receiver. The AC-coupling capacitor
is located on the board close to transmitter side. Each end of the link is terminated on the die into
nominal 100 differential DC impedance. Board termination is not required.

For more information on PCIe, refer to the PCI Express* Base Specification, Revision 1.1, PCI Express*
Card Electromechanical Specification, Revision 1.1RD, and PCIe v2.1 (2.5GT/s) Gen1 x 1.

For information about the I211’s PCIe power management capabilities, see Section 5.0.

11.1.2 PCIe Reference Clock

The I211 uses a 100 MHz differential reference clock, denoted PECLKp and PECLKn. This signal is
typically generated on the system board and routed to the PCIe port. For add-in cards, the clock is
furnished at the PCIe connector.

The frequency tolerance for the PCIe reference clock is +/- 300 ppm.

11.1.3 Other PCIe Signals

The I211 also implements other signals required by the PCIe specification. The I211 signals power
management events to the system using the PE_WAKE_N signal, which operates very similarly to the
familiar PCI PME# signal. Finally, there is a PE_RST_N signal, which serves as the familiar reset
function for the I211.

Ethernet Controller I211 —Design Considerations

474

11.1.4 PCIe Routing

Contact your Intel representative for information regarding the PCIe signal routing.

11.2 Clock Source
All designs require a 25 MHz clock source. The I211 uses the 25 MHz source to generate clocks up to
125 MHz and 1.25 GHz for the PHY circuits. For optimum results with lowest cost, connect a 25 MHz
parallel resonant crystal and appropriate load capacitors at the XTAL1 and XTAL2 leads. The frequency
tolerance of the timing device should be 30 ppm or better. Refer to the Intel® Ethernet Controllers
Timing Device Selection Guide for more information on choosing crystals.

For further information regarding the clock for the I211, refer to the sections about frequency control,
crystals, and oscillators that follow.

11.2.1 Frequency Control Device Design Considerations

This section provides information regarding frequency control devices, including crystals and oscillators,
for use with all Intel Ethernet controllers. Several suitable frequency control devices are available; none
of which present any unusual challenges in selection. The concepts documented herein are applicable to
other data communication circuits, including Platform LAN Connect devices (PHYs).

Intel Ethernet controllers contain amplifiers, which when used with the specific external components,
form the basis for feedback oscillators. These oscillator circuits, which are both economical and reliable,
are described in more detail in Section 11.3.1.

The chosen frequency control device vendor should be consulted early in the design cycle. Crystal and
oscillator manufacturers familiar with networking equipment clock requirements can provide assistance
in selecting an optimum, low-cost solution.

11.2.2 Frequency Control Component Types

Several types of third-party frequency reference components are currently marketed. A discussion of
each follows, listed in preferred order.

11.2.2.1 Quartz Crystal

Quartz crystals are generally considered to be the mainstay of frequency control components due to
their low cost and ease of implementation. They are available from numerous vendors in many package
types and with various specification options.

11.2.2.2 Fixed Crystal Oscillator

A packaged fixed crystal oscillator comprises an inverter, a quartz crystal, and passive components
conveniently packaged together. The device renders a strong, consistent square wave output.
Oscillators used with microprocessors are supplied in many configurations and tolerances.

Crystal oscillators should be restricted to use in special situations, such as shared clocking among
devices or multiple controllers. As clock routing can be difficult to accomplish, it is preferable to provide
a separate crystal for each device.

Design Considerations—Ethernet Controller I211

475

11.2.2.3 Programmable Crystal Oscillators

A programmable oscillator can be configured to operate at many frequencies. The device contains a
crystal frequency reference and a phase lock loop (PLL) clock generator. The frequency multipliers and
divisors are controlled by programmable fuses.

A programmable oscillator’s accuracy depends heavily on the Ethernet device’s differential transmit
lines. The Physical Layer (PHY) uses the clock input from the device to drive a differential Manchester
(for 10 Mb/s operation), an MLT-3 (for 100 Mbps operation) or a PAM-5 (for 1000 Mb/s operation)
encoded analog signal across the twisted pair cable. These signals are referred to as self-clocking,
which means the clock must be recovered at the receiving link partner. Clock recovery is performed
with another PLL that locks onto the signal at the other end.

PLLs are prone to exhibit frequency jitter. The transmitted signal can also have considerable jitter even
with the programmable oscillator working within its specified frequency tolerance. PLLs must be
designed carefully to lock onto signals over a reasonable frequency range. If the transmitted signal has
high jitter and the receiver’s PLL loses its lock, then bit errors or link loss can occur.

PHY devices are deployed for many different communication applications. Some PHYs contain PLLs with
marginal lock range and cannot tolerate the jitter inherent in data transmission clocked with a
programmable oscillator. The American National Standards Institute (ANSI) X3.263-1995 standard test
method for transmit jitter is not stringent enough to predict PLL-to-PLL lock failures, therefore, the use
of programmable oscillators is not recommended.

11.2.2.4 Ceramic Resonator

Similar to a quartz crystal, a ceramic resonator is a piezoelectric device. A ceramic resonator typically
carries a frequency tolerance of ±0.5%, – inadequate for use with Intel Ethernet controllers, and
therefore, should not be utilized.

Ethernet Controller I211 —Design Considerations

476

11.3 Crystal Support

11.3.1 Crystal Selection Parameters

All crystals used with Intel Ethernet controllers are described as AT-cut, which refers to the angle at
which the unit is sliced with respect to the long axis of the quartz stone. Table 11-13 lists crystals which
have been used successfully in other designs (however, no particular product is recommended):

For information about crystal selection parameters, see Section 10.6.3 and Table 10-9.

11.3.1.1 Vibrational Mode

Crystals in the above-referenced frequency range are available in both fundamental and third overtone.
Unless there is a special need for third overtone, use fundamental mode crystals.

At any given operating frequency, third overtone crystals are thicker and more rugged than
fundamental mode crystals. Third overtone crystals are more suitable for use in military or harsh
industrial environments. Third overtone crystals require a trap circuit (extra capacitor and inductor) in
the load circuitry to suppress fundamental mode oscillation as the circuit powers up. Selecting values
for these components is beyond the scope of this document.

11.3.1.2 Nominal Frequency

Intel Ethernet controllers use a crystal frequency of 25.000 MHz. The 25 MHz input is used to generate
a 125 MHz transmit clock for 100BASE-TX and 1000BASE-TX operation – 10 MHz and 20 MHz transmit
clocks, for 10BASE-T operation.

11.3.1.3 Frequency Tolerance

The frequency tolerance for an Ethernet Platform LAN Connect is dictated by the IEEE 802.3
specification as ±50 parts per million (ppm). This measurement is referenced to a standard
temperature of 25° C. Intel recommends a frequency tolerance of ±30 ppm.

11.3.1.4 Temperature Stability and Environmental Requirements

Temperature stability is a standard measure of how the oscillation frequency varies over the full
operational temperature range (and beyond). Several optional temperature ranges are currently
available, including -40° C to +85° C for industrial environments. Some vendors separate operating
temperatures from temperature stability. Manufacturers may also list temperature stability as 50 ppm
in their data sheets.

Table 11-13.Crystal Manufacturers and Part Numbers

Manufacturer Part No.

KDS America DSX321G

NDK America Inc. 41CD25.0F1303018

TXC Corporation - USA
7A25000165
9C25000008

Design Considerations—Ethernet Controller I211

477

Note: Crystals also carry other specifications for storage temperature, shock resistance, and reflow
solder conditions. Crystal vendors should be consulted early in the design cycle to discuss the
application and its environmental requirements.

11.3.1.5 Crystal Oscillation Mode

The terms series-resonant and parallel-resonant are often used to describe crystal oscillator circuits.
Specifying parallel mode is critical to determining how the crystal frequency is calibrated at the factory.

A crystal specified and tested as series resonant oscillates without problem in a parallel-resonant
circuit, but the frequency is higher than nominal by several hundred parts per million. The purpose of
adding load capacitors to a crystal oscillator circuit is to establish resonance at a frequency higher than
the crystal’s inherent series resonant frequency.

Figure 11-6 shows the recommended placement and layout of an internal oscillator circuit. Note that
pin X1 and X2 refers to XTAL1 and XTAL2 in the Ethernet device, respectively. The crystal and the
capacitors form a feedback element for the internal inverting amplifier. This combination is called
parallel-resonant, because it has positive reactance at the selected frequency. In other words, the
crystal behaves like an inductor in a parallel LC circuit. Oscillators with piezoelectric feedback elements
are also known as “Pierce” oscillators.

11.3.1.6 Load Capacitance and Discrete Capacitors

The formula for crystal load capacitance is as follows:

where:

CL is the rated Cload of the crystal component and C1 and C2 are discrete crystal circuit
capacitors.
Cstray allows for additional capacitance from solder pads, traces and the I211 package.
Individual stray capacitance components can be estimated and added as parallel capacitances.
Note that total Cstray is typically 3 pF to 7 pF.

Solve for the discrete capacitor values as follows:
C1 = C2 = 2 * [Cload - Cstray]

For example:

If total Cstray = 4.0 pF and if the Cload rating is 18 pF, then the calculated C1 and C2 = 2 * [18
pF - 4.0 pF] = 28 pF.

Note: Because 28 pF is not a standard value, use 27 pF capacitors for C1 and C2, which is the
closest standard value.

The oscillator frequency should be measured with a precision frequency counter where possible. The
values of C1 and C2 should be fine tuned for the design. As the actual capacitive load increases, the
oscillator frequency decreases.

CL
C1 C2 
C1 C2+ 

------------------- Cstray+=

Ethernet Controller I211 —Design Considerations

478

Note: Intel recommends COG or NPO capacitors with a tolerance of ±5% (approximately
±1 pF) or smaller.

11.3.1.7 Shunt Capacitance

The shunt capacitance parameter is relatively unimportant compared to load capacitance. Shunt
capacitance represents the effect of the crystal’s mechanical holder and contacts. The shunt
capacitance should equal a maximum of 6 pF.

11.3.1.8 Equivalent Series Resistance

Equivalent Series Resistance (ESR) is the real component of the crystal’s impedance at the calibration
frequency, which the inverting amplifier’s loop gain must overcome. ESR varies inversely with
frequency for a given crystal family. The lower the ESR, the faster the crystal starts up. Use crystals
with an ESR value of 50  or better.

11.3.1.9 Drive Level

Drive level refers to power dissipation in use. The allowable drive level for a Surface Mounted
Technology (SMT) crystal is less than its through-hole counterpart, because surface mount crystals are
typically made from narrow, rectangular AT strips, rather than circular AT quartz blanks.

Some crystal data sheets list crystals with a maximum drive level of 1 mW. However, Intel Ethernet
controllers drive crystals to a level less than the suggested 0.3 mW value. This parameter does not
have much value for on-chip oscillator use.

11.3.1.10 Aging

Aging is a permanent change in frequency (and resistance) occurring over time. This parameter is most
important in its first year because new crystals age faster than old crystals. Use crystals with a
maximum of ±5 ppm per year aging.

11.3.1.11 Reference Crystal

The normal tolerances of the discrete crystal components can contribute to small frequency offsets with
respect to the target center frequency. To minimize the risk of tolerance-caused frequency offsets
causing a small percentage of production line units to be outside of the acceptable frequency range, it
is important to account for those shifts while empirically determining the proper values for the discrete
loading capacitors, C1 and C2.

Even with a perfect support circuit, most crystals will oscillate slightly higher or slightly lower than the
exact center of the target frequency. Therefore, frequency measurements (which determine the correct
value for C1 and C2) should be performed with an ideal reference crystal. When the capacitive load is
exactly equal to the crystal’s load rating, an ideal reference crystal will be perfectly centered at the
desired target frequency.

11.3.1.11.1 Reference Crystal Selection

There are several methods available for choosing the appropriate reference crystal:

• If a Saunders and Associates (S&A) crystal network analyzer is available, then discrete crystal
components can be tested until one is found with zero or nearly zero ppm deviation (with the

Design Considerations—Ethernet Controller I211

479

appropriate capacitive load). A crystal with zero or near zero ppm deviation will be a good reference
crystal to use in subsequent frequency tests to determine the best values for C1 and C2.

• If a crystal analyzer is not available, then the selection of a reference crystal can be done by
measuring a statistically valid sample population of crystals, which has units from multiple lots and
approved vendors. The crystal, which has an oscillation frequency closest to the center of the
distribution, should be the reference crystal used during testing to determine the best values for C1
and C2.

• It may also be possible to ask the approved crystal vendors or manufacturers to provide a
reference crystal with zero or nearly zero deviation from the specified frequency when it has the
specified cload capacitance.

When choosing a crystal, customers must keep in mind that to comply with IEEE specifications for 10/
100 and 10/100/1000Base-T Ethernet LAN, the transmitter reference frequency must be precise within
50 ppm. Intel recommends customers to use a transmitter reference frequency that is accurate to
within 30 ppm to account for variations in crystal accuracy due to crystal manufacturing tolerance.

11.3.1.11.2 Circuit Board

Since the dielectric layers of the circuit board are allowed some reasonable variation in thickness, the
stray capacitance from the printed board (to the crystal circuit) will also vary. If the thickness tolerance
for the outer layers of dielectric are controlled within ±17 percent of nominal, then the circuit board
should not cause more than ±2 pF variation to the stray capacitance at the crystal. When tuning crystal
frequency, it is recommended that at least three circuit boards are tested for frequency. These boards
should be from different production lots of bare circuit boards.

Alternatively, a larger sample population of circuit boards can be used. A larger population will increase
the probability of obtaining the full range of possible variations in dielectric thickness and the full range
of variation in stray capacitance.

Next, the exact same crystal and discrete load capacitors (C1 and C2) must be soldered onto each
board, and the LAN reference frequency should be measured on each circuit board.

The circuit board, which has a LAN reference frequency closest to the center of the frequency
distribution, should be used while performing the frequency measurements to select the appropriate
value for C1 and C2.

11.3.1.11.3 Temperature Changes

Temperature changes can cause the crystal frequency to shift. Therefore, frequency measurements
should be done in the final system chassis across the system’s rated operating temperature range.

11.3.2 Crystal Placement and Layout Recommendations

Crystal clock sources should not be placed near I/O ports or board edges. Radiation from these devices
can be coupled into the I/O ports and radiate beyond the system chassis. Crystals should also be kept
away from the Ethernet magnetics module to prevent interference.

Note: Failure to follow these guidelines could result in the 25 MHz clock failing to start.

When designing the layout for the crystal circuit, the following rules must be used:

• Place load capacitors as close as possible (within design-for-manufacturability rules) to the crystal
solder pads. They should be no more than 90 mils away from crystal pads.

Ethernet Controller I211 —Design Considerations

480

• The two load capacitors, crystal component, the Ethernet controller device, and the crystal circuit
traces must all be located on the same side of the circuit board (maximum of one via-to-ground
load capacitor on each XTAL trace).

• Use 27 pF (5% tolerance) 0402 load capacitors.
• Place load capacitor solder pad directly in line with circuit trace (see Figure 11-6, point A).
• Use 50 impedance single-ended microstrip traces for the crystal circuit.
• Route traces so that electro-magnetic fields from XTAL2 do not couple onto XTAL1. Do not route as

differential traces.
• Route XTAL1 and XTAL2 traces to nearest inside corners of crystal pad (see Figure 11-6, point B).
• Ensure that the traces from XTAL1 and XTAL2 are symmetrically routed and that their lengths are

matched.
• The total trace length of XTAL1 or XTAL2 should be less than 750 mils.

Figure 11-6. Recommended Crystal Placement and Layout

11.4 Oscillator Support
The I211 clock input circuit is optimized for use with an external crystal. However, an oscillator can also
be used in place of the crystal with the proper design considerations (see Table 10-11 for detail clock
oscillator specifications):

• The clock oscillator has an internal voltage regulator of 1.5 Vdc to isolate it from the external noise
of other circuits to minimize jitter. If an external clock is used, this imposes a maximum input clock
amplitude of 1.5 Vdc. For example, if a 3.3 Vdc oscillator is used, it's signal should be attenuated to
a maximum of 1.5 Vdc with a capacitive divider circuit. Refer to the reference schematics for more
details.

Crystal Pad Crystal Pad

Ethernet Controller

XTAL1XTAL2

27pF
0402

27pF
0402

Crystal

“B” “B”

“A”

90
 m

ils

9
0 m

ils

Capacitor Capacitor

Less than 660 mils

Design Considerations—Ethernet Controller I211

481

• The input capacitance introduced by the I211 (approximately 20 pF) is greater than the capacitance
specified by a typical oscillator (approximately 15 pF).

• The input clock jitter from the oscillator can impact the I211 clock and its performance.

Note: The power consumption of additional circuitry equals about 1.5 mW.

Table 11-14 lists oscillators that can be used with the I211. Please note that no particular oscillator is
recommended):

11.4.1 Oscillator Placement and Layout Recommendations

Oscillator clock sources should not be placed near I/O ports or board edges. Radiation from these
devices can be coupled into the I/O ports and radiate beyond the system chassis. Oscillators should
also be kept away from the Ethernet magnetics module to prevent interference.

Table 11-14.Oscillator Manufacturers and Part Numbers

Manufacturer Part No.

NDK AMERICA INC 2560TKA-25M

TXC CORPORATION - USA 6N25000160 or
7W25000025

CITIZEN AMERICA CORP CSX750FJB25.000M-UT

Raltron Electronics Corp CO4305-25.000-T-TR

MtronPTI M214TCN

Kyocera Corporation KC5032C-C3

Ethernet Controller I211 —Design Considerations

482

11.5 Ethernet Interface

11.5.1 Magnetics for 1000 BASE-T

Magnetics for the I211 can be either integrated or discrete.

The magnetics module has a critical effect on overall IEEE and emissions conformance. The device
should meet the performance required for a design with reasonable margin to allow for manufacturing
variation. Occasionally, components that meet basic specifications can cause the system to fail IEEE
testing because of interactions with other components or the printed circuit board itself. Carefully
qualifying new magnetics modules prevents this problem.

When using discrete magnetics it is necessary to use Bob Smith termination: Use four 75  resistors for
cable-side center taps and unused pins. This method terminates pair-to-pair common mode impedance
of the CAT5 cable.

Use an EFT capacitor attached to the termination plane. Suggested values are 1500 pF/2 KV or 1000
pF/3 KV. A minimum of 50-mil spacing from capacitor to traces and components should be maintained.

11.5.2 Magnetics Module Qualification Steps

The steps involved in magnetics module qualification are similar to those for crystal qualification:

1. Verify that the vendor’s published specifications in the component datasheet meet or exceed the
specifications in Section 10.6.

2. Independently measure the component’s electrical parameters on the test bench, checking samples
from multiple lots. Check that the measured behavior is consistent from sample to sample and that
measurements meet the published specifications.

3. Perform physical layer conformance testing and EMC (FCC and EN) testing in real systems. Vary
temperature and voltage while performing system level tests.

11.5.3 Third-Party Magnetics Manufacturers

The following magnetics modules have been used successfully in previous designs.

Manufacturer Type Part Number

E&E LP discrete 824-00400R

Pulse Standard discrete H5007NL

UDE ICM RU1-161A9WGA

UDE ICM RU1-BJ1F9WGF

Pulse ICM JW0A2P019D

Design Considerations—Ethernet Controller I211

483

11.5.4 Discrete/Integrated Magnetics Specifications

For 60 seconds 2250 Vdc (min)

Open Circuit
Inductance (OCL) or
OCL (alternate)

With 8 mA DC bias at 25 C 400 H (min)

With 8 mA DC bias at 0 C to 70 C 350 H (min)

Insertion Loss

100 KHz through 999 KHz
1.0 MHz through 55.0 MHz
55.1 MHz through 100.0 MHz
100.1 MHz thought 125.0 MHz

-1.0 dB (max)
-0.5*(freq in MHz/45) +0.0111 dB (max)
-0.8 dB (max)
-2.4 dB (max)

Return Loss

1.0 MHz through 40 MHz
40.1 MHz through 100 MHz

When reference impedance is 85 , 100 , and
115 .

Note that return loss values might vary with
MDI trace lengths. The LAN magnetics might
need to be measured in the platform where it is
used.

18 dB (min)
12 to 20 * LOG (frequency in MHz / 80) dB (min)

Crosstalk Isolation
Discrete Modules

1.0 MHz through 29.9 MHz
30 MHz through 250 MHz
250.1 MHz through 375 MHz

-50.3+(8.8*(freq in MHz / 30)) dB (max)
-26-(16.8*(LOG(freq in MHz / 250)))) dB (max)
-26 dB (max)

Crosstalk Isolation
Integrated Modules

1 MHz through 40 MHz
40.1 MHz through 110 MHz
110 MHz through 375 MHz

-50+((freq in MHz - 0.5)*0.3544304) dB (max)
-36+((freq in MHz - 40)*0.1714286 dB (max)
-24 dB (max)

Diff to CMR
1.0 MHz through 29.9 MHz
30 MHz through 500 MHz

-40.2+(5.3*((freq in MHz / 30)) dB (max)
-22-(14*(LOG((freq in MHz / 250)))) dB (max)

CM to CMR
1 MHz through 270 MHz
270.1 MHz through 300 MHz
300.1 MHz through 500 MHz

-51+32*(freq in MHz/270) dB (max)
-17-2*(300-freq in MHz)/30 dB (max)
-17 dB (max)

Ethernet Controller I211 —Design Considerations

484

11.5.5 Designing the I211 as a 10/100 Mb/s Only Device

To connect the I211 as a 10/100 Mb/s only device:
1. Set bit 4 of the Software Defined Pins Control (LAN Base Address + Word 0x20) to 0b. Setting bit 4

to 1b disables 1000 Mb/s (GbE) operation in all power modes (see Section 6.2.18).
2. Connect MDI pair 0 (pins 57 and 58) and MDI pair 1 (pins 54 and 55) to your magnetics. MDI pair

2 (pins 52 and 53) and MDI pair 3 (pins 49 and 50) can each be pulled up to 1.9 V dc through a 50
 resistor or connected to the magnetics as a GbE device if it is desired at a later time to enable
GbE by altering bit 4 of the Software Defined Pins Control (LAN Base Address + Word 0x20; Giga
Disable). See Figure 11-7 and Figure 11-8 for details.

3. Use one of the approved discrete GbE magnetics that were tested with the I211 (refer to
Section 11.5.3). Note that Intel has not tested any 10/100 magnetics with the I211.

Note: If you must use 10/100 magnetics in your design with the I211, the magnetics must
have a Common Mode Choke (CMC) in the receive path.

The I211 supports auto-MDIX; this feature CANNOT be disabled. If there is no CMC in the receive path,
the system most likely will not pass regulatory radiated emission tests when MDI-X mode is used.

Figure 11-7. I211 Gigabit Magnetics Module Connections

I211

M D I_PLU S (0)

M D I_M IN U S (0)

M D I_PLU S (1)

M D I_M IN U S (1)

57

58

54

55

M D I_PLU S (2)

M D I_M IN U S (2)

M D I_PLU S (3)

M D I_M IN U S (3)

52

53

49

50

G igab it M agnetics
M odule

I211

M D I_PLU S (0)

M D I_M IN U S (0)

M D I_PLU S (1)

M D I_M IN U S (1)

57

58

54

55

M D I_PLU S (2)

M D I_M IN U S (2)

M D I_PLU S (3)

M D I_M IN U S (3)

52

53

49

50

LAN_1.9V

10/100 M agnetics
M odule w ith Com m on M ode

C hoke in Both Rx and Tx
P aths 50 O hm

R esistors

Design Considerations—Ethernet Controller I211

485

Figure 11-8. I211 10/100 Mb/s Magnetics Module Connections (With CMC)

11.5.6 Layout Considerations for the Ethernet Interface

These sections provide recommendations for performing printed circuit board layouts. Good layout
practices are essential to meet IEEE PHY conformance specifications and EMI regulatory requirements.

Critical signal traces should be kept as short as possible to decrease the likelihood of being affected by
high frequency noise from other signals, including noise carried on power and ground planes. Keeping
the traces as short as possible can also reduce capacitive loading.

Since the transmission line medium extends onto the printed circuit board, special attention must be
paid to layout and routing of the differential signal pairs.

Designing for 1000 BASE-T GbE operation is very similar to designing for 10 and 100 Mb/s. For the
I211, system level tests should be performed at all three speeds.

11.5.6.1 Guidelines for Component Placement

Component placement can affect signal quality, emissions, and component operating temperature This
section provides guidelines for component placement.

Careful component placement can:

• Decrease potential problems directly related to electromagnetic interference (EMI), which could
cause failure to meet applicable government test specifications.

• Simplify the task of routing traces. To some extent, component orientation will affect the
complexity of trace routing. The overall objective is to minimize turns and crossovers between
traces.

Ethernet Controller I211 —Design Considerations

486

Minimizing the amount of space needed for the Ethernet LAN interface is important because other
interfaces compete for physical space on a motherboard near the connector. The Ethernet LAN circuits
need to be as close as possible to the connector.

Figure 11-9. General Placement Distances for 1000 BASE-T Designs

Figure 11-9 shows some basic placement distance guidelines. Figure 11-9 shows two differential pairs,
but can be generalized for a GbE system with four analog pairs. The ideal placement for the Ethernet
silicon would be approximately one inch behind the magnetics module.

While it is generally a good idea to minimize lengths and distances, Figure 11-9 also illustrates the need
to keep the LAN silicon away from the edge of the board and the magnetics module for best EMI
performance.

11.5.6.2 Layout Guidelines for Use with Integrated and Discrete Magnetics

Layout requirements are slightly different when using discrete magnetics.

These include:

• Ground cut for HV installation (not required for integrated magnetics)
• A maximum of two (2) vias
• Turns less than 45°
• Discrete terminators

11.5.6.3 Board Stack-Up Recommendations

Printed circuit boards for these designs typically have four, six, eight, or more layers. Although, the
I211 does not dictate the stack up, here is an example of a typical six-layer board stack up:

LAN
Silicon

Integrated
RJ-45
w/LAN

Magnetics
Keep LAN silicon 1" - 4" from LAN connector.

Keep silicon traces at least 1" from edge of
PB (2" is preferred).

Keep minimum distance between differential pairs
more than seven times the dielectric thickness away
 from each other and other traces, including NVM
traces and parallel digital traces.

Note: Figure 11-9 represents a 10/100 diagram. Use the same design considerations for the two
differential pairs not shown for gigabit implementations.

Design Considerations—Ethernet Controller I211

487

• Layer 1 is a signal layer. It can contain the differential analog pairs from the Ethernet device to the
magnetics module.

• Layer 2 is a signal ground layer. Chassis ground may also be fabricated in Layer 2 under the
connector side of the magnetics module.

• Layer 3 is used for power planes.
• Layer 4 is a signal layer.
• Layer 5 is an additional ground layer.
• Layer 6 is a signal layer. For 1000 BASE-T (copper) GbE designs, it is common to route two of the

differential pairs (per port) on this layer.

This board stack up configuration can be adjusted to conform to specific OEM design rules.

Ethernet Controller I211 —Design Considerations

488

11.5.6.4 Differential Pair Trace Routing for 10/100/1000 Designs

Trace routing considerations are important to minimize the effects of crosstalk and propagation delays
on sections of the board where high-speed signals exist. Signal traces should be kept as short as
possible to decrease interference from other signals, including those propagated through power and
ground planes. Observe the following suggestions to help optimize board performance:

• Maintain constant symmetry and spacing between the traces within a differential pair.
• Minimize the difference in signal trace lengths of a differential pair.
• Keep the total length of each differential pair under four inches. Although possible, designs with

differential traces longer than five inches are much more likely to have degraded receive Bit Error
Rate (BER) performance, IEEE PHY conformance failures, and/or excessive Electromagnetic
Interference (EMI) radiation.
— Consider using a second I211 instead of a LAN switch and long MDI traces. It is difficult to

achieve excellent performance with long traces and analog LAN switches. An optimization effort
is required to tune the system and magnetics modules.

• Keep differential pairs more than seven times the dielectric thickness away from each other and
other traces, including traces and parallel digital traces or other disturbing traces.

• Keep in-pair trace separation to 7 mils to maintain highly-coupled signaling.
• For high-speed signals, the number of corners and vias should be kept to a minimum. If a 90° bend

is required, it is recommended to use two 45° bends instead. Refer to Figure 11-10.

Note: In manufacturing, vias are required for testing and troubleshooting purposes. The via size
should be a 17-mil (±2 mils for manufacturing variance) finished hole size (FHS).

• Traces should be routed away from board edges by a distance greater than the trace height above
the reference plane. This allows the field around the trace to couple more easily to the ground plane
rather than to adjacent wires or boards.

• Do not route traces and vias under crystals or oscillators. This prevents coupling to or from the
clock. And as a general rule, place traces from clocks and drives at a minimum distance from
apertures by a distance that is greater than the largest aperture dimension.

.

Figure 11-10.Trace Routing

• The reference plane for the differential pairs should be continuous and low impedance. It is
recommended that the reference plane be either ground or 0.9 Vdc (the voltage used by the PHY).
This provides an adequate return path for and high frequency noise currents.

• Do not route differential pairs over splits in the associated reference plane as it might cause
discontinuity in impedances.

45°

45°

Design Considerations—Ethernet Controller I211

489

11.5.6.5 Signal Termination and Coupling

The I211 has internal termination on the MDI signals. External resistors are not needed. Adding pads
for external resistors can degrade signal integrity.

11.5.6.6 Signal Trace Geometry for 1000 BASE-T Designs

The key factors in controlling trace EMI radiation are the trace length and the ratio of trace-width to
trace-height above the reference plane. To minimize trace inductance, high-speed signals and signal
layers that are close to a reference or power plane should be as short and wide as practical. Ideally, this
trace width to height above the ground plane ratio is between 1:1 and 3:1. To maintain trace
impedance, the width of the trace should be modified when changing from one board layer to another if
the two layers are not equidistant from the neighboring planes.

Each pair of signal should have a differential impedance of 100 . +/- 15%. Refer to the Intel® 1G
Servers and Client LANs – Copper Loss Calculator for more details.

When performing a board layout, do not allow the CAD tool auto-router to route the differential pairs
without intervention. In most cases, the differential pairs will have to be routed manually.

Note: Measuring trace impedance for layout designs targeting 100  often results in lower actual
impedance. Designers should verify actual trace impedance and adjust the layout accordingly.
If the actual impedance is consistently low, a target of 105 – 110  should compensate for
second order effects.

It is necessary to compensate for trace-to-trace edge coupling, which can lower the differential
impedance by up to 10 , when the traces within a pair are closer than 30 mils (edge to edge).

11.5.6.7 Trace Length and Symmetry for 1000 BASE-T Designs

As indicated earlier, the overall length of differential pairs should be less than four inches measured
from the Ethernet device to the magnetics.

The differential traces (within each pair) should be equal in total length to within 50 mils (1.25 mm)
and as symmetrical as possible. Asymmetrical and unequal length traces in the differential pairs
contribute to common mode noise. If a choice has to be made between matching lengths and fixing
symmetry, more emphasis should be placed on fixing symmetry. Common mode noise can degrade the
receive circuit’s performance and contribute to radiated emissions.

11.5.6.8 Magnetics Center Tap

The I210 includes a voltage mode driver so it doesn’t require an analog powered center tap. The
decoupling capacitors for the central tap pins should be placed as close as possible to the magnetic
component. This improves EMI compliance.

11.5.6.9 Impedance Discontinuities

Impedance discontinuities cause unwanted signal reflections. Minimize vias (signal through holes) and
other transmission line irregularities. If vias must be used, a reasonable budget is two per differential
trace. Unused pads and stub traces should also be avoided.

Ethernet Controller I211 —Design Considerations

490

11.5.6.10 Reducing Circuit Inductance

Traces should be routed over a continuous reference plane with no interruptions. If there are vacant
areas on a reference or power plane, the signal conductors should not cross the vacant area. This
causes impedance mismatches and associated radiated noise levels. Noisy logic grounds should be
separated from analog signal grounds to reduce coupling. Noisy logic grounds can sometimes affect
sensitive DC subsystems such as analog to digital conversion, operational amplifiers, etc. All ground
vias should be connected to every ground plane; and similarly, every power via, to all power planes at
equal potential. This helps reduce circuit inductance. Another recommendation is to physically locate
grounds to minimize the loop area between a signal path and its return path. Rise and fall times should
be as slow as possible. Because signals with fast rise and fall times contain many high frequency
harmonics, which can radiate significantly. The most sensitive signal returns closest to the chassis
ground should be connected together. This will result in a smaller loop area and reduce the likelihood of
crosstalk. The effect of different configurations on the amount of crosstalk can be studied using
electronics modeling software.

11.5.6.11 Signal Isolation

To maintain best signal integrity, keep digital signals far away from the analog traces. A good rule of
thumb is no digital signal should be within 300 mils (7.5 mm) of the differential pairs. If digital signals
on other board layers cannot be separated by a ground plane, they should be routed perpendicular to
the differential pairs. If there is another LAN controller on the board, take care to keep the differential
pairs from that circuit away.

Some rules to follow for signal isolation:

• Separate and group signals by function on separate layers if possible. Keep a minimum distance
between differential pairs more than seven times the dielectric thickness away from each other and
other traces, including NVM traces and parallel digital traces.

• Physically group together all components associated with one clock trace to reduce trace length and
radiation.

• Isolate I/O signals from high-speed signals to minimize crosstalk, which can increase EMI emission
and susceptibility to EMI from other signals.

• Avoid routing high-speed LAN traces near other high-frequency signals associated with a video
controller, cache controller, processor, or other similar devices.

11.5.6.12 Traces for Decoupling Capacitors

Traces between decoupling and I/O filter capacitors should be as short and wide as practical. Long and
thin traces are more inductive and would reduce the intended effect of decoupling capacitors. Also for
similar reasons, traces to I/O signals and signal terminations should be as short as possible. Vias to the
decoupling capacitors should be sufficiently large in diameter to decrease series inductance.

11.5.6.13 Light Emitting Diodes for Designs Based on the I211

The I211 provides three programmable high-current push-pull (default active low) outputs to directly
drive LEDs for link activity and speed indication. Each LAN device provides an independent set of LED
outputs. Each of the four LED outputs can be individually configured to select the particular event,
state, or activity, which is indicated on that output. In addition, each LED can be individually configured
for output polarity, as well as for blinking versus non-blinking (steady-state) indication.

Since the LEDs are likely to be integral to a magnetics module, take care to route the LED traces away
from potential sources of EMI noise. In some cases, it might be desirable to attach filter capacitors.

Design Considerations—Ethernet Controller I211

491

The LED ports are fully programmable through the iNVM interface.

11.5.7 Physical Layer Conformance Testing

Physical layer conformance testing (also known as IEEE testing) is a fundamental capability for all
companies with Ethernet LAN products. PHY testing is the final determination that a layout has been
performed successfully. If your company does not have the resources and equipment to perform these
tests, consider contracting the tests to an outside facility.

11.5.7.1 Conformance Tests for 10/100/1000 Mb/s Designs

Crucial tests are as follows, listed in priority order:

• Bit Error Rate (BER). Good indicator of real world network performance. Perform bit error rate
testing with long and short cables and many link partners. The test limit is 10-11 errors.

• Output Amplitude, Rise and Fall Time (10/100 Mb/s), Symmetry and Droop (1 GbE). For the I211,
use the appropriate PHY test waveform.

• Return Loss. Indicator of proper impedance matching, measured through the RJ-45 connector back
toward the magnetics module.

• Jitter Test (10/100 Mb/s) or Unfiltered Jitter Test (1000 Mb/s). Indicator of clock recovery ability
(master and slave for a GbE controller).

11.5.8 Troubleshooting Common Physical Layout Issues

The following is a list of common physical layer design and layout mistakes in LAN On Motherboard
(LOM) designs.

1. Lack of symmetry between the two traces within a differential pair. Asymmetry can create common-
mode noise and distort the waveforms. For each component and/or via that one trace encounters,
the other trace should encounter the same component or a via at the same distance from the
Ethernet silicon.

2. Unequal length of the two traces within a differential pair. Inequalities create common-mode noise
and will distort the transmit or receive waveforms.

3. Excessive distance between the Ethernet silicon and the magnetics. Long traces on FR4 fiberglass
epoxy substrate attenuates the analog signals. In addition, any impedance mismatch in the traces
will be aggravated if they are longer than the four inch guideline.

4. Routing any other trace parallel to and close to one of the differential traces. Crosstalk getting onto
the receive channel causes degraded long cable BER. Crosstalk getting onto the transmit channel
can cause excessive EMI emissions and can cause poor transmit BER on long cables. At a minimum,
other signals should be kept 0.3 inches from the differential traces.

5. Routing one pair of MDI differential traces too close to another pair of differential traces. After
exiting the Ethernet silicon, the spacing between the trace pairs should be kept about 6 times the
dielectric height for stripline and 7 times the dielectric height for microstrip. Refer to the
appropriate design layout checklist for more details. The only possible exceptions are in the
vicinities where the traces enter or exit the magnetics, the RJ-45 connector, and the Ethernet
silicon.

6. Use of a low-quality magnetics module.
7. Re-use of an out-of-date physical layer schematic in a Ethernet silicon design. The terminations and

decoupling can be different from one PHY to another.

Ethernet Controller I211 —Design Considerations

492

8. Incorrect differential trace impedances. It is important to have ~100  impedance between the two
traces within a differential pair. This becomes even more important as the differential traces
become longer. To calculate differential impedance, many impedance calculators only multiply the
single-ended impedance by two. This does not take into account edge-to-edge capacitive coupling
between the two traces. When the two traces within a differential pair are kept close to each other,
the edge coupling can lower the effective differential impedance by 5  to 20 . Short traces have
fewer problems if the differential impedance is slightly off target.

Design Considerations—Ethernet Controller I211

493

11.6 I211 Power Supplies
The I211 requires three power rails: 3.3 Vdc, 1.5 Vdc, and 0.9 Vdc. Intel recommends that board
designers use the integrated switching voltage regulators derived from a single 3.3 Vdc supply to
reduce Bill of Material (BOM) costs. A central power supply can provide the required voltage sources
designed by a system power engineer. If the LAN wake capability is used, all voltages must remain
present during system power down. External voltage regulators need to generate the proper voltage,
supply current requirements (with adequate margin), and provide the proper power sequencing.

Refer to Section 11.6.2 for detailed information about power supply sequencing rules.

11.6.1 Power Delivery Solutions

Figure 11-11 shows the intended design options for power delivery solutions. See Section 10.3 for
more details.

Note: Follow the power sequencing instructions described in Section 11.6.2.

Ethernet Controller I211 —Design Considerations

494

Figure 11-11.Power Delivery Solutions

OPTION A:
Fully Integrated 0.09 Vdc

and 1.5 Vdc Regulator

47, 56

E_PAD_GND

I211

VDD1p5_OUT

VDD0p9_OUT

CTOP

CBOT

OPTION B:
External 0.09 Vdc and

1.5 Vdc Regulator

15 uF

39

11, 32
42, 59

15 uF

38

Keep close to I211.
Use short wide traces.

Connect to ground plane
using mulitple vias

V3p3_LAN

15 uF

 10, 27,
 41, 51, 64

40

37

65

Note: Use multiple vias to connect output
to sub layer shape to feed VDD input.

E_PAD_GND

I211EXTERNAL V1p5

EXTERNAL V0p9

Connect to ground plane
using mulitple vias

V3p3_LAN

15 uF

65

15 uF

VDD0p9

VDD1p5

15 uF

 10, 27,
 41, 51, 64

VDD3p3

Note: One decoupling
capacitor per

VDD pin (distributed)

0.039 uF

Keep close to I211.
Use short wide traces.

CTOP

CBOT

40

37
0.039 uF

VDD3p3

VDD1p5_OUT

VDD0p9_OUT

39

38

OPT
o

o

OPT
o

o

Design Considerations—Ethernet Controller I211

495

11.6.2 Ethernet Controller I211 Power Sequencing

Designs must comply with power sequencing requirements to avoid latch-up and forward-biased
internal diodes (see Figure 11-12).

The general guideline for sequencing is:

1. Power up the 3.3 Vdc rail.
2. Power up the 1.5 Vdc next.
3. Power up the 0.9 Vdc rail last.

For power down, there is no requirement (only charge that remains is stored in the decoupling
capacitors).

Figure 11-12.Power Sequencing Guideline

11.6.2.1 Power Up Sequence (External Voltage Regulator)

The board designer controls the power up sequence with the following stipulations (see Figure 11-13):

• 1.5 Vdc must not exceed 3.3 Vdc by more than 0.3 Vdc.
• 0.9 Vdc must not exceed 1.5 Vdc by more than 0.3 Vdc.
• 0.9 Vdc must not exceed 3.3 Vdc by more than 0.3 Vdc.

VDD3p3

VDD1p5

VDD0p9

Ethernet Controller I211 —Design Considerations

496

Figure 11-13.External Voltage Regulator Power-up Sequence

11.6.2.2 Power Up-Sequence (Internal SVR)

The I211 controls the power-up sequence internally and automatically with the following conditions
(see Figure 11-14):

• 3.3 Vdc must be the source for the internal LVR.
• 1.5 Vdc never exceeds 3.3 Vdc.
• 0.9 Vdc never exceeds 3.3 Vdc or 1.5 Vdc.

The ramp is delayed internally, with Tdelay depending on the rising slope of the 3.3 Vdc ramp (see Table
11-2).

Figure 11-14.Internal SVR Power-Up Sequence

VDD3p3

VDD1p5

VDD0p9

VDD1p5

VDD0p9

VDD3p3

Design Considerations—Ethernet Controller I211

497

11.6.3 Power and Ground Planes

Good grounding requires minimizing inductance levels in the interconnections and keeping ground
returns short, signal loop areas small, and power inputs bypassed to signal return, will significantly
reduce EMI radiation.

The following guidelines help reduce circuit inductance in both backplanes and motherboards:

• Route traces over a continuous plane with no interruptions. Do not route over a split power or
ground plane. If there are vacant areas on a ground or power plane, avoid routing signals over the
vacant area. This increases inductance and EMI radiation levels.

• Separate noisy digital grounds from analog grounds to reduce coupling. Noisy digital grounds may
affect sensitive DC subsystems.

• All ground vias should be connected to every ground plane; and every power via should be
connected to all power planes at equal potential. This helps reduce circuit inductance.

• Physically locate grounds between a signal path and its return. This minimizes the loop area.
• Avoid fast rise/fall times as much as possible. Signals with fast rise and fall times contain many

high frequency harmonics, which can radiate EMI.
• The ground plane beneath a magnetics module should be split. The RJ45 connector side of the

transformer module should have chassis ground beneath it.
• Power delivery traces should be a minimum of 20 mils wide at all places from the source to the

destination with neck down at package pins. The distribution of power is better done with a copper
plane or shape under the PHY. This provides low inductance connectivity to decoupling capacitors.
Decoupling capacitors should be placed as close as possible to the point of use and should avoid
sharing vias with other decoupling capacitors. Decoupling capacitor placement control should be
done for the PHY as well as any external regulators if used.

• An SVR fly capacitor should be preferentially placed near pin 37 and 40 with wide traces to limit in-
line inductance.

• SVR output routing: AVDD09_VR_O (pin 38) should be connected with wide traces and plane shape
using more than one via for a layer change to VDD09 pins. The net should have recommended bulk
and decoupling capacitance strongly joined into this route. AVDD15_VR_O (pin 39) has similar
requirements but has lower currents so it might require only wide traces and a single via for any
layer change.

11.7 Device Disable
For a LOM design, it might be desirable for the system to provide BIOS-setup capability for selectively
enabling or disabling LOM devices. This enables designers more control over system resource-
management, avoid conflicts with add-in NIC solutions, etc. The I211 provides support for selectively
enabling or disabling it.

Device disable is initiated by asserting the asynchronous DEV_OFF_N pin. The DEV_OFF_N pin has an
internal pull-up resistor, so that it can be left not connected to enable device operation.

While in device disable mode, the PCIe link is in L3 state. The PHY is in power down mode. Output
buffers are tri-stated.

Assertion or deassertion of PCIe PE_RST_N does not have any effect while the I211 is in device disable
mode (that is, the I211 stays in the respective mode as long as DEV_OFF_N is asserted). However, the
I211 might momentarily exit the device disable mode from the time PCIe PE_RST_N is de-asserted
again and until the iNVM is read.

During power-up, the DEV_OFF_N pin is ignored until the NVM is read. From that point, the I211 might
enter device disable if DEV_OFF_N is asserted.

Ethernet Controller I211 —Design Considerations

498

Note: The DEV_OFF_N pin should maintain its state during system reset and system sleep states. It
should also insure the proper default value on system power up. For example, a designer
could use a GPIO pin that defaults to 1b (enable) and is on system suspend power. For
example, it maintains the state in S0-S5 ACPI states).

11.7.1 BIOS Handling of Device Disable

Assume that in the following power-up sequence the DEV_OFF_N signal is driven high (or it is already
disabled)

1. The PCIe is established following the GIO_PWR_GOOD.
2. BIOS recognizes that the entire I211 should be disabled.
3. The BIOS drives the DEV_OFF_N signal to the low level.
4. As a result, the I211 samples the DEV_OFF_N signals and enters either the device disable mode.
5. The BIOS could put the link in the Electrical IDLE state (at the other end of the PCIe link) by

clearing the Link Disable bit in the Link Control register.
6. BIOS might start with the device enumeration procedure (the entire I211 functions are invisible).
7. Proceed with normal operation
8. Re-enable could be done by driving high the DEV_OFF_N signal, followed later by bus enumeration.

Design Considerations—Ethernet Controller I211

499

11.8 Assembly Process Flow
Figure 11-15 shows the typical process flow for mounting packages to the PCB.

Figure 11-15.Assembly Flow

11.9 Reflow Guidelines
The typical reflow profile consists of four sections. In the preheat section, the PCB assembly should be
preheated at the rate of 1 to 2 °C/sec to start the solvent evaporation and to avoid thermal shock. The
assembly should then be thermally soaked for 60 to 120 seconds to remove any volatile solder paste
and for activation of flux. The reflow section of the profile, the time above liquidus should be between
45 to 60 seconds with a peak temperature in the range of 245 to 250 °C, and the duration at the peak
should not exceed 30 seconds. Finally, the assembly should undergo cool down in the fourth section of
the profile. A typical profile band is provided in Figure 11-16, in which 220 °C is referred to as an
approximation of the liquidus point. The actual profile parameters depend upon the solder paste used
and specific recommendations from the solder paste manufacturers should be followed.

Ethernet Controller I211 —Design Considerations

500

Figure 11-16.Typical Profile Band

Note:

1. Preheat: 125 °C -220 °C, 150 - 210 s at 0.4 k/s to 1.0 k/s

2. Time at T > 220 °C: 60 - 90 s

3. Peak Temperature: 245-250 °C

4. Peak time: 10 - 30 s

5. Cooling rate: <= 6 k/s

6. Time from 25 °C to Peak: 240 – 360 s

Design Considerations—Ethernet Controller I211

501

11.10 XOR Testing
A common board or system-level manufacturing test for proper electrical continuity between the I211
and the board is some type of cascaded-XOR or NAND tree test. The I211 implements an XOR tree
spanning most I/O signals. The component XOR tree consists of a series of cascaded XOR logic gates,
each stage feeding in the electrical value from a unique pin. The output of the final stage of the tree is
visible on an output pin from the component.

Figure 11-17.XOR Tree Concept

By connecting to a set of test-points or bed-of-nails fixture, a manufacturing test fixture can test
connectivity to each of the component pins included in the tree by sequentially testing each pin, testing
each pin when driven both high and low, and observing the output of the tree for the expected signal
value and/or change.

Note: Some of the pins that are inputs for the XOR test are listed as “may be left disconnected” in
the pin descriptions. If XOR test is used, all inputs to the XOR tree must be connected.

When the XOR tree test is selected, the following behaviors occur:

• Output drivers for the pins listed as “tested” are all placed in high-impedance (tri-state) state to
ensure that board/system test fixture can drive the tested inputs without contention.

• Internal pull-up and pull-down devices for pins listed as “tested” are also disabled to further ensure
no contention with the board/system test fixture.

• The XOR tree is output on the LED1 pin.

To enter the XOR tree mode, a specific JTAG pattern must be sent to the test interface. This pattern is
described by the following TDF pattern: (dh = Drive High, dl = Drive Low)

dh (TEST_EN, JTAG_TDI) dl(JTAG_TCK,JTAG_TMS);

dh(JTAG_TCK);
dl(JTAG_TCK);

dh(JTAG_TMS);

loop 2
dh(JTAG_TCK);
dl(JTAG_TCK);
end loop

dl(JTAG_TMS);

loop 2
dh(JTAG_TCK);
dl(JTAG_TCK);
end loop

Ethernet Controller I211 —Design Considerations

502

dl(JTAG_TDI);
dh(JTAG_TCK);
dl(JTAG_TCK);

dh(JTAG_TDI);
dh(JTAG_TCK);
dl(JTAG_TCK);

dl(JTAG_TDI);
dh(JTAG_TCK);
dl(JTAG_TCK);

dh(JTAG_TDI);
dh(JTAG_TCK);
dl(JTAG_TCK);

dl(JTAG_TDI);
dh(JTAG_TCK);
dl(JTAG_TCK);

dh(JTAG_TDI)
dh(JTAG_TMS);
dh(JTAG_TCK);
dl(JTAG_TCK);

dl(JTAG_TMS);
dh(JTAG_TCK);
dl(JTAG_TCK);

dh(JTAG_TMS);
dh(JTAG_TCK);
dl(JTAG_TCK);
dh(JTAG_TCK);
dl(JTAG_TCK);

dl(JTAG_TMS);
dh(JTAG_TCK);
dl(JTAG_TCK);

hold(JTAG_TMS,TEST_EN,JTAG_TCK,JTAG_TDI);

Note: XOR tree reads left-to-right top-to-bottom.

Table 11-15.I211 Tested Pins Included in XOR Tree (3 pins)

Pin Name Pin Name Pin Name

LED0 LED1 (output of the XOR tree) LED2

Thermal Considerations—Ethernet Controller I211

501

12.0 Thermal Considerations

This section helps design a thermal solution for systems implementing the I211. It details the
maximum allowable operating junction and case temperatures and provides the methodology
necessary to measure these values. It also outlines the results of thermal simulations of the I211 in a
standard JEDEC test environment with a 2s2p board using various thermal solutions.

12.1 Intended Audience
The intended audience for this section is system design engineers using the I211. System designers are
required to address component and system-level thermal challenges as the market continues to adopt
products with higher speeds and port densities. New designs might be required to provide more
effective cooling solutions for silicon devices depending on the type of system and target operating
environment

12.2 Considerations
In a system environment, the temperature of a component is a function of both the system and
component thermal characteristics. System-level thermal constraints consist of the local ambient
temperature at the component, the airflow over the component and surrounding board, and the
physical constraints at, above, and surrounding the component that might limit the size of a thermal
solution.

The component's case and die temperature are the result of:

• Component power dissipation
• Component size
• Component packaging materials
• Type of interconnection to the substrate and motherboard
• Presence of a thermal cooling solution
• Power density of the substrate, nearby components, and motherboard

All of these parameters are pushed by the continued trend of technology to increase performance levels
(higher operating speeds, MHz) and power density (more transistors). As operating frequencies
increase and package size decreases, the power density increases and the thermal cooling solution
space and airflow become more constrained. The result is an increased emphasis on optimizing system
design to ensure that thermal design requirements are met for each component in the system.

Ethernet Controller I211 —Thermal Considerations

502

12.3 Thermal Management Importance
The objective of thermal management is to ensure that all system component temperatures are
maintained within their functional limits. The functional temperature limit is the range in which the
electrical circuits are expected to meet specified performance requirements. Operation outside the
functional limit can degrade system performance, cause logic errors, or cause device and/or system
damage. Temperatures exceeding the maximum operating limits can result in irreversible changes in
the device operating characteristics. Also note that sustained operation at a component maximum
temperature limit can affect long-term device reliability.

12.4 Terminology and Definitions
The following is a list of the terminology that is used in this section and their definitions:

QFN: Quad Flatpack No leads: A surface-mount package using a QFN structure whose PCB-
interconnect method consists of Pb-free perimeter lands and an exposed thermal pad on the
interconnect side of the package that are attached to a near chip-scale size substrate.

2s2p: A 4-layer board with two signal layers on the outside and two internal plane layers.

Thermal Resistance: The resulting change in temperature per watt of heat that passes from one
reference point to another.

Junction: Refers to a P-N (diode) junction on the silicon. In this document, it is used as a temperature
reference point (for example, өJA refers to the "junction" to "ambient" thermal resistance).

Ambient: Refers to the local ambient temperature of the bulk air approaching the component. It can
be measured by placing a thermocouple approximately 1 inch upstream from the component edge.

Lands: The pads on the PCB to which BGA balls are soldered.

PCB: Printed circuit board.

Printed Circuit Assembly (PCA): A PCB that has components assembled on it.

Thermal Design Power (TDP): The estimated maximum possible/expected power generated in a
component by a realistic application. TDP is a system design target associated with the maximum
component operating temperature specifications. Maximum power values are determined based on
typical DC electrical specification and maximum ambient temperature for a worst-case realistic
application running at maximum utilization.

LFM: A measure of airflow velocity in Linear Feet per Minute.

өJA (Theta JA): Thermal resistance from component junction to ambient, °C/W.

ΨJT (Psi JT): Junction-to-top (of package) thermal characterization parameter, °C/W. ΨJT does not
represent thermal resistance, but instead is a characteristic parameter that can be used to convert
between Tj and Tcase when knowing the total TDP. ΨJT is easy to characterize in simulations or
measurements and is defined as follows: This parameter can vary with environmental
conditions, such as airflow, thermal solution presence, and design

Thermal Considerations—Ethernet Controller I211

503

12.5 Package Thermal/Mechanical Specifications and Limit

12.5.1 Thermal Limits - Max Junction/Case

To ensure proper operation of the I211, the thermal solution must dissipate the heat generated by the
component and maintain a case temperature at or below the values listed in Table 12-16.

The I211 is designed to operate properly as long as the Tcase rating is not exceeded. Section 12.7.1
discusses proper guidelines for measuring the case temperature.

Table 12-16.Absolute Maximum Case Temperature

The thermal limits listed in Table 12-16 are based on simulated results of the package assembled on a
standard multi-layer, 2s2p board with 1oz internal planes and 2oz external trace layers in a forced
convection environment. The maximum case temperature is based on the maximum junction
temperature and defined by the relationship, Tcase-max = Tj-max - (ΨJT * PTDP) where ΨJT is the
junction-to-top (of package) thermal characterization parameter. If the case temperature exceeds the
specified Tcase max, thermal enhancements such as heat sinks or forced air is required.

Analysis indicates that real applications are unlikely to cause the I211 to be at Tcase-max for sustained
periods of time, given a properly designed thermal solution. Sustained operation at Tcase-max might
affect long-term reliability of the I211 and the system and thus should be avoided.

12.5.2 Thermal Specifications

The following table lists the package specific parameters under different conditions and environments.
The values өJA and ΨJT should be used as reference only as they will vary by system environment and
thermal solution. Unless otherwise noted, the simulations were run in a JEDEC environment with a four
layer (2s2p), 76.2 mm x 114.3 mm board with no heat sink.

Measured TDP (W) Tcase-max (°C)

0.74 W @ 70 °C Ambient Temperature 85

0.80 W @ 85 °C Ambient Temperature 105

Parameter Equation Conditions No Heat Sink
(°C/W)

ΘJA

P = TDP

No Airflow 30.7

1 m/s 20.9

2 m/s 19.1

3 m/s 18.2

ΨJT
P = TDP

No Airflow 0.06

1 m/s 0.31

2 m/s 0.48

3 m/s 0.63

Ethernet Controller I211 —Thermal Considerations

504

12.5.3 Simulation Setup

A simulation environment conforming to the JEDEC JESD51-2 standard was developed using a 101.5
mm x 114.5 mm, 2s2p board according to JEDEC JESD 51-9. Simulations were run with different
combinations of ambient temperature and airflow speed one solution scenario, as follows:

• No heat sink

Note: Keep the following in mind when reviewing the data that is included in this section:
• All data is preliminary and is not validated against physical samples.
• Your system design might be significantly different.
• A larger board with more than four copper layers might improve the I211 thermal performance.

12.6 Simulation Results
Table 1 lists the Tcase as a function of airflow and ambient temperature with the component operating
at the Thermal Design Power (TDP) in the environment previously listed. This table can be used as an
aid in determining a starting point for the optimum airflow for the I211.

Again, your system design might vary considerably from the environment used to generate these
values.

Note: Thermal models are available upon request (Flotherm: Detailed Model). Contact your local
Intel sales representative for the I211 thermal models.

Table 12-17.Thermal Simulation Results for Various Environmental Conditions

Note: The red value(s) indicate airflow/ambient combinations that exceed the allowable case
temperature.

 Airflow (LFM)

TC 0 50 100 150 200 250 300 350 400

45 68.49 65.06 65.06 65.06 65.06 65.06 65.06 65.06 65.06

50 73.33 69.98 69.24 69.24 69.24 69.24 69.24 69.24 69.24

55 78.16 74.89 74.18 73.74 73.42 73.17 72.97 72.79 72.64

60 83 79.82 79.13 78.7 78.38 78.14 77.94 77.77 77.61

65 87.74 84.74 84.07 83.65 83.35 83.11 82.91 82.74 82.59

70 92.68 89.66 89.02 88.61 88.31 88.08 87.88 87.71 87.56

75 99.3 96.17 95.5 95.07 94.76 94.51 94.3 94.12 93.96

80 104.1 101.1 100.4 100 99.72 99.47 99.27 99.09 98.93

85 109 106 105.4 105 104.7 104.4 104.2 104.1 103.9
No Heat Sink

0.74W

0.80W

A
m

bi
en

t
Te

m
pe

ra
tu

re
 (
C

)

Thermal Considerations—Ethernet Controller I211

505

12.7 Component Measurement Methodology
Measurement methodologies for determining the case and junction temperature are outlined in the
sections that follow.

12.7.1 Case Temperature Measurements

Special care is required when measuring the Tcase temperature to ensure an accurate temperature
measurement is produced. Use the following guidelines when measuring Tcase:

• Use 36-gauge (maximum) K-type thermocouples.
• Calibrate the thermocouple before making temperature measurements.
• Measure the surface temperature of the case in the geometric center of the case top.

Note: It is critical that the thermocouple bead be completely in contact with the package surface.
• Use thermally conductive epoxies, as necessary (again, ensuring the thermocouple bead is in

contact with the package surface).

Care must be taken in order to avoid introducing error into the measurements when measuring a
surface temperature. Measurement error might be induced by:

• Poor thermal contact between the thermocouple junction and the surface of the package.
• Contact between the thermocouple cement and the heat-sink base (if used).
• Heat loss through thermocouple leads.

12.7.1.1 Attaching the Thermocouple (No Heat Sink)

Following the guidelines listed, attach the thermocouple at a 0° angle if there is no interference with the
thermocouple attach location or leads (see Figure 2).

Figure 12-16.Technique for Measuring Tcase with 0° Angle Attachment, No Heat Sink

Ethernet Controller I211 —Thermal Considerations

506

12.8 PCB Layout Guidelines
The following general PCB design guidelines are recommended to maximize the thermal performance of
QFN packages:

• When connecting ground (thermal) vias to the ground planes, do not use thermal-relief patterns.
• Thermal-relief patterns are designed to limit heat transfer between the vias and the copper planes,

thus constricting the heat flow path from the component to the ground planes in the PCB.
• As board temperature also has an effect on the thermal performance of the package, avoid placing

the I211 adjacent to high-power dissipation devices.
• If airflow exists, locate the components in the mainstream of the airflow path for maximum thermal

performance. Avoid placing the components downstream, behind larger devices or devices with
heat sinks that obstruct or significantly preheat the air flow.

Note: The previous information is provided as a general guideline to help maximize the thermal
performance of the components.

12.9 Conclusion
Increasingly complex systems require more robust and well thought out thermal solutions. The use of
system air, ducting, passive or active heat sinks, or any combination thereof can help lead to a low cost
solution that meets your environmental constraints.

The simplest and most cost-effective method is to improve the inherent system cooling characteristics
through careful design and placement of fans, vents, and ducts. When additional cooling is required,
thermal enhancements can be implemented in conjunction with enhanced system cooling. The size of
the fan or heat sink can be varied to balance size and space constraints with acoustic noise.

Use the data and methodologies in this section as a starting point when designing and validating a
thermal solution for the I211. By maintaining the I211’s case temperature below those recommended
in this section, the I211 functions properly and reliably.

Diagnostics—Ethernet Controller I211

507

13.0 Diagnostics

13.1 Customer Visible Features

13.1.1 JTAG Test Mode Description

The I211 includes a JTAG (TAP) port that is compliant with the IEEE standard 1149.1, 2001 Edition
(JTAG). Institute of Electrical and Electronics Engineers (IEEE).

The TAP controller is accessed serially through the four dedicated pins TCK, TMS, TDI, and TDO. TMS,
TDI, and TDO operate synchronously with TCK which is independent of all other clock within the I211.
This interface can be used for test and debug purposes. System board interconnects can be DC tested
using the boundary scan logic in pads. Table 13-1 shows TAP controller related pin descriptions.
Table 13-2 describes the TAP instructions supported by the I211. The default instruction after JTAG
reset is IDCODE.

Table 13-1. TAP Controller Pins

Signal I/O Description

TCK In
Test clock input for the test logic defined by IEEE1149.1.
Note: Signal should be connected to ground through a 3.3 K pull-down resistor.

TDI In
Test Data Input. Serial test instructions and data are received by the test logic at this pin.
Note: Signal should be connected to VCC33 through a 3.3 K pull-up resistor.

TDO O/D
Test Data Output. The serial output for the test instructions and data from the test logic defined in IEEE1149.1.
Note: Signal should be connected to VCC33 through a 3.3 K pull-up resistor.

TMS In
Test Mode Select input. The signal received at TMS is decoded by the
TAP controller to control test operations.
Note: Signal should be connected to VCC33 through a 3.3 K pull-up resistor.

Ethernet Controller I211 —Diagnostics

508

Table 13-2. TAP Instructions Supported

Instruction Description Comment

BYPASS
The BYPASS command selects the Bypass Register, a single bit register
connected between TDI and TDO pins. This allows more rapid movement of
test data to and from other components in the system.

IEEE 1149.1 Std. Instruction

EXTEST
The EXTEST Instruction allows circuitry or wiring external to the devices to
be tested. Boundary-scan Register Cells at outputs are used to apply
stimulus while Boundary-scan cells at input pins are used to capture data.

IEEE 1149.1 Std. Instruction

SAMPLE /
PRELOAD

The SAMPLE/PRELOAD instruction is used to allow scanning of the
boundary scan register without causing interference to the normal
operation of the device. Two functions can be performed by use of the
Sample/Preload instruction.
SAMPLE – allows a snapshot of the data flowing into
and out of a device to be taken without affecting the normal operation of
the device.
PRELOAD – allows an initial pattern to be placed into the boundary scan
register cells. This allows initial known data to be present prior to the
selection of another boundary-scan test operation.

IEEE 1149.1 Std. Instruction

IDCODE

The IDCODE instruction is forced into the parallel output latches of the
instruction register during the Test-Logic-Reset TAP state. This allows the
device identification register to be selected by manipulation of the
broadcast TMS and TCK signals for testing purposes, as well as by a
conventional instruction register scan operation.
The ID code value for All I211 A0 SKUs is 0x01532013 (Intel's Vendor ID =
0x13, Device ID = 0x1532, Rev ID = 0x0).
The ID code value for All I211 A1 SKUs is 0x11532013 (Intel's Vendor ID =
0x13, Device ID = 0x1532, Rev ID = 0x1).
The ID code value for All I211 A2 SKUs is 0x21532013 (Intel's Vendor ID =
0x13, Device ID = 0x1532, Rev ID = 0x2).

IEEE 1149.1 Std. Instruction

USERCODE

After device reset and before the Device ID is read from iNVM:
For I211 A0 it is 0x01532013 (Intel's Vendor ID = 0x13, Device ID =
0x1532, Rev ID = 0x0).
For I211 A1 it is 0x11532013 (Intel's Vendor ID = 0x13, Device ID =
0x1532, Rev ID = 0x1).
For I211 A2 it is 0x21532013 (Intel's Vendor ID = 0x13, Device ID =
0x1532, Rev ID = 0x2).
Once the iNVM is read, the 16 Device ID bits, which are embedded in the
USER code value reflect the device SKU.

IEEE 1149.1 Std. Instruction

HIGHZ

The HIGHZ instruction is used to force all outputs of the device (except
TDO) into a high impedance state. This instruction shall select the Bypass
Register to be connected between TDI and TDO in the Shift-DR controller
state.

IEEE 1149.1 Std. Instruction

Packet Types—Ethernet Controller I211

509

Appendix A. Packet Types

This section describes the packet types supported by the header split/replication and other features.

A.1 Packet Types for Header Split/Replication
The following packet types describe the different formats of the packets that are supported by the
packet split or replicate feature in the I211. It describes the packets in the split-header point of view.
This means that when describing the different fields that are checked and compared, the Header Split/
Replication feature emphasizes only the fields that are needed to calculate the header length. This
section describes the checks that are done after the decision to pass the packet to the host memory
was made.

A.1.1 Terminology

• Compare - The field values are compared to the values that are specified in this section. For a
positive result to the compare the values must be equal.

• Checked - The value of the field is compared to the recalculated value (header length …), as
opposed to values specified here.

• Ignore - The field value is ignored but the field is counted to be part of the header.

A.1.2 Type 0 Ethernet (VLAN/SNAP)

This packet type contains an Ethernet header. If only PSRTYPE.PSR_TYPE0 bit is set, the packet is split
at the Ethernet header, even if additional headers are present. If other types are set, the header buffer
might contain higher level headers.

Offset # of bytes Field Value Action Comment

0 6 Destination Address Ignore

MAC Header – processed
by main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double) 0x8100 ****

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare Length means a value

smaller than 0x600.

12+D+S 2 Type Ignore IP

Ethernet Controller I211 —Packet Types

510

A.1.3 Type 1 Ethernet (VLAN/SNAP) IP Packets

A.1.3.1 Type 1.1 Ethernet, IP, Data

This packet type contains only Ethernet and IPv4 headers while the payload header of the IP is not
IPv6/TCP/UDP. The header of this type of packet is split/replicated only if PSRTYPE.PSR_TYPE1 is set.

In this case the packet will be cut after (34+D+S+N) bytes.

• The header of the packet is split only if the packet is a fragmented packet.

N = (IP HDR length – 5) * 4

Offset # of bytes Field Value Action Comment

0 6 Destination Address Ignore

MAC Header – processed
by main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double) 0x8100 ****

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare Length means a value

smaller than 0x600.

12+D+S 2 Type 0x0800 Compare IP

IPv4 Header

14+D+S 1 Version/ HDR length 0x4X Compare Check IPv4 and header
length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info
>0 or
MF bit is set

Check Check that the packet is
fragmented

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol Ignore Has no meaning if the
packet is fragmented

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

Packet Types—Ethernet Controller I211

511

A.1.3.2 Type 1.2: Ethernet (VLAN/snap), IPv4, TCP

This packet type contains all three Ethernet, IPv4, and TCP headers. The header of this type of packet
is split/replicated only if PSRTYPE.PSR_TYPE2 is set

In this case the packet is split after (54+D+S+N+F) bytes.

Offset # of bytes Field Value Action Comment

0 6 Destination Address Ignore
MAC Header –
processed by
main address
filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double) 0x8100 ****

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare

Length means a
value smaller
than 0x600.

12+D+S 2 Type 0x0800 Compare IP

 IPv4 Header

14+D+S 1 Version/ HDR length 0x4X Compare Check IPv4 and
header length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info 0x00 Compare

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol 0x06 Compare TCP header

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

 TCP Header

34+D+S+N 2 Source Port Not (0x801) Check Not NFS packet

36+D+S+N 2 Destination Port Not (0x801) Check Not NFS packet

38+D+S+N 4 Sequence number - Ignore

42+D+S+N 4 Acknowledge number - Ignore

46+D+S+N 1/2 Header Length Check

46.5+D+S+N 1.5 Different bits - Ignore

48+D+S+N 2 Window size - Ignore

50+D+S+N 2 TCP checksum - Ignore

52+D+S+N 2 Urgent pointer - Ignore

54+D+S+N F TCP options - Ignore

Ethernet Controller I211 —Packet Types

512

N = (IP HDR length –5) * 4.
F = (TCP header length – 5) * 4.

A.1.3.3 Type 1.3: Ethernet (SNAP/VLAN), IPv4, UDP

This packet type contains all three Ethernet, IPv4, and UDP headers. The header of this type of packet
is split/replicated only if PSRTYPE.PSR_TYPE3 is set.

In this case the packet is split after (42+D+S+N) bytes.

Offset # of bytes Field Value Action Comment

0 6 Destination Address Ignore
MAC Header –
processed by main
address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or double) 0x8100 ****
Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare

Length means a
value smaller than
0x600.

12+D+S 2 Type 0x0800 Compare IP

 IP Header

14+D+S 1 Version/ HDR length 0x4X Compare Check IPv4 and
header length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info
(xx00)
000h

Compare

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol 0x11 Compare UDP header

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

UDP Header

34+D+S+N 2 Source Port Not (0x801) Check Not NFS packet

36+D+S+N 2 Destination Port Not (0x801) Check Not NFS packet

38+D+S+N 2 Length - Ignore

40+D+S+N 2 Checksum - Ignore

Packet Types—Ethernet Controller I211

513

A.1.3.4 Type 1.4: Ethernet, IPv4, IPv6

A.1.3.4.1 Ipv6 Header Options Processing

If the next header field in the IPv6 header is equal to 0x00/0x2B/0x2C/0x3B/0x3c then the next header
is an IPv6 option header with the following structure:

Header Len determines the length of the header while the next header field determines the identity of
the next header (could be any IPv6 extension header or another IPv6 header option).

A.1.3.4.2 The header of this type of packet is split/replicated only if PSRTYPE.PSR_TYPE
is set.

A.1.3.4.3 IPv6 Next Header Values

When parsing an IPv6 header, the I211 does not parse every kind of extension header. Packets
containing an extension header that are not supported by the I211 is treated as an unknown payload
after the IPv6 header. The next header in a fragment header is ignored and this extension header is
expected to be the last header.

A.1.3.4.4 Type 1.4.1: Ethernet (VLAN/SNAP), IPv4, IPv6, data

This packet type contains all three Ethernet, IPv4, and IPv6 headers. The header of this type of packet
is split/replicated only if PSRTYPE.PSR_TYPE4 is set.

Next Header (8 bit) Header Len (8 bit

Option Header Parameters

Value Header Type

0x00 Hop by Hop

0x2B Routing

0x2C Fragment

0x3B No next header (EOL)

0x3C Destination option header

Offset # of Bytes Field Value Action Comment

0 6 Destination Address Ignore

MAC Header – processed
by main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single
or double) 0x8100 ****

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare Length means a value

smaller than 0x600.

12+D+S 2 Type 0x0800 Compare IP

 IPv4 Header

14+D+S 1 Version/ DR length 0x4X Compare Check IPv4 and header
length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

Ethernet Controller I211 —Packet Types

514

In this case the packet is split after (74+D+S+N+B) bytes.

N = (IP HDR length – 5) * 4.

One of the extension headers of the IPv6 packets must be a fragment header in order for the packet to
be parsed.

A.1.3.4.5 Type 1.4.2: Ethernet (VLAN/SNAP), IPv4, IPv6, TCP

This packet type contains all four Ethernet, IPv4, IPv6, and TCP headers. The header of this type of
packet is split/replicated only if PSRTYPE.PSR_TYPE5 is set.

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info 0x00 Compare

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol 0x29 Compare Ipv6

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

 Ipv6 Header

34+D+S+N 1 Version/ Traffic Class 0x6X Compare Check IPv6

35+D+S+N 3 Traffic Class/Flow Label - Ignore

38+D+S+N 2 Payload Length - Ignore

40+D+S+N 1 Next Header IPv6 extension
headers Check

41+D+S+N 1 Hop Limit - Ignore

42+D+S+N 16 Source Address - Ignore

48+D+S+N 16 Destination Address Ignore

74+D+S+N B Possible IPv6 Next
Headers - Ignore

Offset # of Bytes Field Value Action Comment

0 6 Destination Address Ignore
MAC Header –
processed by main
address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double) 0x8100 ****

Compare on
internal
VLAN only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare

Length means a
value smaller than
0x600.

12+D+S 2 Type 0x0800 Compare IP

 IPv4 Header

Offset # of Bytes Field Value Action Comment

Packet Types—Ethernet Controller I211

515

In this case the packet is split after (94+D+S+N+B+F) bytes.

14+D+S 1 Version/ HDR length 0x4X Compare Check IPv4 and
header length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info 0x00 Compare

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol 0x29 Compare Ipv6

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

 Ipv6 Header

34+D+S+N 1 Version/ Traffic Class 0x6X Compare Check IPv6

35+D+S+N 3 Traffic Class/Flow Label - Ignore

38+D+S+N 2 Payload Length - Ignore

40+D+S+N 1 Next Header
Ipv6 extension
header
Or 0x06 (TCP)

Check IPv6 extension
headers

41+D+S+N 1 Hop Limit - Ignore

42+D+S+N 16 Source Address - Ignore

58+D+S+N 16 Destination Address Ignore

74+D+S+N B Possible IPv6 Next Headers - Ignore

 TCP Header

74+T 2 Source Port Not (0x801) Check Not NFS packet

76+T 2 Destination Port Not (0x801) Check Not NFS packet

78+T 4 Sequence number - Ignore

82+T 4 Acknowledge number - Ignore

86+T 1/2 Header Length Check

86.5+T 1.5 Different bits - Ignore

88+T 2 Window size - Ignore

90+T 2 TCP checksum - Ignore

92+T 2 Urgent pointer - Ignore

94+T F TCP options - Ignore

Offset # of Bytes Field Value Action Comment

Ethernet Controller I211 —Packet Types

516

T = D+S+N+B
N = (IP HDR length – 5) * 4.
F = (TCP HDR length – 5)*4

A.1.3.4.6 Type 1.4.3: Ethernet (VLAN/SNAP), IPv4, IPv6, UDP

This packet type contains all four Ethernet, IPv4, IPv6, and UDP headers. The header of this type of
packet is split/replicated only if PSRTYPE.PSR_TYPE6 is set.

Offset # of Bytes Field Value Action Comment

0 6 Destination Address Ignore

MAC Header – processed
by main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double) 0x8100 ****

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header Length +
0xAAAA030000 Compare Length means a value

smaller than 0x600.

12+D+S 2 Type 0x0800 Compare IP

 IPv4 Header

14+D+S 1 Version/ HDR length 0x4X Compare Check IPv4 and header
length

15+D+S 1 Type of Service - Ignore

16+D+S 2 Packet Length - Ignore

18+D+S 2 Identification - Ignore

20+D+S 2 Fragment Info 0x00 Compare

22+D+S 1 Time to live - Ignore

23+D+S 1 Protocol 0x29 Compare Ipv6

24+D+S 2 Header Checksum - Ignore

26+D+S 4 Source IP Address - Ignore

30+D+S 4 Destination IP Address - Ignore

34+D+S N Possible IP Options Ignore

 Ipv6 Header

34+D+S+N 1 Version/ Traffic Class 0x6X Compare Check IPv6

35+D+S+N 3 Traffic Class/Flow Label - Ignore

38+D+S+N 2 Payload Length - Ignore

40+D+S+N 1 Next Header
IPv6 extension
header
or 0x11 (UDP)

Check IPv6 extension headers:

41+D+S+N 1 Hop Limit - Ignore

42+D+S+N 16 Source Address - Ignore

58+D+S+N 16 Destination Address Ignore

74+D+S+N B Possible IPv6 Next Headers - Ignore

Packet Types—Ethernet Controller I211

517

In this case the packet is split after (82+D+S+N+B) bytes.

N = (IP HDR length – 5) * 4.

A.1.4 Type 2: Ethernet, IPv6

A.1.4.1 Type 2.1: Ethernet (VLAN/SNAP), IPv6, Data

This packet type contains both Ethernet and IPv6 headers while the packet should be a fragmented
packet. If the packet is not fragmented and the next header is not one of the supported types from
Section A.1.3.4 then the header is not split. The header of this type of packet is split/replicated only if
PSRTYPE.PSR_TYPE7 is set.

In this case the packet is split after (54+D+S+N) bytes.

UDP Header

74+D+S+N+B 2 Source Port Not (0x801) Check Not NFS packet

76+D+S+N+B 2 Destination Port Not (0x801) Check Not NFS packet

78+D+S+N+B 2 Length - Ignore

80+D+S+N+B 2 Checksum - Ignore

Offset # of Bytes Field Value
(hex) Action Comment

0 6 Destination Address Ignore

MAC Header – processed by
main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or double) 0x8100

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header
Length +
0xAAAA03
0000

Compare Length means a value
smaller than 0x600.

12+D+S 2 Type 0x86DD Compare IP

IPv6 Header

14+D+S 1 Version/ Traffic Class 0x6X Compare Check IPv6

15+D+S 3 Traffic Class/Flow Label - Ignore

18+D+S 2 Payload Length - Ignore

20+D+S 1 Next Header
IPv6 next
header
types

Check
 The last header must be
fragmented header in order
for the header to be split.

21+D+S 1 Hop Limit - Ignore

22+D+S 16 Source Address - Ignore

38+D+S 16 Destination Address Ignore

54+D+S N Possible IPv6 Next Headers - Ignore

Offset # of Bytes Field Value Action Comment

Ethernet Controller I211 —Packet Types

518

The last next header field of the IP section field should not be 0x11/0x06 (TCP/UDP).

A.1.4.2 Type 2.2: Ethernet (VLAN/SNAP) IPv6 TCP

This packet type contains all three Ethernet, IPv6, and TCP headers. The header of this type of packet
is split/replicated only if PSRTYPE.PSR_TYPE8 is set.

In this case the packet is split after (54+D+S+N+F) bytes.

Offset # of Bytes Field Value
(hex) Action Comment

0 6 Destination Address Ignore

MAC Header – processed by
main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double)

0x8100

Compare on
internal VLAN
only

12+S D=(0/8) Possible LLC/SNAP Header
Length +
0xAAAA030
000

Compare Length means a value
smaller than 0x600.

12+D+S 2 Type 0x86DD Compare IP

IPv6 Header

14+D+S 1 Version/ Traffic Class 0x6X Compare Check IPv6

15+D+S 3 Traffic Class/Flow Label - Ignore

18+D+S 2 Payload Length - Ignore

20+D+S 1 Next Header

IPv6 next
header
types or
0x06 (TCP)

Check

21+D+S 1 Hop Limit - Ignore

22+D+S 16 Source Address - Ignore

38+D+S 16 Destination Address Ignore

54+D+S N Possible IPv6 Next Headers - Ignore

 TCP Header

54+D+S+N 2 Source Port Not (0x801) Check Not NFS packet

56+D+S+N 2 Destination Port Not (0x801) Check Not NFS packet

58+D+S+N 4 Sequence number - Ignore

62+D+S+N 4 Acknowledge number - Ignore

66+D+S+N 1/2 Header Length Check

66.5+D+S+N 1.5 Different bits - Ignore

68+D+S+N 2 Window size - Ignore

70+D+S+N 2 TCP checksum - Ignore

72+D+S+N 2 Urgent pointer - Ignore

74+D+S+N F TCP options - Ignore

Packet Types—Ethernet Controller I211

519

F = (TCP header length – 5) * 4

The last Next-header field of the last header of the IP section must be 0x11.

A.1.4.3 Type 2.3: Ethernet (VLAN/SNAP) IPv6 UDP

This packet type contains all three Ethernet, IPv6, and UDP headers. The header of this type of packet
is split/replicated only if PSRTYPE.PSR_TYPE9 is set.

In this case the packet is split after (62+D+S+N) bytes.

The last Next-header field of the last header of the IP section must be 0x06.

Offset # of Bytes Field Value
(hex) Action Comment

0 6 Destination Address Ignore

MAC Header – processed by
main address filter, or
broadcast

6 6 Source Address Ignore

12 S=(0/4/8) Possible VLAN Tags (single or
double)

0x8100

Compare on
internal
VLAN only

12+S D=(0/8) Possible LLC/SNAP Header
Length +
0xAAAA030
000

Compare Length means a value
smaller than 0x600.

12+D+S 2 Type 0x86DD Compare IP

IPv6 Header

14+D+S 1 Version/ Traffic Class 0x6X Compare Check IPv6

15+D+S 3 Traffic Class/Flow Label - Ignore

18+D+S 2 Payload Length - Ignore

20+D+S 1 Next Header

IPv6 next
header
types
Or
0x11 (UDP)

Check

21+D+S 1 Hop Limit - Ignore

22+D+S 16 Source Address - Ignore

38+D+S 16 Destination Address Ignore

54+D+S N Possible IPv6 Next Headers - Ignore

UDP Header

54+D+S+N 2 Source Port Not (0x801) Check Not NFS packet

56+D+S+N 2 Destination Port Not (0x801) Check Not NFS packet

58+D+S+N 2 Length - Ignore

60+D+S+N 2 Checksum - Ignore

Ethernet Controller I211 —Packet Types

520

A.1.5 Type 3: NFS Packets

NFS headers can come in all the frames that contain a UDP/TCP header. The NFS (and RPC headers)
are extensions to these types of packets. All of the packets previously described in sections A.1.3.2,
A.1.3.2, A.1.3.4.5, A.1.3.4.5, A.1.4.3, and A.1.4.2, can accommodate NFS headers.

PSRTYPE.PSR_TYPE11/12/14/15/18/19 controls the split/replication behavior of NFS packets. See
Section 8.9.3 for details.

In this section, only the NFS (and RPC) header is described. The length of this header should be added
to the length of the primary type of the packet.

The I211 starts looking within the UDP/TCP payload to check whether it contains an NFS header. This is
determined when either the source or destination port of the TCP/UDP is equal to 0x801.

• Destination port equal 0x801 => NFS write request (as received by the NFS server).
• Source port equal 0x801 => NFS read response (as received by the NFS client).

The VSZ/CSZ fields are each 4 bytes long but their actual values are less than 2 words by definition so
hardware only checks the lower 2 bytes of these size fields.

RPC read requests are not described in this document since they contain only headers and no data
therefore there is no need to split them.

Note: NFS over TCP is problematic – due to the fact that the RPC header might appear in the middle
of the frame. It remains to be checked if software always supports putting the RPC right next
to the UDP/TCP header.

A.1.5.1 Type 3.1: NFS Write Request

In all write requests, the destination port of the TCP/UDP header must be 0x801.

Packet Types—Ethernet Controller I211

521

A.1.5.1.1 Type 3.1.1: NFS Write Request (NFSv2)

In this case the NFS header size is (80+D+B+F) bytes. This length should be added to the UDP/TCP
type that was already parsed.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 Message type 0x00 Compare

4+D 4 RPC version 0x02 Compare

8+D 4 RPC program 0x18A63 Compare

12+D 4 Program version 0x02 Compare

16+D 4 Procedure 0x08 Compare

20+D 4 Credentials Size (CSZ) <400 Check

24+D B Credentials Data (CSZ) - Ignore B = (CSZ pad 4)

24+D+B 4 Verifier Flavor - Ignore

28+D+B 4 Verifier Size (VSZ) <400 Check

32+D+B F Verifier Data Ignore F = (VSZ pad 4)

NFS Header

32+D+B+F 32 handle Ignore

64+D+B+F 4 begin offset Ignore

68+D+B+F 4 Offset Ignore

72+D+B+F 4 Total count Ignore

76+D+B_F 4 Data len Ignore

Ethernet Controller I211 —Packet Types

522

A.1.5.1.2 Type 3.1.2: NFS Write Request (NFSv3)

In this case the NFS header size is (56+D+B+F+S) bytes. This length should be added to the UDP/TCP
type that was already parsed.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 Message type 0x00 Compare

4+D 4 RPC version 0x02 Compare

8+D 4 RPC program 0x18A63 Compare

12+D 4 Program version 0x03 Compare

16+D 4 Procedure 0x07 Compare

20+D 4 Credentials Size (CSZ) <400 Check

24+D B Credentials Data (CSZ) - Ignore B = (CSZ padded to 4)

24+D+B 4 Verifier Flavor - Ignore

28+D+B 4 Verifier Size (VSZ) <400 Check

32+D+B F Verifier Data Ignore F = (VSZ padded to 4)

NFS Header

32+D+B+F 4 Fhandle_size <64 Check

36+D+B+F S fhandle Ignore S = (Fhandle_size padded to
4)

36+D+B+F+S 8 Offset Ignore

44+D+B+F+S 4 Count Ignore

48+D+B+F+S 4 Stable_how Ignore

52+D+B+F+S 4 Data len Ignore

Packet Types—Ethernet Controller I211

523

A.1.5.1.3 Type 3.1.3: NFS Write Request (NFSv4)

In this case the NFS header size is (56+D+B+F) bytes. This length should be added to the UDP/TCP
type that was already parsed.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 Message type 0x00 Compare

4+D 4 RPC version 0x02 Compare

8+D 4 RPC program 0x18A63 Compare

12+D 4 Program version 0x04 Compare

16+D 4 Procedure 0x26 Compare

20+D 4 Credentials Size (CSZ) <400 Check

24+D B Credentials Data (CSZ) - Ignore B = (CSZ pad 4)

24+D+B 4 Verifier Flavor - Ignore

28+D+B 4 Verifier Size (VSZ) <400 Check

32+D+B F Verifier Data Ignore F = (VSZ pad 4)

NFS Header

32+D+B+F 8 State id Ignore

40+D+B+F 8 Offset Ignore

48+D+B+F 4 Stable_how Ignore

52+D+B+F 4 Data len Ignore

Ethernet Controller I211 —Packet Types

524

A.1.5.2 Type 3.2: NFS Read Response

A.1.5.2.1 The I211 should be configured to the right version via its configuration space.

A.1.5.2.2 Type 3.2.1: NFS Read Response (NFSv2)

In this case the NFS header size is (100+D+F) bytes. This length should be added to the UDP/TCP type
that was already parsed.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 XID Ignore

4+D 4 Message type 0x01 Compare

8+D 4 Reply status 0x00 Ignore
‘0’ means O.K and only if this
value is ‘0’ there will be
additional data

12+D 4 Verifier Flavor - Ignore

16+D 4 Verifier Size (VSZ) <400 Check

20+D F Verifier Data - Ignore F = (VSZ pad 4)

20+D+F 4 Accept status 0x00 Ignore ‘0’ means O.K

NFS Header

24+D+F 4 Status 0x00 Ignore

28+D+F 68 Attributes - Ignore

96+D+F 4 Data len - Ignore

Packet Types—Ethernet Controller I211

525

A.1.5.2.3 Type 3.2.1: NFS Read Response (NFSv3)

In this case the NFS header size is (40+D+F+S) bytes. This length should be added to the UDP/TCP
type that was already parsed.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 XID - Ignore

4+D 4 Message type 0x01 Compare

8+D 4 Reply status 0x00 Ignore
‘0’ means O.K and only if
this value is ‘0’ there will be
additional data

12+D 4 Verifier Flavor - Ignore

16+D 4 Verifier Size (VSZ) <400 Check

20+D F Verifier Data - Ignore F = (VSZ pad 4)

20+D+F 4 Accept status 0x00 Ignore ‘0’ means O.K

NFS Header

24+D+F 4 Status 0x00 Ignore

4 Attr_follow - Check

28+D+F S Attributes - Ignore
Attr_flow=1 ? S=84:
S=0

28+D+F+S 4 Count - Ignore

32+D+F+S 4 Eof - Ignore

36+D+F+S 4 Data len - Ignore

Ethernet Controller I211 —Packet Types

526

A.1.5.2.4 Type 3.2.1: NFS Read Response (NFSv4)

In this case the NFS header size is (36+D+F) bytes. This length should be added to the UDP/TCP type
that was already parsed.

A.2 IP and TCP/UDP Headers for TSO
This section outlines the format and content for the IP, TCP and UDP headers. The I211 requires
baseline information from the software device driver in order to construct the appropriate header
information during the segmentation process.

Header fields that are modified by the I211 are highlighted in the figures that follow.

Note: IPv4 requires the use of a checksum for the header. IPv6 does not use a header checksum.

IPv4 length includes the TCP and IP headers, and data. IPv6 length does not include the IPv6 header.

Note: The IP header is first shown in the traditional (such as RFC 791) representation, and because
byte and bit ordering is confusing in that representation, the IP header is also shown in little
endian format. The actual data is fetched from memory in little endian format.

Offset # of Bytes Field Value (hex) Action Comment

RPC Header

0 D =(0/4) Record Header - Ignore
If the previous header was
TCP header than this field
contain 4 bytes

0+D 4 XID - Ignore

4+D 4 Message type 0x01 Compare

8+D 4 Reply status 0x00 Ignore
‘0’ means O.K and only if
this value is ‘0’ there will be
additional data

12+D 4 Verifier Flavor - Ignore

16+D 4 Verifier Size (VSZ) <400 Check

20+D F Verifier Data - Ignore F = (VSZ pad 4)

20+D+F 4 Accept status 0x00 Ignore ‘0’ means O.K

NFS Header

24+D+F 4 Status 0x00 Ignore ‘0’ means O.K

28+D+F 4 eof - Ignore

32+D+F 4 Data len - Ignore

Table A-1. IPv4 Header (Traditional Representation)

 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version IP Hdr Length TYPE of service Total length

Identification Flags Fragment Offset

Time to Live Layer 4 Protocol ID Header Checksum

Packet Types—Ethernet Controller I211

527

Identification is incremented on each packet.

Flags Field Definition:

The Flags field is defined as follows. Note that hardware does not evaluate or change these bits.

• MF - More Fragments
• NF - No Fragments
• Reserved

The I211 does TCP segmentation, not IP fragmentation. IP fragmentation might occur in transit through
a network's infrastructure.

Source Address

Destination Address

Options

Table A-2. IPv4 Header (Little Endian Order)

Byte3 Byte2 Byte1 Byte0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

 LSB Total length MSB TYPE of service Version IP Hdr Length

Fragment Offset Low R
ES

N
F

M
F

Fragment Offset
High LSB Identification MSB

Header Checksum Layer 4 Protocol ID Time to Live

Source Address

Destination Address

Options

Table A-3. IPv6 Header (Traditional Representation)

 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version Priority Flow Label

Payload Length Next Header Type Hop Limit

Source Address

Destination Address

Extensions (if any)

Table A-1. IPv4 Header (Traditional Representation)

Ethernet Controller I211 —Packet Types

528

A TCP or UDP frame uses a 16 bit wide one's complement checksum. The checksum word is computed
on the outgoing TCP or UDP header and payload, and on the pseudo header. Details on checksum
computations are provided in Section 7.2.4.

Note: TCP and UDP over IPv6 requires the use of checksum, where it is optional for UDP over IPv4.
The TCP header is first shown in the traditional (such as RFC 793) representation, and
because byte and bit ordering is confusing in that representation, the TCP header is also
shown in little endian format. The actual data is fetched from memory in little endian format.

Table A-4. IPv6 Header (Little Endian Order)

Byte3 Byte2 Byte1 Byte0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Flow Label Version Priority

Hop Limit Next Header Type LSB Payload Length MSB

Source Address

Destination Address

Extensions

Table A-5. TCP Header (Traditional Representation)

 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port

Sequence Number

Acknowledgement Number

TCP Header
Length Reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N Window

Checksum Urgent Pointer

Options

Table A-6. TCP Header (Little Endian)

Byte3 Byte2 Byte1 Byte0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Destination Port Source Port

LSB Sequence Number MSB

Acknowledgement Number

Window RE S
U
R
G

A
C
K

PS
H

R
ST

SY
N FIN TCP Header

Length Reserved

Urgent Pointer Checksum

Options

Packet Types—Ethernet Controller I211

529

The TCP header is always a multiple of 32-bit words. TCP options might occupy space at the end of the
TCP header and are a multiple of 8 bits in length. All options are included in the checksum.

The checksum also covers a 96-bit pseudo header conceptually prefixed to the TCP Header (see
Table A-7). For IPv4 packets, this pseudo header contains the IP Source Address, the IP Destination
Address, the IP Protocol field, and TCP Length. Software pre-calculates the partial pseudo header sum,
which includes IPv4 SA, DA and protocol types, but NOT the TCP length, and stores this value into the
TCP checksum field of the packet. For both IPv4 and IPv6, hardware needs to factor in the TCP length
to the software supplied pseudo header partial checksum.

Note: When calculating the TCP pseudo header, the byte ordering can be tricky. One common
question is whether the Protocol ID field is added to the “lower” or “upper” byte of the 16- bit
sum.
The Protocol ID field should be added to the least significant byte (LSB) of the 16-bit pseudo
header sum, where the most significant byte (MSB) of the 16-bit sum is the byte that
corresponds to the first checksum byte out on the wire.

The TCP Length field is the TCP Header Length including option fields plus the data length in bytes,
which is calculated by hardware on a frame-by-frame basis. The TCP Length does not count the 12
bytes of the pseudo header. The TCP length of the packet is determined by hardware as:

TCP Length = min(MSS, PAYLOADLEN) + L5_LEN

The two flags that may be modified are defined as:

• PSH: receiver should pass this data to the application without delay
• FIN: sender is finished sending data

The handling of these flags is described in Section 7.2.4.

Payload is normally MSS except for the last packet where it represents the remainder of the payload.

Note: From RFC2460:
• If the IPv6 packet contains a Routing header, the Destination Address used in the pseudo-header is

that of the final destination. At the originating node, that address will be in the last element of the
Routing header; at the recipient(s), that address will be in the Destination Address field of the IPv6
header.

• The Next Header value in the pseudo-header identifies the upper-layer protocol (e.g., 6 for TCP, or
17 for UDP). It will differ from the Next Header value in the IPv6 header if there are extension
headers between the IPv6 header and the upper-layer header.

Table A-7. TCP/UDP Pseudo Header Content for IPv4 (Traditional Representation)
IPv4 Source Address

IPv4 Destination Address

Zero Layer 4 Protocol ID TCP/UDP Length

Table A-8. TCP/UDP Pseudo Header Content for IPv6 (Traditional Representation)
IPv6 Source Address

IPv6 Final Destination Address

TCP/UDP Packet Length

Zero Next Header

Ethernet Controller I211 —Packet Types

530

• The Upper-Layer Packet Length in the pseudo-header is the length of the upper-layer header and
data (e.g., TCP header plus TCP data). Some upper-layer protocols carry their own length
information (e.g., the Length field in the UDP header); for such protocols, that is the length used in
the pseudo- header. Other protocols (such as TCP) do not carry their own length information, in
which case the length used in the pseudo-header is the Payload Length from the IPv6 header,
minus the length of any extension headers present between the IPv6 header and the upper-layer
header.

• Unlike IPv4, when UDP packets are originated by an IPv6 node, the UDP checksum is not optional.
That is, whenever originating a UDP packet, an IPv6 node must compute a UDP checksum over the
packet and the pseudo-header, and, if that computation yields a result of zero, it must be changed
to hex FFFF for placement in the UDP header. IPv6 receivers must discard UDP packets containing a
zero checksum, and should log the error.

A type 0 Routing header has the following format:

• Next Header - 8-bit selector.

— Identifies the type of header immediately following the Routing header.
— Uses the same values as the IPv4 Protocol field [RFC-1700 et seq.].

• Hdr Ext Len - 8-bit unsigned integer. Length of the Routing header in 8-octet units, not including
the first 8 octets. For the Type 0 Routing header, Hdr Ext Len is equal to two times the number of
addresses in the header.

• Routing Type - 0.
• Segments Left - 8-bit unsigned integer. Number of route segments remaining, i.e., number of

explicitly listed intermediate nodes still to be visited before reaching the final destination. Equal to
“n” at the source node.

Reserved - 32-bit reserved field. Initialized to zero for transmission; ignored on reception.

• Address[1...n] - Vector of 128-bit addresses, numbered 1 to n.

The UDP header is always 8 bytes in size with no options.

Table A-9. IPv6 Routing Header (Traditional Representation)

Next Header Hdr Ext Len
Routing Type

“0”
Segments Left

“n”

Reserved

Address[1]

Address[2]

…

Final Destination Address[n]

Table A-10. UDP Header (Traditional Representation)

 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port

Length Checksum

Packet Types—Ethernet Controller I211

531

UDP pseudo header has the same format as the TCP pseudo header. The pseudo header conceptually
prefixed to the UDP header contains the IPv4 source address, the IPv4 destination address, the IPv4
protocol field, and the UDP length (same as the TCP Length discussed above). This checksum procedure
is the same as is used in TCP.

Unlike the TCP checksum, the UDP checksum is optional (for IPv4). Software must set the TXSM bit in
the TCP/IP Context Transmit Descriptor to indicate that a UDP checksum should be inserted. Hardware
will not overwrite the UDP checksum unless the TXSM bit is set.

Table A-11. UDP Header (Little Endian Order)

Byte3 Byte2 Byte1 Byte0

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Destination Port Source Port

Checksum Length

Ethernet Controller I211 —Packet Types

532

Note: This page intentionally left blank.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Intel:

 WGI211AT S LJXY WGI211AT S LJXZ WGI211AT Q Q6Z

http://www.mouser.com/Intel
http://www.mouser.com/access/?pn=WGI211AT S LJXY
http://www.mouser.com/access/?pn=WGI211AT S LJXZ
http://www.mouser.com/access/?pn=WGI211AT Q Q6Z

	Intel® Ethernet Controller I211 Datasheet
	1.0 Introduction
	1.1 Scope
	1.2 Terminology and Acronyms
	1.2.1 External Specification and Documents
	1.2.1.1 Network Interface Documents
	1.2.1.2 Host Interface Documents
	1.2.1.3 Networking Protocol Documents
	1.2.1.4 Proxy Documents

	1.3 Product Overview
	1.4 External Interface
	1.4.1 PCIe Interface
	1.4.2 Network Interfaces
	1.4.3 Internal Non-Volatile Memory (iNVM)
	1.4.4 Software-Definable Pins (SDP) Interface (General-Purpose I/O)
	1.4.5 LED Interface

	1.5 Features
	1.6 I210 and I211 Options
	1.7 Overview of Changes Compared to the I350
	1.7.1 Network Interface
	1.7.1.1 Energy Efficient Ethernet (IEEE802.3AZ)
	1.7.1.2 Tx Timestamp

	1.7.2 Virtualization
	1.7.2.1 Number of Exact Match Filters

	1.7.3 Host Interface
	1.7.3.1 MSI-X Support

	1.7.4 BOM Cost Reduction
	1.7.4.1 On-chip 0.9V SVR Control

	1.8 Device Data Flows
	1.8.1 Transmit Data Flow
	1.8.2 Receive Data Flow

	2.0 Pin Interface
	2.1 Pin Assignments
	2.2 Pull-Up/Pull-Down Resistors
	2.3 Signal Type Definition
	2.3.1 PCIe
	2.3.2 Testability
	2.3.3 LEDs
	2.3.4 PHY Pins
	2.3.5 Miscellaneous Pins
	2.3.6 Power Supplies and Support Pins
	2.3.6.1 Power Support
	2.3.6.2 Power Supply

	2.4 Strapping Options
	2.5 Package

	3.0 Interconnects
	3.1 PCIe
	3.1.1 PCIe Overview
	3.1.1.1 Architecture, Transaction and Link Layer Properties
	3.1.1.2 Physical Interface Properties
	3.1.1.3 Advanced Extensions

	3.1.2 General Functionality
	3.1.2.1 Native/Legacy
	3.1.2.2 Transactions

	3.1.3 Host Interface
	3.1.3.1 Tag IDs
	3.1.3.1.1 TAG ID Allocation for Read Transactions
	3.1.3.1.2 TAG ID Allocation for Write Transactions
	3.1.3.1.2.1 Case 1 - DCA Disabled in the System
	3.1.3.1.2.2 Case 2 - DCA Enabled in the System, but Disabled for the Request
	3.1.3.1.2.3 Case 3 - DCA Enabled in the System, DCA Enabled for the Request
	3.1.3.1.2.4 Case 4 - TPH Enabled in the System, TPH Enabled for the Request

	3.1.3.2 Completion Timeout Mechanism
	3.1.3.2.1 Completion Timeout Period

	3.1.4 Transaction Layer
	3.1.4.1 Transaction Types Accepted by the I211
	3.1.4.1.1 Configuration Request Retry Status
	3.1.4.1.2 Partial Memory Read and Write Requests

	3.1.4.2 Transaction Types Initiated by the I211
	3.1.4.2.1 Data Alignment
	3.1.4.2.2 Multiple Tx Data Read Requests (MULR)

	3.1.4.3 Messages
	3.1.4.3.1 Message Handling by the I211 (as a Receiver)
	3.1.4.3.2 Message Handling by I211 (as a Transmitter)

	3.1.4.4 Ordering Rules
	3.1.4.4.1 Out of Order Completion Handling

	3.1.4.5 Transaction Definition and Attributes
	3.1.4.5.1 Max Payload Size
	3.1.4.5.2 Relaxed Ordering
	3.1.4.5.3 Snoop Not Required
	3.1.4.5.4 No Snoop and Relaxed Ordering for LAN Traffic
	3.1.4.5.4.1 No-Snoop Option for Payload

	3.1.4.5.5 TLP Processing Hint (TPH)

	3.1.4.6 Flow Control
	3.1.4.6.1 I211 Flow Control Rules
	3.1.4.6.2 Upstream Flow Control Tracking
	3.1.4.6.3 Flow Control Update Frequency
	3.1.4.6.4 Flow Control Timeout Mechanism

	3.1.4.7 Error Forwarding

	3.1.5 Data Link Layer
	3.1.5.1 ACK/NAK Scheme
	3.1.5.2 Supported DLLPs
	3.1.5.3 Transmit EDB Nullifying

	3.1.6 Physical Layer
	3.1.6.1 Link Speed
	3.1.6.2 Link Width
	3.1.6.3 Polarity Inversion
	3.1.6.4 L0s Exit latency
	3.1.6.5 Reset
	3.1.6.6 Scrambler Disable

	3.1.7 Error Events and Error Reporting
	3.1.7.1 Mechanism in General
	3.1.7.2 Error Events
	3.1.7.3 Error Forwarding (TLP Poisoning)
	3.1.7.4 ECRC
	3.1.7.5 Partial Read and Write Requests
	3.1.7.5.1 Partial Memory Accesses
	3.1.7.5.2 Partial I/O Accesses

	3.1.7.6 Error Pollution
	3.1.7.7 Completion with Unsuccessful Completion Status
	3.1.7.8 Error Reporting Changes
	3.1.7.9 Completion with Unsupported Request (UR) or Completer Abort (CA)

	3.1.8 PCIe Power Management
	3.1.9 PCIe Programming Interface

	3.2 iNVM
	3.2.1 iNVM Contents
	3.2.2 iNVM Structures
	3.2.2.1 Word Auto-load Structure
	3.2.2.1.1 iNVM Programmed Word Structures (Type 001b)

	3.2.2.2 CSR Auto-load Structure
	3.2.2.3 PHY Register Auto-load Structure

	3.2.3 iNVM Programming Flows
	3.2.3.1 iNVM Programming Flow via Registers

	3.2.4 Hardware Load of iNVM Values into Internal Structures
	3.2.5 Software Load of Default Values into Internal Structures
	3.2.6 I211 Init Flow

	3.3 Configurable I/O Pins
	3.3.1 General-Purpose I/O (Software-Definable Pins)
	3.3.2 Software Watchdog
	3.3.2.1 Watchdog Re-arm

	3.3.3 LEDs

	3.4 Voltage Regulator
	3.5 Network Interfaces
	3.5.1 Overview
	3.5.2 MAC Functionality
	3.5.2.1 Internal GMII/MII Interface
	3.5.2.2 MDIO/MDC PHY Management Interface
	3.5.2.2.1 MDIC and MDICNFG Register Usage

	3.5.2.3 Duplex Operation with Copper PHY
	3.5.2.3.1 Full Duplex
	3.5.2.3.2 Half Duplex

	3.5.3 Auto-Negotiation and Link Setup Features
	3.5.3.1 Copper PHY Link Configuration
	3.5.3.1.1 PHY Auto-Negotiation (Speed, Duplex, Flow Control)
	3.5.3.1.2 MAC Speed Resolution
	3.5.3.1.2.1 Forcing MAC Speed
	3.5.3.1.2.2 Using Internal PHY Direct Link-Speed Indication

	3.5.3.1.3 MAC Full-/Half- Duplex Resolution
	3.5.3.1.4 Using PHY Registers
	3.5.3.1.5 Comments Regarding Forcing Link

	3.5.3.2 Loss of Signal/Link Status Indication

	3.5.4 Ethernet Flow Control (FC)
	3.5.4.1 MAC Control Frames and Receiving Flow Control Packets
	3.5.4.1.1 Structure of 802.3X FC Packets
	3.5.4.1.2 Operation and Rules
	3.5.4.1.3 Timing Considerations

	3.5.4.2 PAUSE and MAC Control Frames Forwarding
	3.5.4.3 Transmission of PAUSE Frames
	3.5.4.3.1 Operation and Rules
	3.5.4.3.2 Software Initiated PAUSE Frame Transmission

	3.5.4.4 IPG Control and Pacing
	3.5.4.4.1 Fixed IPG Extension

	3.5.5 Loopback Support
	3.5.5.1 General
	3.5.5.2 MAC Loopback
	3.5.5.2.1 Setting the I211 to MAC loopback Mode

	3.5.5.3 Internal PHY Loopback
	3.5.5.3.1 Setting the I211 to Internal PHY loopback Mode

	3.5.6 Energy Efficient Ethernet (EEE)
	3.5.6.1 Conditions to Enter EEE Tx LPI
	3.5.6.2 Exit of TX LPI to Active Link State
	3.5.6.3 EEE Auto-Negotiation
	3.5.6.4 EEE Link Level (LLDP) Capabilities Discovery
	3.5.6.5 Programming the I211 for EEE Operation
	3.5.6.5.1 PHY Programming for EEE Operation with Cables > 130m

	3.5.6.6 EEE Statistics

	3.5.7 Integrated Copper PHY Functionality
	3.5.7.1 Determining Link State
	3.5.7.1.1 False Link
	3.5.7.1.2 Forced Operation
	3.5.7.1.3 Auto Negotiation
	3.5.7.1.4 Parallel Detection
	3.5.7.1.5 Auto Cross-Over
	3.5.7.1.6 10/100 MB/s Mismatch Resolution
	3.5.7.1.7 Link Criteria
	3.5.7.1.7.1 1000BASE-T
	3.5.7.1.7.2 100BASE-TX
	3.5.7.1.7.3 10BASE-T

	3.5.7.2 SmartSpeed
	3.5.7.2.1 Using SmartSpeed

	3.5.7.3 Flow Control
	3.5.7.4 Management Data Interface
	3.5.7.5 Internal PHY Low Power Operation and Power Management
	3.5.7.5.1 Power Down via the PHY Register
	3.5.7.5.2 Power Management State
	3.5.7.5.3 Disable High Speed Power Saving Options
	3.5.7.5.4 Low Power Link Up - Link Speed Control
	3.5.7.5.4.1 D0a State
	3.5.7.5.4.2 Non-D0a State

	3.5.7.5.5 Internal PHY Smart Power-Down (SPD)
	3.5.7.5.5.1 Internal PHY Back-to-Back SPD

	3.5.7.5.6 Internal PHY Link Energy Detect
	3.5.7.5.7 Internal PHY Power-Down State

	3.5.7.6 Advanced Diagnostics
	3.5.7.6.1 Time Domain Reflectometry (TDR)
	3.5.7.6.2 Channel Frequency Response

	3.5.7.7 1000 Mb/s Operation
	3.5.7.7.1 Introduction
	3.5.7.7.2 Transmit Functions
	3.5.7.7.2.1 Scrambler
	3.5.7.7.2.2 Transmit FIFO
	3.5.7.7.2.3 Transmit Phase-Locked Loop PLL
	3.5.7.7.2.4 Trellis Encoder
	3.5.7.7.2.5 4DPAM5 Encoder
	3.5.7.7.2.6 Spectral Shaper
	3.5.7.7.2.7 Low-Pass Filter
	3.5.7.7.2.8 Line Driver

	3.5.7.7.3 Receive Functions
	3.5.7.7.3.1 Hybrid
	3.5.7.7.3.2 Automatic Gain Control (AGC)
	3.5.7.7.3.3 Timing Recovery
	3.5.7.7.3.4 Analog-to-Digital Converter (ADC)
	3.5.7.7.3.5 Digital Signal Processor (DSP)
	3.5.7.7.3.6 Descrambler
	3.5.7.7.3.7 Viterbi Decoder/Decision Feedback Equalizer (DFE)
	3.5.7.7.3.8 4DPAM5 Decoder
	3.5.7.7.3.9 100 Mb/s Operation
	3.5.7.7.3.10 10 Mb/s Operation
	3.5.7.7.3.11 Link Test
	3.5.7.7.3.12 10Base-T Link Failure Criteria and Override
	3.5.7.7.3.13 Jabber
	3.5.7.7.3.14 Polarity Correction
	3.5.7.7.3.15 Dribble Bits
	3.5.7.7.3.16 PHY Address

	4.0 Initialization
	4.1 Power Up
	4.1.1 Power-Up Sequence
	4.1.2 Power-Up Timing Diagram

	4.2 Reset Operation
	4.2.1 Reset Sources
	4.2.1.1 LAN_PWR_GOOD
	4.2.1.2 PE_RST_N
	4.2.1.3 In-Band PCIe Reset
	4.2.1.4 D3hot to D0 Transition
	4.2.1.5 FLR

	4.3 Software Reset
	4.3.1 Software Reset (RST)
	4.3.1.1 Bus Master Enable (BME)
	4.3.1.2 PHY Reset

	4.3.2 Registers and Logic Reset Affects

	4.4 Device and Function Disable
	4.4.1 General
	4.4.2 Disabling Both LAN Port and PCIe Function (Device Off)
	4.4.3 BIOS Handling of Device Disable
	4.4.3.1 Sequence for Entering the (Static) Device Off State
	4.4.3.2 Sequence for Returning from the (Static) Device Off State

	4.5 Software Initialization and Diagnostics
	4.5.1 Introduction
	4.5.2 Power Up State
	4.5.3 Initialization Sequence
	4.5.4 Interrupts During Initialization
	4.5.5 Global Reset and General Configuration
	4.5.6 Flow Control Setup
	4.5.7 Link Setup Mechanisms and Control/Status Bit Summary
	4.5.7.1 PHY Initialization
	4.5.7.2 MAC/PHY Link Setup (CTRL_EXT.LINK_MODE = 00b)
	4.5.7.2.1 MAC Settings Automatically Based on Duplex and Speed Resolved by PHY (CTRL.FRCDPLX = 0b, CTRL.FRCSPD = 0b,)
	4.5.7.2.2 MAC Duplex and Speed Settings Forced by Software Based on Resolution of PHY (CTRL.FRCDPLX = 1b, CTRL.FRCSPD = 1b)
	4.5.7.2.3 MAC/PHY Duplex and Speed Settings Both Forced by Software (Fully-Forced Link Setup) (CTRL.FRCDPLX = 1b, CTRL.FRCSPD = 1b, CTRL.SLU = 1b)

	4.5.8 CTRL.FRCSPD = 0b; CTRL.FRCDPLX = 0bCTRL.FRCSPD = 1b; CTRL.FRCDPLX = 1bInitialization of Statistics
	4.5.9 Receive Initialization
	4.5.9.1 Initialize the Receive Control Register
	4.5.9.2 Dynamic Enabling and Disabling of Receive Queues

	4.5.10 Transmit Initialization
	4.5.10.1 Dynamic Queue Enabling and Disabling

	4.6 Access to Shared Resources
	4.6.1 Acquiring Ownership Over a Shared Resource
	4.6.2 Releasing Ownership Over a Shared Resource

	5.0 Power Management
	5.1 General Power State Information
	5.1.1 PCI Device Power States
	5.1.2 PCIe Link Power States

	5.2 Power States
	5.2.1 D0 Uninitialized State (D0u)
	5.2.1.1 Entry into D0u state

	5.2.2 D0active State
	5.2.2.1 Entry to D0a State

	5.2.3 D3 State (PCI-PM D3hot)
	5.2.3.1 Entry to D3 State
	5.2.3.2 Exit from D3 State
	5.2.3.3 Master Disable Via CTRL Register

	5.2.4 Dr State (D3cold)
	5.2.4.1 Dr Disable Mode
	5.2.4.2 Entry to Dr State
	5.2.4.3 Auxiliary Power Usage

	5.2.5 Link Disconnect
	5.2.6 Device Off States
	5.2.6.1 (Static) Device Off
	5.2.6.2 Dynamic Device Off

	5.3 Power Limits by Certain Form Factors
	5.4 Interconnects Power Management
	5.4.1 PCIe Link Power Management
	5.4.2 Internal PHY Power-Management

	5.5 Timing of Power-State Transitions
	5.5.1 Power Up (Off to Dup to D0u to D0a)
	5.5.2 Transition from D0a to D3 and Back Without PE_RST_N
	5.5.3 Transition From D0a to D3 and Back With PE_RST_N
	5.5.4 Transition From D0a to Dr and Back Without Transition to D3
	5.5.5 Timing Requirements
	5.5.6 Timing Guarantees

	5.6 Wake Up
	5.6.1 Advanced Power Management Wake Up
	5.6.2 ACPI Power Management Wake Up
	5.6.3 Wake-Up and Proxying Filters

	5.7 Protocol Offload (Proxying)
	5.7.1 Protocol Offload Activation in D3
	5.7.2 Protocol Offload Activation in D0

	6.0 iNVM Map
	6.1 iNVM General Map
	6.2 Hardware Accessed Words
	6.2.1 Ethernet Address (Words 0x00-0x02)
	6.2.2 Initialization Control Word 1 (Word 0x0A)
	6.2.3 Subsystem ID (Word 0x0B)
	6.2.4 Subsystem Vendor ID (Word 0x0C)
	6.2.5 Device ID (Word 0x0D)
	6.2.6 Vendor ID (Word 0x0E)
	6.2.7 Initialization Control Word 2 (Word 0x0F)
	6.2.8 Initialization Control 4 (Word 0x13)
	6.2.9 PCIe L1 Exit Latencies (Word 0x14)
	6.2.10 PCIe Completion Timeout Configuration (Word 0x15)
	6.2.11 MSI-X Configuration (Word 0x16)
	6.2.12 PCIe Init Configuration 1 (Word 0x18)
	6.2.13 PCIe Init Configuration 2 Word (Word 0x19)
	6.2.14 PCIe Init Configuration 3 Word (Word 0x1A)
	6.2.15 PCIe Control 1 (Word 0x1B)
	6.2.16 LED1 Configuration Defaults (Word 0x1C)
	6.2.17 Device Rev ID (Word 0x1E)
	6.2.18 LED0,2 Configuration Defaults (Word 0x1F)
	6.2.19 Software Defined Pins Control (Word 0x20)
	6.2.20 Functions Control (Word 0x21)
	6.2.21 LAN Power Consumption (Word 0x22)
	6.2.22 Initialization Control 3 (Word 0x24)
	6.2.23 PCIe Control 2 (Word 0x28)
	6.2.24 PCIe Control 3 (Word 0x29)
	6.2.25 Watchdog Configuration (Word 0x2E)

	6.3 Software Accessed Words
	6.3.1 Port Identification LED Blinking (Word 0x04)
	6.3.2 iNVM Map Revision (Word 0x05)
	6.3.3 OEM Specific (Words 0x06, 0x07)
	6.3.3.1 PXE VLAN Configuration Pointer (0x003C)
	6.3.3.1.1 PXE VLAN Configuration Section
	6.3.3.1.1.1 VLAN Block Signature - 0x0000
	6.3.3.1.1.2 Version and Size - 0x0001
	6.3.3.1.1.3 VLAN Tag - 0x0002

	7.0 Inline Functions
	7.1 Receive Functionality
	7.1.1 L2 Packet Filtering
	7.1.1.1 MAC Address Filtering
	7.1.1.1.1 Unicast Filter
	7.1.1.1.2 Multicast Filter (Inexact)

	7.1.1.2 VLAN Filtering
	7.1.1.3 Size Filtering

	7.1.2 Receive Queues Assignment
	7.1.2.1 Queuing Method
	7.1.2.2 Queue Configuration Registers
	7.1.2.3 L2 Ether-type Filters
	7.1.2.4 2-Tuple Filters
	7.1.2.5 Flex Filters
	7.1.2.6 SYN Packet Filters
	7.1.2.7 VLAN Priority Filters
	7.1.2.8 VLAN Tag Filters
	7.1.2.9 MAC Address Filters
	7.1.2.10 Receive-Side Scaling (RSS)
	7.1.2.10.1 RSS Hash Function
	7.1.2.10.1.1 Hash for IPv4 with TCP
	7.1.2.10.1.2 Hash for IPv4 with UDP
	7.1.2.10.1.3 Hash for IPv4 without TCP
	7.1.2.10.1.4 Hash for IPv6 with TCP
	7.1.2.10.1.5 Hash for IPv6 with UDP
	7.1.2.10.1.6 Hash for IPv6 without TCP

	7.1.2.10.2 Indirection Table
	7.1.2.10.3 RSS Verification Suite
	7.1.2.10.3.1 IPv4
	7.1.2.10.3.2 IPv6

	7.1.2.10.4 Association Through MAC Address

	7.1.3 Receive Data Storage
	7.1.3.1 Host Buffers
	7.1.3.2 On-Chip Receive Buffer
	7.1.3.3 On-chip Descriptor Buffers

	7.1.4 Receive Descriptors
	7.1.4.1 Legacy Receive Descriptor Format
	7.1.4.2 Advanced Receive Descriptors
	7.1.4.2.1 Advanced Receive Descriptors (RDESC) - Read Format
	7.1.4.2.2 Advanced Receive Descriptors (RDESC) - Write-back Format

	7.1.4.3 Receive Descriptor Fetching
	7.1.4.4 Receive Descriptor Write-back
	7.1.4.5 Receive Descriptor Ring Structure
	7.1.4.5.1 Low Receive Descriptors Threshold

	7.1.5 Header Splitting and Replication
	7.1.5.1 Purpose
	7.1.5.2 Description

	7.1.6 Receive Packet Timestamp in Buffer
	7.1.7 Receive Packet Checksum and SCTP CRC Offloading
	7.1.7.1 Filters Details
	7.1.7.1.1 MAC Address Filter
	7.1.7.1.2 SNAP/VLAN Filter
	7.1.7.1.3 IPv4 Filter
	7.1.7.1.4 IPv6 Filter
	7.1.7.1.5 IPv6 Extension Headers
	7.1.7.1.6 UDP/TCP Filter

	7.1.7.2 Receive UDP Fragmentation Checksum
	7.1.7.3 SCTP Offload

	7.2 Transmit Functionality
	7.2.1 Packet Transmission
	7.2.1.1 Transmit Data Storage
	7.2.1.2 On-Chip Transmit Buffers
	7.2.1.3 On-Chip descriptor Buffers
	7.2.1.4 Transmit Contexts

	7.2.2 Transmit Descriptors
	7.2.2.1 Legacy Transmit Descriptor Format
	7.2.2.1.1 Buffer Address (64)
	7.2.2.1.2 Length
	7.2.2.1.3 Checksum Offset and Start - CSO
	7.2.2.1.4 Command Byte - CMD
	7.2.2.1.5 Status – STA
	7.2.2.1.6 DD (Bit 0) - Descriptor Done Status
	7.2.2.1.7 VLAN

	7.2.2.2 Advanced Transmit Context Descriptor
	7.2.2.2.1 IPLEN (9)
	7.2.2.2.2 MACLEN (7)
	7.2.2.2.3 LaunchTime (25)
	7.2.2.2.4 TUCMD (11)
	7.2.2.2.5 DTYP(4)
	7.2.2.2.6 DEXT(1)
	7.2.2.2.7 IDX (3)
	7.2.2.2.8 L4LEN (8)
	7.2.2.2.9 MSS (16)

	7.2.2.3 Advanced Transmit Data Descriptor
	7.2.2.3.1 Address (64) / DMA Time Stamp
	7.2.2.3.2 DTALEN (16)
	7.2.2.3.3 MAC (2)
	7.2.2.3.4 DTYP (4)
	7.2.2.3.5 DCMD (8)
	7.2.2.3.6 STA (4)
	7.2.2.3.7 IDX (3)
	7.2.2.3.8 POPTS (6)
	7.2.2.3.9 PAYLEN (18)

	7.2.2.4 Transmit Descriptor Ring Structure
	7.2.2.5 Transmit Descriptor Fetching
	7.2.2.6 Transmit Descriptor Write-Back
	7.2.2.7 Transmit Descriptor Ring Structure

	7.2.3 Transmit Completions Head Write Back
	7.2.3.1 Description

	7.2.4 TCP/UDP Segmentation
	7.2.4.1 Assumptions
	7.2.4.2 Transmission Process
	7.2.4.2.1 TCP Segmentation Data Fetch Control
	7.2.4.2.2 TCP Segmentation Write-Back Modes

	7.2.4.3 TCP Segmentation Performance
	7.2.4.4 Packet Format
	7.2.4.5 TCP/UDP Segmentation Indication
	7.2.4.6 Transmit Checksum Offloading with TCP/UDP Segmentation
	7.2.4.7 TCP/UDP/IP Headers Update
	7.2.4.7.1 TCP/UDP/IP Headers for the First Frames
	7.2.4.7.2 TCP/UDP/IP Headers for the Subsequent Frames
	7.2.4.7.3 TCP/UDP/IP Headers for the Last Frame

	7.2.4.8 Data Flow

	7.2.5 Checksum Offloading in Non-Segmentation Mode
	7.2.5.1 IP Checksum
	7.2.5.2 TCP/UDP Checksum
	7.2.5.3 SCTP CRC Offloading
	7.2.5.4 Checksum Supported Per Packet Types

	7.2.6 Multiple Transmit Queues

	7.3 Interrupts
	7.3.1 Interrupt Modes
	7.3.1.1 MSI-X and Vectors

	7.3.2 Mapping of Interrupt Causes
	7.3.2.1 Legacy and MSI Interrupt Modes
	7.3.2.2 MSI-X Mode

	7.3.3 Legacy Interrupt Registers
	7.3.3.1 Interrupt Cause Register (ICR)
	7.3.3.1.1 Legacy Mode
	7.3.3.1.2 Advanced Mode

	7.3.3.2 Interrupt Cause Set Register (ICS)
	7.3.3.3 Interrupt Mask Set/Read Register (IMS)
	7.3.3.4 Interrupt Mask Clear Register (IMC)
	7.3.3.5 Interrupt Acknowledge Auto-mask register (IAM)
	7.3.3.6 Extended Interrupt Cause Registers (EICR)
	7.3.3.6.1 MSI/INT-A Mode (GPIE.Multiple_MSIX = 0b)
	7.3.3.6.2 MSI-X Mode (GPIE.Multiple_MSIX = 1b)

	7.3.3.7 Extended Interrupt Cause Set Register (EICS)
	7.3.3.8 Extended Interrupt Mask Set and Read Register (EIMS) & Extended Interrupt Mask Clear Register (EIMC)
	7.3.3.9 Extended Interrupt Auto Clear Enable Register (EIAC)
	7.3.3.10 Extended Interrupt Auto Mask Enable Register (EIAM)
	7.3.3.11 GPIE Register

	7.3.4 Clearing Interrupt Causes
	7.3.4.1 Auto-Clear
	7.3.4.2 Write to Clear
	7.3.4.3 Read to Clear

	7.3.5 Interrupt Moderation
	7.3.6 Rate Controlled Low Latency Interrupts (LLI)
	7.3.6.1 Rate Control Mechanism

	7.3.7 TCP Timer Interrupt
	7.3.7.1 Introduction
	7.3.7.2 Description

	7.3.8 Setting Interrupt Registers

	7.4 802.1Q VLAN Support
	7.4.1 802.1Q VLAN Packet Format
	7.4.2 802.1Q Tagged Frames
	7.4.3 Transmitting and Receiving 802.1Q Packets
	7.4.3.1 Adding 802.1Q Tags on Transmits
	7.4.3.2 Stripping 802.1Q Tags on Receives

	7.4.4 802.1Q VLAN Packet Filtering
	7.4.4.1 Host VLAN Filtering:

	7.4.5 Double VLAN Support
	7.4.5.1 Transmit Behavior With External VLAN
	7.4.5.2 Receive Behavior With External VLAN

	7.5 Configurable LED Outputs
	7.5.1 MODE Encoding for LED Outputs

	7.6 Memory Error Correction and Detection
	7.6.1 Software Recovery From Parity Error Event
	7.6.1.1 Recovery from PCIe Parity Error Event
	7.6.1.2 Recovery from DMA Parity Error Event
	7.6.1.3 Recovery from LAN Port Parity Error Event

	7.7 CPU Affinity Features
	7.7.1 Direct Cache Access (DCA)
	7.7.1.1 DCA Description
	7.7.1.2 Details of Implementation
	7.7.1.2.1 PCIe Message Format for DCA

	7.7.2 TLP Process Hints (TPH)
	7.7.2.1 Steering Tag and Processing Hint Programming

	7.8 Time SYNC (IEEE1588 and IEEE 802.1AS)
	7.8.1 Overview
	7.8.2 Flow and Hardware/Software Responsibilities
	7.8.2.1 Initialization Phase
	7.8.2.2 Time Synchronization Phase
	7.8.2.2.1 2-step Clocks Calibration Procedure
	7.8.2.2.2 1-step Clocks Calibration Procedure
	7.8.2.2.3 2-step Time Synchronization Phase Procedure
	7.8.2.2.4 1-step Time Synchronization Phase Procedure

	7.8.2.3 TimeSync Indications in Receive and Transmit Packet Descriptors

	7.8.3 Hardware Time Sync Elements
	7.8.3.1 Capture Timestamp Mechanism
	7.8.3.2 1588 Timer Registers: SYSTIM, TIMADJ and TIMINCA
	7.8.3.3 Target Time
	7.8.3.3.1 SYSTIM Synchronized Level Change Generation on SDP Pins
	7.8.3.3.2 SYSTIM Synchronized Pulse Generation on SDP Pins
	7.8.3.3.3 Synchronized Output Clock on SDP Pins

	7.8.3.4 Time Stamp Events

	7.8.4 Time SYNC Interrupts
	7.8.5 PTP Packet Structure

	7.9 Statistic Counters
	7.9.1 IEEE 802.3 Clause 30 Management
	7.9.2 OID_GEN_STATISTICS
	7.9.3 RMON
	7.9.4 Linux net_device_stats
	7.9.5 Statistics Hierarchy

	8.0 Programming Interface
	8.1 Introduction
	8.1.1 Memory, I/O Address and Configuration Decoding
	8.1.1.1 Memory-Mapped Access to Internal Registers and Memories
	8.1.1.2 Memory-Mapped Access to MSI-X Tables
	8.1.1.3 I/O-Mapped Access to Internal Registers and Memories
	8.1.1.3.1 IOADDR (I/O Offset 0x00)
	8.1.1.3.2 IODATA (I/O Offset 0x04)
	8.1.1.3.3 Undefined I/O Offsets

	8.1.1.4 Configuration Access to Internal Registers and Memories

	8.1.2 Register Conventions
	8.1.2.1 Registers Byte Ordering

	8.1.3 Register Summary
	8.1.3.1 Alias Addresses

	8.1.4 MSI-X BAR Register Summary

	8.2 General Register Descriptions
	8.2.1 Device Control Register - CTRL (0x00000; R/W)
	8.2.2 Device Status Register - STATUS (0x0008; RO)
	8.2.3 Extended Device Control Register - CTRL_EXT (0x0018; R/W)
	8.2.4 Media Dependent Interface (MDI) Control Register - MDIC (0x0020; R/W)
	8.2.5 MDC/MDIO Configuration Register ‚Äì MDICNFG (0x0E04; R/W)
	8.2.6 Copper Switch Control - CONNSW (0x0034; R/W)
	8.2.7 VLAN Ether Type - VET (0x0038; R/W)
	8.2.8 LED Control - LEDCTL (0x0E00; RW)

	8.3 Internal Packet Buffer Size Registers
	8.3.1 RX Packet Buffer Size - RXPBSIZE (0x2404; R/W)
	8.3.2 TX Packet Buffer Size - TXPBSIZE (0x3404; R/W)

	8.4 Flow Control Register Descriptions
	8.4.1 Flow Control Address Low - FCAL (0x0028; RO)
	8.4.2 Flow Control Address High - FCAH (0x002C; RO)
	8.4.3 Flow Control Type - FCT (0x0030; R/W)
	8.4.4 Flow Control Transmit Timer Value - FCTTV (0x0170; R/W)
	8.4.5 Flow Control Receive Threshold Low - FCRTL0 (0x2160; R/W)
	8.4.6 Flow Control Receive Threshold High - FCRTH0 (0x2168; R/W)
	8.4.7 Flow Control Refresh Threshold Value - FCRTV (0x2460; R/W)
	8.4.8 Flow Control Status - FCSTS0 (0x2464; RO)

	8.5 PCIe Register Descriptions
	8.5.1 PCIe Control - GCR (0x5B00; RW)
	8.5.2 PCIe Statistics Control #1 - GSCL_1 (0x5B10; RW)
	8.5.3 PCIe Statistics Control #2 - GSCL_2 (0x5B14; RW)
	8.5.4 PCIe Statistic Control Register #5...#8 - GSCL_5_8 (0x5B90 + 4*n[n=0...3]; RW)
	8.5.5 PCIe Counter #0 - GSCN_0 (0x5B20; RC)
	8.5.6 PCIe Counter #1 - GSCN_1 (0x5B24; RC)
	8.5.7 PCIe Counter #2 - GSCN_2 (0x5B28; RC)
	8.5.8 PCIe Counter #3 - GSCN_3 (0x5B2C; RC)
	8.5.9 Function Active and Power State to MNG - FACTPS (0x5B30; RO)
	8.5.10 Mirrored Revision ID - MREVID (0x5B64; R/W)
	8.5.11 PCIe Control Extended Register - GCR_EXT (0x5B6C; RW)
	8.5.12 PCIe BAR Control - BARCTRL (0x5BFC; R/W) Target
	8.5.13 Read Request To Data Completion Delay Register - RR2DCDELAY (0x5BF4; RC)
	8.5.14 PCIe MCTP Register - PCIEMCTP (0x5B4C; RO to Host)

	8.6 Semaphore Registers
	8.6.1 Software Semaphore - SWSM (0x5B50; R/W)
	8.6.2 Firmware Semaphore - FWSM (0x5B54; RO to Host, RW to FW)
	8.6.3 Software–Firmware Synchronization - SW_FW_SYNC (0x5B5C; RWM)

	8.7 Interrupt Register Descriptions
	8.7.1 PCIe Interrupt Cause - PICAUSE (0x5B88; RW1/C)
	8.7.2 PCIe Interrupt Enable - PIENA (0x5B8C; R/W)
	8.7.3 Extended Interrupt Cause - EICR (0x1580; RC/W1C)
	8.7.4 Extended Interrupt Cause Set - EICS (0x1520; WO)
	8.7.5 Extended Interrupt Mask Set/Read - EIMS (0x1524; RWM)
	8.7.6 Extended Interrupt Mask Clear - EIMC (0x1528; WO)
	8.7.7 Extended Interrupt Auto Clear - EIAC (0x152C; R/W)
	8.7.8 Extended Interrupt Auto Mask Enable - EIAM (0x1530; R/W)
	8.7.9 Interrupt Cause Read Register - ICR (0x1500; RC/W1C)
	8.7.10 Interrupt Cause Set Register - ICS (0x1504; WO)
	8.7.11 Interrupt Mask Set/Read Register - IMS (0x1508; R/W)
	8.7.12 Interrupt Mask Clear Register - IMC (0x150C; WO)
	8.7.13 Interrupt Acknowledge Auto Mask Register - IAM (0x1510; R/W)
	8.7.14 Interrupt Throttle - EITR (0x1680 + 4*n [n = 0...4]; R/W)
	8.7.15 Interrupt Vector Allocation Registers - IVAR (0x1700 + 4*n [n=0...1]; RW)
	8.7.16 Interrupt Vector Allocation Registers - MISC IVAR_MISC (0x1740; RW)
	8.7.17 General Purpose Interrupt Enable - GPIE (0x1514; RW)

	8.8 MSI-X Table Register Descriptions
	8.8.1 MSI-X Table Entry Lower Address - MSIXTADD (BAR3: 0x0000 + 0x10*n [n=0...4]; R/W)
	8.8.2 MSI-X Table Entry Upper Address - MSIXTUADD (BAR3: 0x0004 + 0x10*n [n=0...4]; R/W)
	8.8.3 MSI-X Table Entry Message - MSIXTMSG (BAR3: 0x0008 + 0x10*n [n=0...4]; R/W)
	8.8.4 MSI-X Table Entry Vector Control - MSIXTVCTRL (BAR3: 0x000C + 0x10*n [n=0...4]; R/W)
	8.8.5 MSIXPBA Bit Description – MSIXPBA (BAR3: 0x2000; RO)
	8.8.6 MSI-X PBA Clear ‚Äì PBACL (0x5B68; R/W1C)

	8.9 Receive Register Descriptions
	8.9.1 Receive Control Register - RCTL (0x0100; R/W)
	8.9.2 Split and Replication Receive Control - SRRCTL (0xC00C + 0x40*n [n=0...3]; R/W)
	8.9.3 Packet Split Receive Type - PSRTYPE (0x5480 + 4*n [n=0...3]; R/W)
	8.9.4 Receive Descriptor Base Address Low - RDBAL (0xC000 + 0x40*n [n=0...3]; R/W)
	8.9.5 Receive Descriptor Base Address High - RDBAH (0xC004 + 0x40*n [n=0...3]; R/W)
	8.9.6 Receive Descriptor Ring Length - RDLEN (0xC008 + 0x40*n [n=0...3]; R/W)
	8.9.7 Receive Descriptor Head - RDH (0xC010 + 0x40*n [n=0...3]; RO)
	8.9.8 Receive Descriptor Tail - RDT (0xC018 + 0x40*n [n=0...3]; R/W)
	8.9.9 Receive Descriptor Control - RXDCTL (0xC028 + 0x40*n [n=0...3]; R/W)
	8.9.10 Receive Queue Drop Packet Count - RQDPC (0xC030 + 0x40*n [n=0...3]; RW)
	8.9.11 Transmit Queue Drop Packet Count - TQDPC (0xE030 + 0x40*n [n=0...3]; RW)
	8.9.12 Receive Checksum Control - RXCSUM (0x5000; R/W)
	8.9.13 Receive Long Packet Maximum Length - RLPML (0x5004; R/W)
	8.9.14 Receive Filter Control Register - RFCTL (0x5008; R/W)
	8.9.15 Multicast Table Array - MTA (0x5200 + 4*n [n=0...127]; R/W)
	8.9.16 Receive Address Low - RAL (0x5400 + 8*n [n=0...15]; R/W)
	8.9.17 Receive Address High - RAH (0x5404 + 8*n [n=0...15]; R/W)
	8.9.18 VLAN Priority Queue Filter VLAPQF (0x55B0;R/W)
	8.9.19 VLAN Filter Table Array - VFTA (0x5600 + 4*n [n=0...127]; R/W)
	8.9.20 Multiple Receive Queues Command Register - MRQC (0x5818; R/ W)
	8.9.21 RSS Random Key Register - RSSRK (0x5C80 + 4*n [n=0...9]; R/ W)
	8.9.22 Redirection Table - RETA (0x5C00 + 4*n [n=0...31]; R/W)
	8.9.23 DMA VM Offload Register - DVMOLR (0xC038 + 0x40*n[n=0...3]; RW)

	8.10 Filtering Register Descriptions
	8.10.1 Immediate Interrupt RX - IMIR (0x5A80 + 4*n [n=0...7]; R/W)
	8.10.2 Immediate Interrupt Rx Ext. - IMIREXT (0x5AA0 + 4*n [n=0...7]; R/W)
	8.10.3 2-tuples Queue Filter - TTQF (0x59E0 + 4*n[n=0...7]; RW)
	8.10.4 Immediate Interrupt Rx VLAN Priority - IMIRVP (0x5AC0; R/W)
	8.10.5 SYN Packet Queue Filter - SYNQF (0x55FC; RW)
	8.10.6 EType Queue Filter - ETQF (0x5CB0 + 4*n[n=0...7]; RW)

	8.11 Transmit Register Descriptions
	8.11.1 Transmit Control Register - TCTL (0x0400; R/W)
	8.11.2 Transmit Control Extended - TCTL_EXT (0x0404; R/W)
	8.11.3 Transmit IPG Register - TIPG (0x0410; R/W)
	8.11.4 Retry Buffer Control – RETX_CTL (0x041C; RW)
	8.11.5 DMA TX Control - DTXCTL (0x3590; R/W)
	8.11.6 DMA TX TCP Flags Control Low - DTXTCPFLGL (0x359C; RW)
	8.11.7 DMA TX TCP Flags Control High - DTXTCPFLGH (0x35A0; RW)
	8.11.8 DMA TX Max Total Allow Size Requests - DTXMXSZRQ (0x3540; RW)
	8.11.9 DMA TX Maximum Packet Size - DTXMXPKTSZ (0x355C; RW)
	8.11.10 Transmit Descriptor Base Address Low - TDBAL (0xE000 + 0x40*n [n=0...3]; R/W)
	8.11.11 Transmit Descriptor Base Address High - TDBAH (0xE004 + 0x40*n [n=0...3]; R/W)
	8.11.12 Transmit Descriptor Ring Length - TDLEN (0xE008 + 0x40*n [n=0...3]; R/W)
	8.11.13 Transmit Descriptor Head - TDH (0xE010 + 0x40*n [n=0...3]; RO)
	8.11.14 Transmit Descriptor Tail - TDT (0xE018 + 0x40*n [n=0...3]; R/ W)
	8.11.15 Transmit Descriptor Control - TXDCTL (0xE028 + 0x40*n [n=0...3]; R/W)
	8.11.16 Tx Descriptor Completion Write-Back Address Low - TDWBAL (0xE038 + 0x40*n [n=0...3]; R/W)
	8.11.17 Tx Descriptor Completion Write-Back Address High - TDWBAH (0xE03C + 0x40*n [n=0...3];R/W)
	8.11.18 Launch Time Offset Register LAUNCH_OS0 (0x3578; R/W)

	8.12 DCA and TPH Register Descriptions
	8.12.1 Rx DCA Control Registers - RXCTL (0xC014 + 0x40*n [n=0...3]; R/W)
	8.12.2 Tx DCA Control Registers - TXCTL (0xE014 + 0x40*n [n=0...3]; R/W)
	8.12.3 DCA Requester ID Information - DCA_ID (0x5B70; RO)
	8.12.4 DCA Control - DCA_CTRL (0x5B74; R/W)

	8.13 Timer Registers Description
	8.13.1 Watchdog Setup - WDSTP (0x1040; R/W)
	8.13.2 Watchdog Software Device Status - WDSWSTS (0x1044; R/W)
	8.13.3 Free Running Timer - FRTIMER (0x1048; RWM)
	8.13.4 TCP Timer - TCPTIMER (0x104C; R/W)

	8.14 Time Sync Register Descriptions
	8.14.1 Rx Time Sync Control Register - TSYNCRXCTL (0xB620;RW)
	8.14.2 Rx Timestamp Low - RXSTMPL (0xB624; RO)
	8.14.3 Rx Timestamp High - RXSTMPH (0xB628; RO)
	8.14.4 Tx Time Sync Control Register - TSYNCTXCTL (0xB614; RW)
	8.14.5 Tx Timestamp Value Low - TXSTMPL (0xB618;RO)
	8.14.6 Tx Timestamp Value High - TXSTMPH(0xB61C; RO)
	8.14.7 System Time Register Residue - SYSTIMR (0xB6F8; RW)
	8.14.8 System Time Register Low - SYSTIML (0xB600; RW)
	8.14.9 System Time Register High - SYSTIMH (0xB604; RW)
	8.14.10 System Time Register Tx MS - SYSTIMTM (0xB6FC; RW)
	8.14.11 Increment Attributes Register - TIMINCA (0xB608; RW)
	8.14.12 Time Adjustment Offset Register - TIMADJ (0xB60C; RW)
	8.14.13 TimeSync Auxiliary Control Register - TSAUXC (0xB640; RW)
	8.14.14 Target Time Register 0 Low - TRGTTIML0 (0xB644; RW)
	8.14.15 Target Time Register 0 High - TRGTTIMH0 (0xB648; RW)
	8.14.16 Target Time Register 1 Low - TRGTTIML1 (0xB64C; RW)
	8.14.17 Target Time Register 1 High - TRGTTIMH1 (0xB650; RW)
	8.14.18 Frequency Out 0 Control Register FREQOUT0 (0xB654; RW)
	8.14.19 Frequency Out 1 Control Register - FREQOUT1 (0xB658; RW)
	8.14.20 Auxiliary Time Stamp 0 Register Low - AUXSTMPL0 (0xB65C; RO)
	8.14.21 Auxiliary Time Stamp 0 Register High -AUXSTMPH0 (0xB660; RO)
	8.14.22 Auxiliary Time Stamp 1 Register Low AUXSTMPL1 (0xB664; RO)
	8.14.23 Auxiliary Time Stamp 1 Register High - AUXSTMPH1 (0xB668; RO)
	8.14.24 Time Sync RX Configuration - TSYNCRXCFG (0x5F50; R/W)
	8.14.25 Time Sync SDP Configuration Register - TSSDP (0x003C; R/W)

	8.15 Time Sync Interrupt Registers
	8.15.1 Time Sync Interrupt Cause Register - TSICR (0xB66C; RC/W1C)
	8.15.2 Time Sync Interrupt Mask Register - TSIM (0xB674; RW)
	8.15.3 AN Advertisement - PCS_ANADV (0x4218; R/W)
	8.15.4 Next Page Transmit - PCS_NPTX (0x4220; RW)
	8.15.5 Link Partner Ability Next Page - PCS_LPABNP (0x4224; RO)

	8.16 Statistics Register Descriptions
	8.16.1 CRC Error Count - CRCERRS (0x4000; RC)
	8.16.2 Alignment Error Count - ALGNERRC (0x4004; RC)
	8.16.3 Symbol Error Count - SYMERRS (0x4008; RC)
	8.16.4 RX Error Count - RXERRC (0x400C; RC)
	8.16.5 Missed Packets Count - MPC (0x4010; RC)
	8.16.6 Single Collision Count - SCC (0x4014; RC)
	8.16.7 Excessive Collisions Count - ECOL (0x4018; RC)
	8.16.8 Multiple Collision Count - MCC (0x401C; RC)
	8.16.9 Late Collisions Count - LATECOL (0x4020; RC)
	8.16.10 Collision Count - COLC (0x4028; RC)
	8.16.11 Defer Count - DC (0x4030; RC)
	8.16.12 Transmit with No CRS - TNCRS (0x4034; RC)
	8.16.13 Host Transmit Discarded Packets by MAC Count - HTDPMC (0x403C; RC)
	8.16.14 Receive Length Error Count - RLEC (0x4040; RC)
	8.16.15 XON Received Count - XONRXC (0x4048; RC)
	8.16.16 XON Transmitted Count - XONTXC (0x404C; RC)
	8.16.17 XOFF Received Count - XOFFRXC (0x4050; RC)
	8.16.18 XOFF Transmitted Count - XOFFTXC (0x4054; RC)
	8.16.19 FC Received Unsupported Count - FCRUC (0x4058; RC)
	8.16.20 Packets Received [64 Bytes] Count - PRC64 (0x405C; RC)
	8.16.21 Packets Received [65–127 Bytes] Count - PRC127 (0x4060; RC)
	8.16.22 Packets Received [128–255 Bytes] Count - PRC255 (0x4064; RC)
	8.16.23 Packets Received [256–511 Bytes] Count - PRC511 (0x4068; RC)
	8.16.24 Packets Received [512–1023 Bytes] Count - PRC1023 (0x406C; RC)
	8.16.25 Packets Received [1024 to Max Bytes] Count - PRC1522 (0x4070; RC)
	8.16.26 Good Packets Received Count - GPRC (0x4074; RC)
	8.16.27 Broadcast Packets Received Count - BPRC (0x4078; RC)
	8.16.28 Multicast Packets Received Count - MPRC (0x407C; RC)
	8.16.29 Good Packets Transmitted Count - GPTC (0x4080; RC)
	8.16.30 Good Octets Received Count - GORCL (0x4088; RC)
	8.16.31 Good Octets Received Count - GORCH (0x408C; RC)
	8.16.32 Good Octets Transmitted Count - GOTCL (0x4090; RC)
	8.16.33 Good Octets Transmitted Count - GOTCH (0x4094; RC)
	8.16.34 Receive No Buffers Count - RNBC (0x40A0; RC)
	8.16.35 Receive Undersize Count - RUC (0x40A4; RC)
	8.16.36 Receive Fragment Count - RFC (0x40A8; RC)
	8.16.37 Receive Oversize Count - ROC (0x40AC; RC)
	8.16.38 Receive Jabber Count - RJC (0x40B0; RC)
	8.16.39 Total Octets Received - TORL (0x40C0; RC)
	8.16.40 Total Octets Received - TORH (0x40C4; RC)
	8.16.41 Total Octets Transmitted - TOTL (0x40C8; RC)
	8.16.42 Total Octets Transmitted - TOTH (0x40CC; RC)
	8.16.43 Total Packets Received - TPR (0x40D0; RC)
	8.16.44 Total Packets Transmitted - TPT (0x40D4; RC)
	8.16.45 Packets Transmitted [64 Bytes] Count - PTC64 (0x40D8; RC)
	8.16.46 Packets Transmitted [65-127 Bytes] Count - PTC127 (0x40DC; RC)
	8.16.47 Packets Transmitted [128-255 Bytes] Count - PTC255 (0x40E0; RC)
	8.16.48 Packets Transmitted [256-511 Bytes] Count - PTC511 (0x40E4; RC)
	8.16.49 Packets Transmitted [512-1023 Bytes] Count - PTC1023 (0x40E8; RC)
	8.16.50 Packets Transmitted [1024 Bytes or Greater] Count - PTC1522 (0x40EC; RC)
	8.16.51 Multicast Packets Transmitted Count - MPTC (0x40F0; RC)
	8.16.52 Broadcast Packets Transmitted Count - BPTC (0x40F4; RC)
	8.16.53 Interrupt Assertion Count - IAC (0x4100; RC)
	8.16.54 Rx Packets to Host Count - RPTHC (0x4104; RC)
	8.16.55 EEE TX LPI Count - TLPIC (0x4148; RC)
	8.16.56 EEE RX LPI Count - RLPIC (0x414C; RC)
	8.16.57 Host Good Packets Transmitted Count-HGPTC (0x4118; RC)
	8.16.58 Receive Descriptor Minimum Threshold Count-RXDMTC (0x4120; RC)
	8.16.59 Host Good Octets Received Count - HGORCL (0x4128; RC)
	8.16.60 Host Good Octets Received Count - HGORCH (0x412C; RC)
	8.16.61 Host Good Octets Transmitted Count - HGOTCL (0x4130; RC)
	8.16.62 Host Good Octets Transmitted Count - HGOTCH (0x4134; RC)
	8.16.63 Length Error Count - LENERRS (0x4138; RC)

	8.17 Statistical Counters
	8.17.1 Per Queue Good Packets Received Count - PQGPRC (0x10010 + n*0x100 [n=0...3]; RW)
	8.17.2 Per Queue Good Packets Transmitted Count - PQGPTC (0x10014 + n*0x100 [n=0...3]; RW)
	8.17.3 Per Queue Good Octets Received Count - PQGORC (0x10018 + n*0x100 [n=0...3]; RW)
	8.17.4 Per Queue Good Octets Transmitted Count - PQGOTC (0x10034 + n*0x100 [n=0...3]; RW)
	8.17.5 Per Queue Multicast Packets Received Count - PQMPRC (0x10038 + n*0x100 [n=0...3]; RO)

	8.18 Wake Up Control Register Descriptions
	8.18.1 Wake Up Control Register - WUC (0x5800; R/W)
	8.18.2 Wakeup Filter Control Register - WUFC (0x5808; R/W)
	8.18.3 Wake Up Status Register - WUS (0x5810; R/W1C)
	8.18.4 Wake Up Packet Length - WUPL (0x5900; RO)
	8.18.5 Wake Up Packet Memory - WUPM (0x5A00 + 4*n [n=0...31]; RO)
	8.18.6 Proxying Filter Control Register - PROXYFC (0x5F60; R/W)
	8.18.7 Proxying Status Register - PROXYS (0x5F64; R/W1C)
	8.18.8 Proxying Extended Status Register - PROXYEXS (0x5594; R/ W1C)
	8.18.9 Wake Flex UDP/TCP Ports Filter - WFUTPF (0x5500 + 4*n [n=0...31]; RW)
	8.18.10 Range Flex UDP/TCP Port Filter - RFUTPF (0x5580; RW)
	8.18.11 Range and Wake Port Filter Control - RWPFC (0x5584; RW)
	8.18.12 Wake Flex UDP/TCP Ports Status - WFUTPS (0x5588, R/W1C)
	8.18.13 Wake Control Status - WCS (0x558C, R/W1C)
	8.18.14 IP Address Valid - IPAV (0x5838; R/W)
	8.18.15 IPv4 Address Table - IP4AT (0x5840 + 8*n [n=0...3]; R/W)
	8.18.16 IPv6 Address Table - IP6AT (0x5880 + 4*n [n=0...3]; R/W)
	8.18.17 Flexible Host Filter Table Registers - FHFT (0x9000 + 4*n [n=0...255]; RW)
	8.18.17.1 Flex Filter Queueing Field
	8.18.17.2 Flex Filter 0 - Example

	8.18.18 Flexible Host Filter Table Extended Registers - FHFT_EXT (0x9A00 + 4*n [n=0...255]; RW)
	8.18.19 Host Interface Buffer Base Address - HIBBA (0x8F40; RW)
	8.18.20 Host Interface Buffer Maximum Offset - HIBMAXOFF (0x8F44; RO)

	8.19 Memory Error Registers Description
	8.19.1 Parity and ECC Error Indication- PEIND (0x1084; RC)
	8.19.2 Parity and ECC Indication Mask - PEINDM (0x1088; RW)
	8.19.3 Packet Buffer ECC Status - PBECCSTS (0x245c; R/W)
	8.19.4 PCIe Parity Control Register - PCIEERRCTL (0x5BA0; RW)
	8.19.5 PCIe Parity Status Register - PCIEERRSTS (0x5BA8; R/W1C)
	8.19.6 PCIe ECC Control Register - PCIEECCCTL (0x5BA4; RW)
	8.19.7 PCIe ECC Status Register - PCIEECCSTS (0x5BAC; R/W1C)
	8.19.8 PCIe ACL0 and ACL1 Register - PCIACL01 (0x5B7C; RO to Host)
	8.19.9 PCIe ACL2 and ACL3 Register - PCIACL23 (0x5B80; RO to Host)
	8.19.10 LAN Port Parity Error Control Register - LANPERRCTL (0x5F54; RW)
	8.19.11 LAN Port Parity Error Status Register - LANPERRSTS (0x5F58; R/ W1C)

	8.20 Power Management Register Description
	8.20.1 Energy Efficient Ethernet (EEE) Register - EEER (0x0E30; R/W)

	8.21 Diagnostic Registers Description
	8.21.1 PCIe Misc. Register - PCIEMISC (0x5BB8; RW)

	8.22 PHY Software Interface
	8.22.1 Internal PHY Configuration - IPCNFG (0x0E38, RW)
	8.22.2 PHY Power Management - PHPM (0x0E14, RW)
	8.22.3 Internal PHY Software Interface (PHYREG)
	8.22.3.1 Copper Control Register - Page 0, Register 0
	8.22.3.2 Copper Status Register - Page 0, Register 1
	8.22.3.3 PHY Identifier 1 - Page 0, Register 2
	8.22.3.4 PHY Identifier 2 - Page 0, Register 3
	8.22.3.5 Copper Auto-Negotiation Advertisement Register - Page 0, Register 4
	8.22.3.6 Copper Link Partner Ability Register (Base Page) - Page 0, Register 5
	8.22.3.7 Copper Auto-Negotiation Expansion Register - Page 0, Register 6
	8.22.3.8 Copper Next Page Transmit Register - Page 0, Register 7
	8.22.3.9 Copper Link Partner Next Page Register - Page 0, Register 8
	8.22.3.10 1000BASE-T Control Register - Page 0, Register 9
	8.22.3.11 1000BASE-T Status Register - Page 0, Register 10
	8.22.3.12 MMD Access Control Register (MMDAC) - Page 0, Register 13
	8.22.3.13 MMD Access Address/Data Register (MMDAAD) - Page 0, Register 14
	8.22.3.14 Extended Status Register - Page 0, Register 15
	8.22.3.15 Copper Specific Control Register 1 - Page 0, Register 16
	8.22.3.16 Copper Specific Status Register 1 - Page 0, Register 17
	8.22.3.17 Copper Specific Interrupt Enable Register - Page 0, Register 18
	8.22.3.18 Copper Interrupt Status Register - Page 0, Register 19
	8.22.3.19 Copper Specific Control Register 2 - Page 0, Register 20
	8.22.3.20 Copper Specific Receive Error Counter Register - Page 0, Register 21
	8.22.3.21 Page Address - Page Any, Register 22
	8.22.3.22 Copper Specific Control Register 3 - Page 0, Register 23
	8.22.3.23 MAC Specific Control Register 1 - Page 2, Register 16
	8.22.3.24 MAC Specific Interrupt Enable Register - Page 2, Register 18
	8.22.3.25 MAC Specific Status Register - Page 2, Register 19
	8.22.3.26 Copper RX_ER Byte Capture Register - Page 2, Register 20
	8.22.3.27 MAC Specific Control Register 2 - Page 2, Register 21
	8.22.3.28 jt_led_s[3:0] Function Control Register - Page 3, Register 16
	8.22.3.29 jt_led_s[3:0] Polarity Control Register - Page 3, Register 17
	8.22.3.30 LED Timer Control Register - Page 3, Register 18
	8.22.3.31 jt_led_s[5:4] Function Control and Polarity Register - Page 3, Register 19
	8.22.3.32 1000BASE-T Pair Skew Register - Page 5, Register 20
	8.22.3.33 1000BASE-T Pair Swap and Polarity - Page 5, Register 21
	8.22.3.34 Copper Port Packet Generation - Page 6, Register 16
	8.22.3.35 Copper Port CRC Counters - Page 6, Register 17
	8.22.3.36 Checker Control - Page 6, Register 18
	8.22.3.37 Misc Test - Page 6, Register 26

	8.22.4 XMDIO Register Description
	8.22.4.1 PCS Control 1 Register - Device 3, Register 0
	8.22.4.2 PCS Status 1 Register - Device 3, Register 1
	8.22.4.3 PCS EEE Capability Register - Device 3, Register 20
	8.22.4.4 PCS EEE Wake Error Counter - Device 3, Register 22
	8.22.4.5 EEE Advertisement Register - Device 7, Register 60
	8.22.4.6 EEE Link Partner Advertisement Register - Device 7, Register 61

	8.22.5 PHY Registers
	8.22.5.1 PRBS Control - Page 26, Register 23
	8.22.5.2 PRBS Error Counter LSB- Page 26, Register 24
	8.22.5.3 PRBS Error Counter MSB- Page 26, Register 25
	8.22.5.4 Polarity Control - Page 26, Register 27
	8.22.5.5 Voltage Regulator Control - Page 26, Register 30

	9.0 PCIe Programming Interface
	9.1 PCIe* Compatibility
	9.2 PCIe Register Map
	9.2.1 Register Attributes
	9.2.2 PCIe Configuration Space Summary

	9.3 Mandatory PCI Configuration Registers
	9.3.1 Vendor ID (0x0; RO)
	9.3.2 Device ID (0x2; RO)
	9.3.3 Command Register (0x4; R/W)
	9.3.4 Status Register (0x6; RO)
	9.3.5 Revision (0x8; RO)
	9.3.6 Class Code (0x9; RO)
	9.3.7 Cache Line Size (0xC; R/W)
	9.3.8 Latency Timer (0xD; RO)
	9.3.9 Header Type (0xE; RO)
	9.3.10 BIST (0xF; RO)
	9.3.11 Base Address Registers (0x10...0x27; R/W)
	9.3.11.1 32-bit LAN BARs Mode Mapping
	9.3.11.2 64-bit LAN BARs Mode Mapping
	9.3.11.3 Base Address Register Fields

	9.3.12 CardBus CIS (0x28; RO)
	9.3.13 Subsystem Vendor ID (0x2C; RO)
	9.3.14 Subsystem ID (0x2E; RO)
	9.3.15 Expansion ROM Base Address (0x30; RW)
	9.3.16 Cap_Ptr (0x34; RO)
	9.3.17 Interrupt Line (0x3C; RW)
	9.3.18 Interrupt Pin (0x3D; RO)
	9.3.19 Max_Lat/Min_Gnt (0x3E; RO)

	9.4 PCI Capabilities
	9.4.1 PCI Power Management Capability
	9.4.1.1 Capability ID (0x40; RO)
	9.4.1.2 Next Pointer (0x41; RO)
	9.4.1.3 Power Management Capabilities - PMC (0x42; RO)
	9.4.1.4 Power Management Control / Status Register - PMCSR (0x44; R/W)
	9.4.1.5 Bridge Support Extensions - PMCSR_BSE (0x46; RO)
	9.4.1.6 Data Register (0x47; RO)

	9.4.2 MSI Configuration
	9.4.2.1 Capability ID (0x50; RO)
	9.4.2.2 Next Pointer (0x51; RO)
	9.4.2.3 Message Control (0x52; R/W)
	9.4.2.4 Message Address Low (0x54; R/W)
	9.4.2.5 Message Address High (0x58; R/W)
	9.4.2.6 Message Data (0x5C; R/W)
	9.4.2.7 Mask bits (0x60; R/W)
	9.4.2.8 Pending Bits (0x64; R/W)

	9.4.3 MSI-X Configuration
	9.4.3.1 Capability ID (0x70; RO)
	9.4.3.2 Next Pointer (0x71; RO)
	9.4.3.3 Message Control (0x72; R/W)
	9.4.3.4 MSI-X Table Offset (0x74; R/W)
	9.4.3.5 MSI-X Pending Bit Array - PBA Offset (0x78; R/W)

	9.4.4 CSR Access Via Configuration Address Space
	9.4.4.1 IOADDR Register (0x98; R/W)
	9.4.4.2 IODATA Register (0x9C; R/W)

	9.4.5 PCIe Configuration Registers
	9.4.5.1 Capability ID (0xA0; RO)
	9.4.5.2 Next Pointer (0xA1; RO)
	9.4.5.3 PCIe CAP (0xA2; RO)
	9.4.5.4 Device Capabilities (0xA4; RO)
	9.4.5.5 Device Control (0xA8; RW)
	9.4.5.6 Device Status (0xAA; R/W1C)
	9.4.5.7 Link Capabilities Register (0xAC; RO)
	9.4.5.8 Link Control Register (0xB0; RO)
	9.4.5.9 Link Status (0xB2; RO)
	9.4.5.10 Reserved (0xB4-0xC0; RO)
	9.4.5.11 Device Capabilities 2 (0xC4; RO)
	9.4.5.12 Device Control 2 (0xC8; RW)
	9.4.5.13 Link Control 2 (0xD0; RW)
	9.4.5.14 Link Status 2 (0xD2; RW)

	9.5 PCIe Extended Configuration Space
	9.5.1 Advanced Error Reporting (AER) Capability
	9.5.1.1 PCIe CAP ID (0x100; RO)
	9.5.1.2 Uncorrectable Error Status (0x104; R/W1CS)
	9.5.1.3 Uncorrectable Error Mask (0x108; RWS)
	9.5.1.4 Uncorrectable Error Severity (0x10C; RWS)
	9.5.1.5 Correctable Error Status (0x110; R/W1CS)
	9.5.1.6 Correctable Error Mask (0x114; RWS)
	9.5.1.7 Advanced Error Capabilities and Control Register (0x118; RWS)
	9.5.1.8 Header Log (0x11C:0x128; RO)

	9.5.2 Serial Number
	9.5.2.1 Device Serial Number Enhanced Capability Header (0x140; RO)
	9.5.2.2 Serial Number Register (0x144:0x148; RO)

	9.5.3 TLP Processing Hint Requester (TPH) Capability
	9.5.3.1 TPH CAP ID (0x1A0; RO)
	9.5.3.2 TPH Requester Capabilities (0x1A4; RO)
	9.5.3.3 TPH Requester Control (0x1A8; R/W)
	9.5.3.4 TPH Steering Table (0x1AC - 0x1B8; R/W)

	10.0 Electrical/Mechanical Specification
	10.1 Introduction
	10.2 Operating Conditions
	10.2.1 Recommended Operating Conditions

	10.3 Power Delivery
	10.3.1 Power Supply Specification
	10.3.1.1 Power On/Off Sequence
	10.3.1.2 Power-On Reset Thresholds

	10.4 Ball Summary
	10.5 Current Consumption
	10.6 DC/AC Specification
	10.6.1 DC Specifications
	10.6.1.1 Digital I/O
	10.6.1.2 LEDs I/O
	10.6.1.3 Open Drain I/Os

	10.6.2 Digital I/F AC Specifications
	10.6.2.1 Reset Signals
	10.6.2.1.1 LAN_PWR_GOOD

	10.6.2.2 JTAG AC Specification
	10.6.2.3 MDIO AC Specification
	10.6.2.4 PCIe Interface DC/AC Specification
	10.6.2.4.1 PCIe Specification - Input Clock

	10.6.3 XTAL/Clock Specification
	10.6.3.1 Crystal Specification
	10.6.3.2 External Clock Oscillator Specifications

	10.6.4 Switching Voltage Regulator (SVR) Capacitor Electrical Specifications

	10.7 Package
	10.7.1 Mechanical Specification for the 9 x 9 QFN Package
	10.7.2 9 x 9 QFN Package Schematics

	11.0 Design Considerations
	11.1 PCIe
	11.1.1 Port Connection to the I211
	11.1.2 PCIe Reference Clock
	11.1.3 Other PCIe Signals
	11.1.4 PCIe Routing

	11.2 Clock Source
	11.2.1 Frequency Control Device Design Considerations
	11.2.2 Frequency Control Component Types
	11.2.2.1 Quartz Crystal
	11.2.2.2 Fixed Crystal Oscillator
	11.2.2.3 Programmable Crystal Oscillators
	11.2.2.4 Ceramic Resonator

	11.3 Crystal Support
	11.3.1 Crystal Selection Parameters
	11.3.1.1 Vibrational Mode
	11.3.1.2 Nominal Frequency
	11.3.1.3 Frequency Tolerance
	11.3.1.4 Temperature Stability and Environmental Requirements
	11.3.1.5 Crystal Oscillation Mode
	11.3.1.6 Load Capacitance and Discrete Capacitors
	11.3.1.7 Shunt Capacitance
	11.3.1.8 Equivalent Series Resistance
	11.3.1.9 Drive Level
	11.3.1.10 Aging
	11.3.1.11 Reference Crystal
	11.3.1.11.1 Reference Crystal Selection
	11.3.1.11.2 Circuit Board
	11.3.1.11.3 Temperature Changes

	11.3.2 Crystal Placement and Layout Recommendations

	11.4 Oscillator Support
	11.4.1 Oscillator Placement and Layout Recommendations

	11.5 Ethernet Interface
	11.5.1 Magnetics for 1000 BASE-T
	11.5.2 Magnetics Module Qualification Steps
	11.5.3 Third-Party Magnetics Manufacturers
	11.5.4 Discrete/Integrated Magnetics Specifications
	11.5.5 Designing the I211 as a 10/100 Mb/s Only Device
	11.5.6 Layout Considerations for the Ethernet Interface
	11.5.6.1 Guidelines for Component Placement
	11.5.6.2 Layout Guidelines for Use with Integrated and Discrete Magnetics
	11.5.6.3 Board Stack-Up Recommendations
	11.5.6.4 Differential Pair Trace Routing for 10/100/1000 Designs
	11.5.6.5 Signal Termination and Coupling
	11.5.6.6 Signal Trace Geometry for 1000 BASE-T Designs
	11.5.6.7 Trace Length and Symmetry for 1000 BASE-T Designs
	11.5.6.8 Magnetics Center Tap
	11.5.6.9 Impedance Discontinuities
	11.5.6.10 Reducing Circuit Inductance
	11.5.6.11 Signal Isolation
	11.5.6.12 Traces for Decoupling Capacitors
	11.5.6.13 Light Emitting Diodes for Designs Based on the I211

	11.5.7 Physical Layer Conformance Testing
	11.5.7.1 Conformance Tests for 10/100/1000 Mb/s Designs

	11.5.8 Troubleshooting Common Physical Layout Issues

	11.6 I211 Power Supplies
	11.6.1 Power Delivery Solutions
	11.6.2 Ethernet Controller I211 Power Sequencing
	11.6.2.1 Power Up Sequence (External Voltage Regulator)
	11.6.2.2 Power Up-Sequence (Internal SVR)

	11.6.3 Power and Ground Planes

	11.7 Device Disable
	11.7.1 BIOS Handling of Device Disable

	11.8 Assembly Process Flow
	11.9 Reflow Guidelines
	11.10 XOR Testing

	12.0 Thermal Considerations
	12.1 Intended Audience
	12.2 Considerations
	12.3 Thermal Management Importance
	12.4 Terminology and Definitions
	12.5 Package Thermal/Mechanical Specifications and Limit
	12.5.1 Thermal Limits - Max Junction/Case
	12.5.2 Thermal Specifications
	12.5.3 Simulation Setup

	12.6 Simulation Results
	12.7 Component Measurement Methodology
	12.7.1 Case Temperature Measurements
	12.7.1.1 Attaching the Thermocouple (No Heat Sink)

	12.8 PCB Layout Guidelines
	12.9 Conclusion

	13.0 Diagnostics
	13.1 Customer Visible Features
	13.1.1 JTAG Test Mode Description

	Appendix A. Packet Types
	A.1 Packet Types for Header Split/Replication
	A.1.1 Terminology
	A.1.2 Type 0 Ethernet (VLAN/SNAP)
	A.1.3 Type 1 Ethernet (VLAN/SNAP) IP Packets
	A.1.3.1 Type 1.1 Ethernet, IP, Data
	A.1.3.2 Type 1.2: Ethernet (VLAN/snap), IPv4, TCP
	A.1.3.3 Type 1.3: Ethernet (SNAP/VLAN), IPv4, UDP
	A.1.3.4 Type 1.4: Ethernet, IPv4, IPv6

	A.1.4 Type 2: Ethernet, IPv6
	A.1.4.1 Type 2.1: Ethernet (VLAN/SNAP), IPv6, Data
	A.1.4.2 Type 2.2: Ethernet (VLAN/SNAP) IPv6 TCP
	A.1.4.3 Type 2.3: Ethernet (VLAN/SNAP) IPv6 UDP

	A.1.5 Type 3: NFS Packets
	A.1.5.1 Type 3.1: NFS Write Request
	A.1.5.2 Type 3.2: NFS Read Response

	A.2 IP and TCP/UDP Headers for TSO

