GIGABIT ETHERNET 850NM MULTIMODE SFP TRANSCEIVERS WITH DIGITAL DIAGNOSTICS

TRPUG1ESXx000E2G

Product Description

The TRPUG1ESX-E2G fiber optic transceiver with integrated digital diagnostics monitoring functionality provides a quick and reliable interface for 1000BASE-SX Gigabit Ethernet applications. The diagnostic functions, alarm and warning features as described in the Multi-Source Agreement (MSA) document, SFF-8472 (Rev.9.5), are provided via an I²C serial interface.

The module satisfies Class 1 Laser Safety requirements in accordance with the U.S.FDA/CDRH and international IEC-60825 standards.

The transceiver connects to a standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceiver has a bail-type latch, which offers an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

The transmitter and receiver DATA interfaces are AC-coupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over operating case temperature ranges of -5°C to $+70^{\circ}\text{C}$ (Commercial), -5°C to $+85^{\circ}\text{C}$ (Extended) or -40°C to $+85^{\circ}\text{C}$ (Industrial) . The housing is made of metal for EMI immunity.

Features

- ☑ Compliant with IEEE 802.3ah Gigabit Ethernet 1000BASE-SX PMD Specifications
- ☑ Compliant with SFP MSA
- ☑ Digital Diagnostics through Serial Interface
- ☑ Internal Calibration for Digital Diagnostics
- ☑ 850nm Oxide VCSEL laser transmitter
- $\ensuremath{\square}$ Up to 550m with 50/125 μ m MMF
- $\ensuremath{\square}$ Up to 300m with 62.5/125 μ m MMF
- ☑ Eye Safe (Class 1 Laser Safety)
- ☑ Duplex LC Optical Interface
- ☑ Loss of Signal Output & TX Disable Input
- ☑ Wide Operating Case Temperature Option
- ☑ Hot-pluggable
- ☑ Single +3.3V Power Supply
- ☑ RoHS Compliant

Absolute Maximum Ratings

Paramete	Symbol	Minimum	Maximum	Units		
Storage Temperature Range		$T_{\scriptscriptstyle ST}$	- 40	+ 85	°C	
	Commercial		- 5	+ 70	°C	
Operating Case Temperature ¹	Industrial	T_{OP}	- 40	+ 85	°C	
	Extended		- 5	+ 85		
Supply Voltage		V_{cc}	0	+ 3.47	V	
Input Voltage		V_{in}	0	V_{cc}	V	
¹ Measured on top side of SFP module at the front center vent hole of the cage.						

Transmitter Performance Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate	В	-	1250	-	Mb/s	
Optical Output Power ^{1,2}	$P_{\scriptscriptstyle O}$	- 9.5	-	- 3.0	dBm	
Center Wavelength	λ_c	830	-	860	nm	
Extinction Ratio	ER	9	-	-	dB	
Spectral Width (FWHM)	$\Delta\lambda_{\scriptscriptstyle RMS}$	-	-	0.85	nm	
Maximum with TX/Laser OFF	-	-	-	- 30	dBm	
Relative Intensity Noise	RIN	-	-	- 117	dB/Hz	
Deterministic Jitter	DJ	-	-	80	ps	
Total Jitter	Tj	-	-	227	ps	
Coupled Power Ratio	CPR	9	-	-	dB	
Optical Output Eye	Compliant with applicable IEEE 802.3 specs					

¹Average Optical Output Power is measured with 8B10B at 1250Mb/s

Receiver Performance Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter		Symbol	Minimum	Typical	Maximum	Units
Operating Data Rate		В	-	1250	-	Mb/s
Minimum Senitivity(10 ⁻¹	² BER) ¹	Pmin	-	-	- 17.0	dBm
Maximum Input Optical	Power (10 ⁻¹² BER) ¹	Pmax	0	-	-	dBm
LOC Throab alds	Increasing Light Input	Plos+	-	-	- 17.0	dBm
LOS Thresholds	Decreasing Light Input	Plos-	- 30.0	-	-	
LOS Hysteresis		-	0.5	-	-	dB
Wavelength of Operatio	n	λ	770	-	860	nm
Optical return Loss		ORL	12	-	-	dB
Deterministic Jitter		Dj	-	-	170	ps
Total Jitter		Tj	-	-	266	ps
Electrical 3dB Upper Cutoff Frequency		-	-	-	1500	MHz
Electrical 3dB Upper Cutoff Frequency ¹ Measured with 2 ⁷ -1 PRBS at 1250Mb/s at 850nm.		-	-	-		1500

Laser Safety: All transceivers are Class 1 Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Oplink Communications, LLC.

This product complies with 21 CFR 1040.10 and 1040.11 Meets Class 1 Laser Safety Requirements

² Measured average power coupled into either 50µm or 62.5µm multimode fiber.

Transmitter Electrical Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

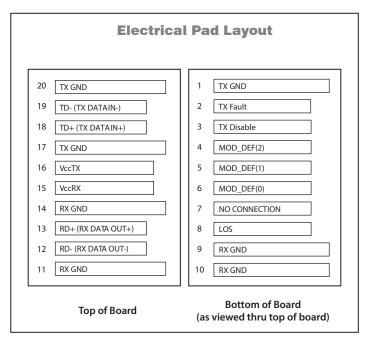
Parameter		Symbol	Minimum	Typical	Maximum	Units
Input differential impedance		R_{in}	80	100	120	ohm
Single ended data input swing		$V_{_{inpp}}$	0.25	-	1.2	V
TX Fault	Fault	V_{OH}	2.0	-	V_{cc}	V
	Normal	$V_{\scriptscriptstyle OL}$	V_{ee}	-	V_{ee} +0.5	V
TX Disable	Disable ¹	$V_{_{I\!H}}$	2.0	-	V_{cc}	V
1 A Disable	Enable	$V_{_{I\!L}}$	V_{ee}	-	V_{ee} +0.8	٧
¹ Or open circuit.						

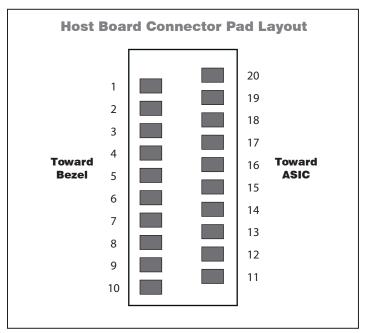
Receiver Electrical Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

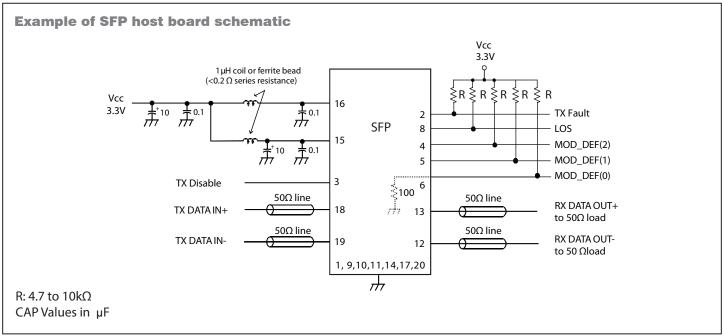
Parameter		Symbol	Minimum	Typical	Maximum	Units
Single ended data output swing ^{1,2,3}		$V_{out,pp}$	0.185	-	0.6	V
LOS output voltage	Fault	V_{OH}	2.0	-	V_{cc}	V
LOS output voltage	Normal	$V_{\scriptscriptstyle OL}$	V_{ee}	-	$V_{ee}^{}$ +0.5	V
MOD_DEF(0:2)	High	$V_{_H}$	2.0	-	V_{cc}	V
	Low	$V_{_L}$	V_{ee}	-	V _{ee} +0.5	V
Data output Rise/Fall Time(20% to 80%)		t_{r}, t_{f}	-	-	0.35	ns

¹Into 100 Ohm differential termination.

Electrical Power Supply Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)


Parameter	Symbol	Minimum	Typical	Maximum	Units	
Supply Voltage	V_{cc}	3.13	3.30	3.47	V	
Supply Current	I_{cc}	-	-	300	mA	
Inrush Current ¹	I _{in-rush}	-	-	30	mA	
¹ Hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value.						


Module Definition


MOD_DEF(0) MOD_DEF(1) pin 6 pin 5		MOD_DEF(2) pin 4	Interpretation by Host	
TTL LOW	SCL	SDA	Serial module definition protocol	

²According to SFP-MSA (SFF committee INF-8074i)

³Old requirement were 175/1000 mv. Changed to aligh with 8431 (to be plugged into EDC equipped 10G ports).

Application Notes

Electrical interface: All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally with 0.1 μ F and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7-10k Ω resistor on the host board.

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates logic HIGH when an insufficient photocurrent is produced.

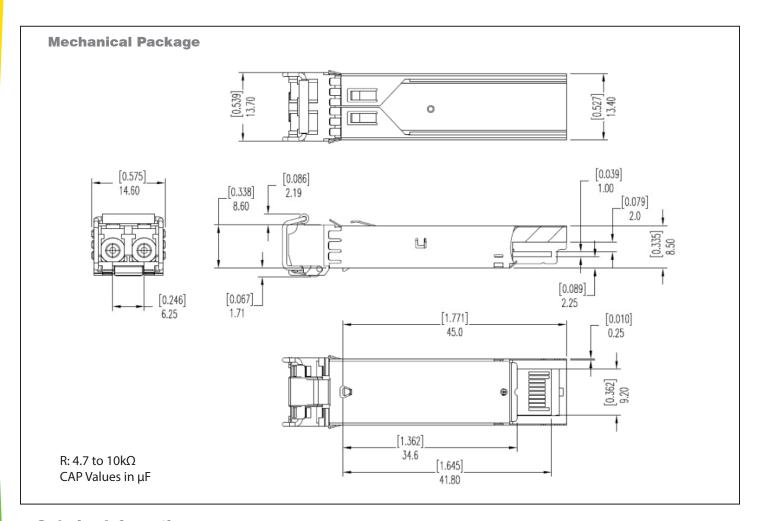
TX_Fault: The output indicates LOW when the transmitter is operating normally and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output

and should be pulled up with a 4.7 - $10k\Omega$ resistor on the host board. TX Fault is non-latching (automatically deasserts when fault goes away).

TX_Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled.

Serial Identification and Monitoring: The module definition of SFP is indicated by the three module definition pins, MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2).

Upon power up, MOD_DEF(1:2) appear as NC (no connection), and MOD_DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal


(SCL). The positive edge clocks data into the EEPROM segments of the SFP that are not write protected, and the negative edge clocks data from the SFP.

The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software

monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in SFP MSA, and SFF-8472, Rev. 9.5.

Power supply and grounding: The power supply line should be well-filtered. All $0.1\mu F$ power supply bypass capacitors should be as close to the transceiver module as possible.

Ordering Information

Oplink Part Number	Temperature	Nominal Wavelength	Distance	Latch Color
TRPUG1ESXE000E2G	- 5°C to +85°C	850nm	550m	Beige
TRPUG1ESXI000E2G	- 40°C to +85°C	850nm	550m	Beige
TRPUG1ESXC000E2G	- 5°C to +70°C	850nm	550m	Beige

¹The indicated transmission distance is for guidelines only, not guaranteed, The exact distance is dependent on the fiber loss, connector and splice loss, and allocated system penalty. Longer distances can be supported if the optical link power budget is satisfied.

Oplink Communications, LLC. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Oplink Communications, LLC. is believed to be accurate and reliable. However, no responsibility is assumed by Oplink Communications, LLC. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Oplink Communications, LLC.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Molex:

TRPUG1ESXC000E2G