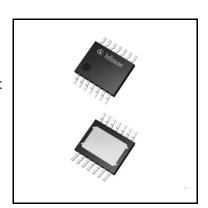


LITIX™ Basic+

Features


- Single channel device with integrated and protected output stage (current source), optimized to drive LEDs as additional low cost current source
- High output current (up to 240 mA)
- Very low current consumption in sleep mode
- Very low output leakage when channel is "off"
- · Low current consumption during fault
- Output currents' control via external low power resistor
- Additional output current demand supported by LITIX™ Companion direct drive without additional components
- · Very high precision digital dimming supported
- Intelligent fault management: up to 16 and more devices can share a common error network with only one
 external resistor
- Reverse polarity protection allows reduction of external components and improves system performance at low battery/input voltages
- Overload protection
- Wide temperature range: -40°C < T₁ < 150°C
- Output current control via external low power resistor
- Green product (RoHS compliant)

Potential applications

- Cost effective "stop"/ "tail" function implementation with shared and separated LEDs per function
- Turn indicators
- · Position, fog, rear lights and side markers
- Animated light functions like wiping indicators and "welcome/goodbye" functions
- Day Running Light
- Interior lighting functions like ambient lighting (including RGB color control), illumination and dash board lighting
- LED indicators for industrial applications and instrumentation

Product validation

Qualified for Automotive Applications. Product Validation according to AEC-Q100/101.

Description

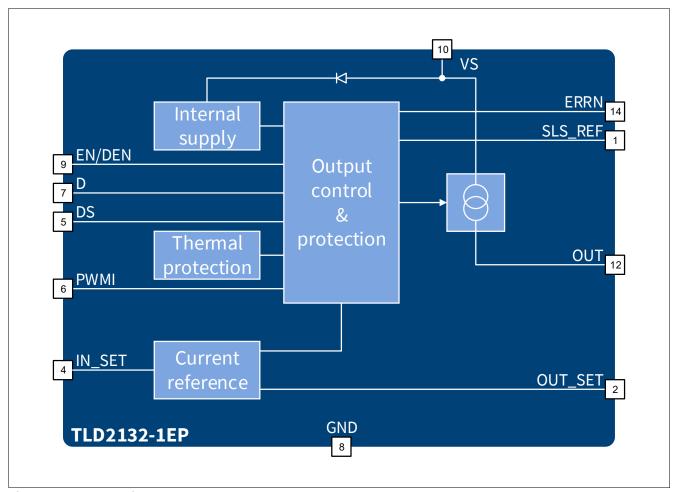
The LITIX™ Basic+ TLD2132-1EP is a single channel high-side driver IC with integrated output stage. It is designed to control LEDs with a current up to 240 mA. In typical automotive applications the device is capable of driving 3 red LEDs with a current up to 180 mA and even above, if not limited by the overall system thermal properties. Practically, the output current is controlled by an external resistor or reference source, independently from load and supply voltage changes.

Table 1 **Product summary**

Parameter	Symbol	Values
Operating voltage	V _{S(nom)}	5.5 V 40 V
Maximum voltage	$V_{\rm S(max)} \ V_{\rm OUT(max)}$	40 V
Nominal output (load) current	I _{OUT(nom)}	180 mA (nominal) when using the automotive supply voltage range 8 V - 18 V. Currents up to $I_{\rm OUT(max)}$ are possible with low thermal resistance $R_{\rm thJA}$
Maximum output (load) current	I _{OUT(max)}	240 mA depending on R _{thJA}
Current accuracy at $R_{\text{SET}} = 10 \text{ k}\Omega$	K _{LT}	900 ±5%
Current consumption in sleep mode	I _{S(sleep, typ)}	0.1 μΑ
Maximum current consumption during fault	I _{S(fault, ERRN)}	850 μA or less when fault is detected from another device (disabled via ERRN)

Туре	Package	Marking
TLD2132-1EP	PG-TSDSO-14	TLD2132

TLD2132-1EP LITIX™ Basic+


Table of Contents

L	Block diagram	4
2	Pin configuration	5
2.1	Pin assignment	5
2.2	Pin definitions and functions	5
3	General product characteristics	7
3.1	Absolute maximum ratings	
3.2	Functional range	8
3.3	Thermal resistance	9
1	Internal supply	. 10
1.1	Description	. 10
1.2	Electrical characteristics internal supply and EN pin	. 12
5	Power stage	. 14
5.1	Protection	
5.1.1	Thermal protection	. 14
5.1.2	Reverse battery protection	. 15
5.2	Output configuration via IN_SET, OUT_SET and PWMI pins	. 15
5.2.1	IN_SET pin	
5.2.2	Output current adjustment via R _{SET}	
5.2.3	Output control via IN_SET	
5.2.4	IN_SET pin behavior during device fault management	
5.2.5	OUT_SET pin	
5.2.6	Direct control of PWMI	
5.2.7	Timing diagrams	
5.3 5.4	Electrical characteristics power stage Electrical characteristics IN_SET, OUT_SET and PWMI pins for output settings	
). 4		
5	Load diagnosis	
5.1	Error management via ERRN and D-pins	
5.1.1 5.1.2	ERRN pin	
5.1.2 5.2	D-pin	
5.2.1	Open Load (OL) and short OUT to GND (SC)	
5.2.2	Fault management (D-pin connected to GND)	
5.3	Single LED Short detection, SLS_REF and DS pins	
5.3.1	SLS_REF pin	
5.3.2	DS pin	
5.3.3	SLS fault detection	
5.3.4	SLS fault management: D and DS pins open or connected with capacitors to GND (low power	
	consumption mode with retry strategy) 33	
5.3.5	SLS fault management: D-pin shorted to GND	. 34
5.4	Electrical characteristics: Load diagnosis and Overload management	. 35
7	Application information	. 38
3	Package outline	. 39
	Revision History	
7	REVISIUII MISLUI Y	. 40

Block diagram

1 Block diagram

4

Figure 1 Block diagram

2 Pin configuration

2.1 Pin assignment

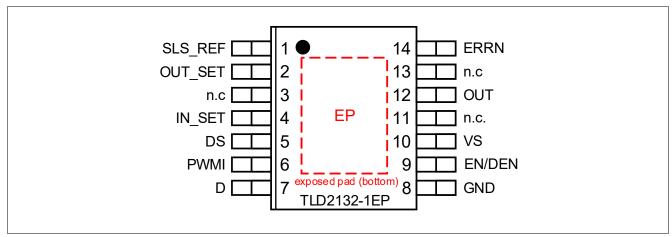


Figure 2 Pin configuration

2.2 Pin definitions and functions

Pin	Symbol	Function
10	VS	Supply voltage; Connected to battery or supply control switch, with EMC filter
8	GND	Ground; Signal ground
4	IN_SET	Control input for OUT channel; Connect to a low power resistor to adjust OUT output current. Alternatively, a different current reference (i.e. the OUT_SET of another LITIX™ Basic+ LED Driver) may be connected
2	OUT_SET	Control output for additional current source; If an additional channel or output current with same input control is needed, connect this pin to the IN_SET pin of the additional LED driver. If not used, leave the pin open
6	PWMI	PWM input; Connect to an external PWM controller. If not used, connect to GND
1	SLS_REF	Single LED short reference input; Connect to a low power resistor or a voltage reference to adjust Internal SLS threshold. If not used, connect to GND
5	DS	Single LED short delay/restart input; Connect to a capacitor, leave open or connect to GND, depending on the required diagnosis management for single LED short detection (see Chapter 6 for further details)
7	D	Disable/delay error input; Connect to a capacitor, leave open or connect to GND, depending on the required diagnosis management (see Chapter 6 for further details)
14	ERRN	ERROR flag I/O; Open drain, active low. Connect to a pull-up resistor

LITIX™ Basic+

Pin configuration

Pin	Symbol	Function
9	EN/DEN	Output enable and diagnosis control input; Connect to a control input (i.e. to VS via a resistor divider or a Zener diode) to enable OUT control and diagnosis capability
12	OUT	Channel output; Connect to the target load
3, 11, 13	n.c.	Not connected; Leave these pins open
Exposed Pad	EP	Exposed Pad; Connected to GND-pin in application

LITIX™ Basic+

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings¹⁾

 T_J = -40°C to +150°C; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition	
Voltage	•						•
Supply voltage	V_{S}	-18	-	40	V	_	P_4.1.1
EN/DEN voltage	$V_{\rm EN/DEN}$	-18	_	40	V	-	P_4.1.3
EN/DEN voltage related to $V_{\rm S}$: $V_{\rm EN/DEN}$ - $V_{\rm S}$	V _{EN/DEN(VS}	-40	-	18	V	_	P_4.1.4
EN/DEN voltage related to $V_{\rm OUT}$: $V_{\rm EN/DEN}$ - $V_{\rm OUT}$	V _{EN/DEN(V}	-18	_	40	V	_	P_4.1.5
Output voltage	V_{OUT}	-1	-	40	V	-	P_4.1.10
Output voltage related to V_s : V_s - V_{OUT}	V _{OUT(VS)}	-18	-	40	V	_	P_4.1.11
IN_SET voltage	V_{IN_SET}	-0.3	-	6	V	_	P_4.1.12
OUT_SET voltage	V _{OUT_SET}	-0.3	-	6	V	-	P_4.1.13
PWMI voltage	V_{PWMI}	-0.3	-	6	V	-	P_4.1.14
ERRN voltage	V_{ERRN}	-0.3	-	40	V	-	P_4.1.18
D Voltage	V_{D}	-0.3	-	6	V	-	P_4.1.19
DS voltage	V_{DS}	-0.3	_	6	V	-	P_4.1.42
SLS_REF voltage	$V_{\rm SLS_REF}$	-0.3	-	6	V	-	P_4.1.43
Current							·
Output current	I _{OUT}	0	-	250	mA	-	P_4.1.23
PWMI current	I _{PWMI}	-0.5	-	0.5	mA	-	P_4.1.26
IN_SET current	I _{IN_SET}	0	-	300	μΑ	-	P_4.1.30
D current	I _D	-0.5	-	0.5	mA	-	P_4.1.31
DS current	I _{DS}	-0.5	-	0.5	mA	-	P_4.1.44
SLS_REF current	I _{SLS_REF}	-0.5	_	0	mA	-	P_4.1.45
OUT_SET current	I _{OUT_SET}	0	-	0.5	mA	-	P_4.1.32
Temperature	-1		*	*	*		
Junction temperature	T_{J}	-40	_	150	°C	_	P_4.1.33
Storage temperature	$T_{\rm stg}$	-55	_	150	°C	-	P_4.1.34
ESD susceptibility	. 5	1	I	I	II.	1	
ESD susceptibility all pins to GND	V _{ESD}	-2	-	2	kV	HBM ²⁾	P_4.1.36

LITIX™ Basic+

General product characteristics

Table 2 Absolute maximum ratings¹⁾ (cont'd)

 T_J = -40°C to +150°C; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		Test Condition	
ESD susceptibility all pins to GND	V _{ESD}	-500	_	500	V	CDM ³⁾	P_4.1.37
ESD susceptibility Pin 1, 7, 8, 14 (corner pins) to GND	V _{ESD1,7,8,1}	-750	_	750	V	CDM ³⁾	P_4.1.38

- 1) Not subject to production test, specified by design
- 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k Ω , 100 pF)
- 3) ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101

Notes

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

3.2 Functional range

Table 3 Functional range

Parameter	Symbol		Values		Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Voltage range for normal operation	V _{S(nom)}	5.5	_	18	V	-	P_4.2.1
Extended supply voltage for functional range	V _{S(ext)}	V _{SUV(ON)}	_	40	V	-	P_4.2.2
Junction temperature	T_{J}	-40	_	150	°C	-	P_4.2.4

Note:

Within the Normal Operation range, the IC operates as described in the circuit description. Within the Extended Operation range, parameters deviations are possible. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

LITIX™ Basic+

General product characteristics

3.3 Thermal resistance

Note:

This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to **www.jedec.org**.

Table 4 Thermal resistance¹⁾

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		Test Condition	
Junction to Case	$R_{\rm thJC}$	_	-	10	K/W	1)2)	P_4.3.1
Junction to Ambient 1s0p	R_{thJA1}				K/W	1)3)	P_4.3.3
board		_	61	_		$T_{\rm A} = 85^{\circ}{\rm C}$	
		_	56	_		$T_A = 85$ °C $T_A = 135$ °C	
Junction to Ambient 2s2p	$R_{\rm thJA2}$				K/W	1)4)	P_4.3.4
board		_	45	_		$T_{\rm A} = 85^{\circ}{\rm C}$	
		_	43	_		$T_{\rm A} = 135^{\circ}{\rm C}$	

- 1) Not subject to production test, specified by design.
- 2) Specified R_{thJC} value is simulated at natural convection on a cold plate setup (all pins and exposed pad are fixed to ambient temperature). $T_A = 85^{\circ}$ C. Total power dissipation = 1.5 W
- 3) Specified R_{thJA} value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. The product (chip+package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 70 μ m Cu, 300 mm² cooling area. Total power dissipation 1.5W distributed statically and homogenously over all power stages
- 4) Specified $R_{\text{th,JA}}$ value is according to Jedec JESD51-5,-7 at natural convection on FR4 2s2p board; The product (chip+package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu, 2 × 35 mm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Total power dissipation 1.5W distributed statically and homogenously over all power stages

Internal supply

4 Internal supply

This chapter describes the internal supply in its main parameters and functionality.

4.1 Description

The internal supply principle is highlighted in the concept diagram of Figure 3.

If the voltage applied at the EN/DEN pin is below $V_{\rm EN(th)}$ the device enters sleep mode. In this state all internal functions are switched off and the current consumption is reduced to $I_{\rm S(sleep)}$.

As soon as the voltage applied at the supply pin V_S is above $V_{SUV(ON)}$ and the voltage applied at the EN/DEN pin is above $V_{EN(th)}$, after the power-on reset time t_{POR} , the device is ready to deliver output current from the output stage. The power on reset time t_{POR} has to be taken into account also in relevant application conditions, i. e. with PWM control from VS or EN/DEN lines.

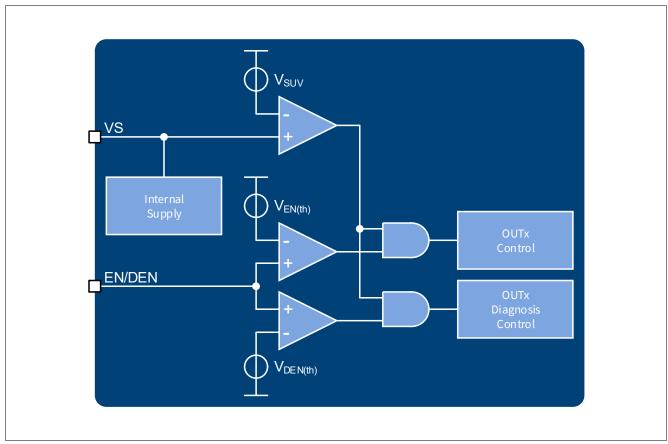


Figure 3 Internal supply

Furthermore, as soon as the voltage applied at the supply pin VS is above $V_{SUV(ON)}$ and the voltage applied to the EN/DEN pin V_{EN} is above $V_{DEN(th)}$, the device is ready to detect and report fault conditions via ERRN (error network pin) as described in **Chapter 6**.

To program output enable and diagnosis enable via EN/DEN pin there are several possibilities, like a resistor divider from VS to GND, a Zener diode from EN/DEN to VS and also a logic control pin (e.g. from a microcontroller output).

infineon

Internal supply

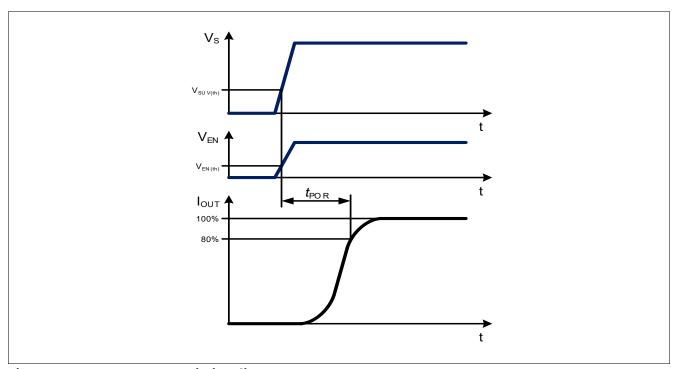


Figure 4 Power on reset timing diagram

Internal supply

Electrical characteristics internal supply and EN pin 4.2

Electrical characteristics: Internal supply and EN pin Table 5

 T_J = -40°C to +150°C; V_S =5.5 V to 18 V; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Current consumption, sleep mode	/ _{S(sleep)}	-	0.1	2	μА	$^{1)}V_{EN} = 0 \text{ V}$ $T_{J} < 85^{\circ}\text{C}$ $V_{S} = 18 \text{ V}$ $V_{OUT} = 3.6 \text{ V}$	P_5.2.1
Current consumption, active mode (no fault)	I _{S(active)}	_	1.5	3	mA	$V_{EN} = 5.5 \text{ V}$ $I_{IN_SET} = 0 \mu\text{A}$ $T_{J} < 105^{\circ}\text{C}$ $V_{S} = 18 \text{ V}$ $V_{OUT} = 3.6 \text{ V}$	P_5.2.3
Current consumption during fault condition triggered from another device sharing ERRN bus	I _{S(fault, ERRN)}	-	-	850	μΑ	$V_{EN} = 5.5 \text{ V}$ $T_{J} < 105^{\circ}\text{C}$ $V_{S} = 18 \text{ V}$ $V_{ERRN} = 0 \text{ V}$ $V_{OUT} = 3.6 \text{ V}$ D open	P_5.2.4
Current consumption during fault condition	I _{S(fault, OUT)}	-	_	1.25	mA	$V_{EN} = 5.5 \text{ V}$ $T_{J} < 105^{\circ}\text{C}$ $V_{S} = 18 \text{ V}$ $V_{OUT} = 0 \text{ V}$ V_{OUT} D open	P_5.2.16
Supply thresholds							
Required supply voltage for output activation	V _{SUV(ON)}	-	_	5.5	V	$V_{EN} = V_{S}$ $V_{OUT} = 3 \text{ V}$ $R_{IN_SET} = 6.8 \text{ k}\Omega$ $I_{OUT} > 50\% I_{OUT(nom)}$	P_5.2.5
Required supply voltage for output deactivation	V _{SUV(OFF)}	4.5	_	-	V	$V_{EN} = V_{S}$ $V_{OUT} = 3 \text{ V}$ $R_{IN_SET} = 6.8 \text{ k}\Omega$ $I_{OUT} < 50\% I_{OUT(nom)}$	P_5.2.6
Supply voltage activation hysteresis: $V_{SUV(ON)} - V_{SUV(OFF)}$	V _{SUV(hys)}	_	200	_	mV	$^{1)}V_{\rm EN} > V_{\rm EN(th)}$	P_5.2.8
EN pin							
EN output enable threshold	V _{EN(th)}	1.4	1.65	1.8	V	$V_S = 5.5 \text{ V}$ $V_{PS} = 2 \text{ V}$ $R_{IN_SET} = 6.8 \text{ k}\Omega$ $I_{OUT} = 50\% I_{OUT(nom)}$	P_5.2.9
DEN diagnosis enable threshold	$V_{DEN(th)}$	2.4	2.5	2.8	V	V _S = 5.5 V	P_5.2.11

LITIX™ Basic+

Internal supply

Electrical characteristics: Internal supply and EN pin (cont'd) Table 5

 $T_{\rm J}$ = -40°C to +150°C; $V_{\rm S}$ =5.5 V to 18 V; $R_{\rm IN_SET}$ = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
DEN diagnosis enable hysteresis	$V_{DEN(hys)}$	-	120	-	mV	$^{1)}R_{\text{IN_SET}} = 6.8 \text{ k}\Omega$	P_5.2.12
EN/DEN pull-down current	I _{EN/DEN(PD)}	-	-	60	μΑ	$V_{\rm S} > 8 \rm V$ $V_{\rm EN/DEN} = 2.8 \rm V$	P_5.2.17
EN/DEN pull-down current	I _{EN/DEN(PD)}	-	-	110	μΑ	$V_{\rm S} > 8 \text{ V}$ $V_{\rm EN/DEN} = 5.5 \text{ V}$	P_5.2.14
EN/DEN pull-down current	I _{EN/DEN(PD)}	-	-	350	μΑ	$V_{\rm S} > 8 V$ $V_{\rm EN/DEN} = V_{\rm S}$	P_5.2.15
Timing		<u>.</u>			*	*	'
Power on reset delay time	t _{POR}	-	-	25	μs	¹⁾ V_S rising from 0 V to 13.5 V $V_{OUT} = 3.6$ V $R_{IN_SET} = 6.8$ kΩ $I_{OUT} = 80\% I_{OUT(nom)}$	P_5.2.13

¹⁾ Not subjected to production test: specified by design.

5 Power stage

The output stage is realized as high-side current source with an output current up to 240mA. During off state the leakage current at the output stage is minimized in order to prevent a slightly glowing LED.

The maximum output current is limited by the power dissipation and used PCB cooling areas.

For an operating output current control loop, the supply and output voltage have to be considered according to the following parameters:

- Required supply voltage for current control V_{S(CC)}
- Voltage drop over through the output stage during current control $V_{PS(CC)}$
- Required output voltage for current control V_{OUT(CC)}

5.1 Protection

The device provides embedded protective functions, which are designed to prevent IC damage under fault conditions described in this datasheet. Fault conditions are considered as "outside" normal operating range. Protective functions are not designed for continuous nor for repetitive operations.

5.1.1 Thermal protection

A thermal protection circuitry is integrated in the device. It is realized by a temperature monitoring of the output stages.

As soon as the junction temperature exceeds the current reduction temperature threshold $T_{\rm J(CRT)}$ the output current can be reduced by the device by reducing the IN_SET reference voltage $V_{\rm IN_SET(ref)}$. This feature greatly helps to avoid LEDs flickering during static output overload conditions. Furthermore, it helps to protect the LEDs, which are mounted thermally close to the device, against overtemperature. If the device temperature still increases, the three output currents decrease close to 0 A. As soon as the device cools down the output currents rise again.

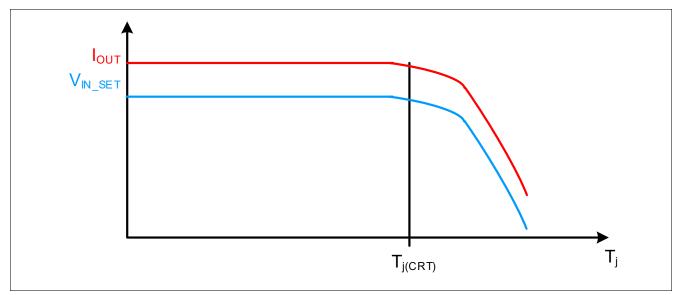


Figure 5 Output current reduction at high temperature (qualitative diagram)

Note: It is assumed that a configuration resistor R_{SET} is applied from IN_SET to GND, and not a current source, to make the protection effective.

5.1.2 Reverse battery protection

The device has an integrated reverse battery protection feature. This feature protects the driver IC itself and, potentially, also connected LEDs. The output reverse current is limited to $I_{\text{OUT}(\text{REV})}$ by the reverse battery protection.

5.2 Output configuration via IN_SET, OUT_SET and PWMI pins

Outputs current can be defined via IN_SET and OUT_SET (to drive additional devices without further external components) pin.

5.2.1 IN_SET pin

The IN_SET pin is a multiple function pin for the output current definition and input control.

Output current definition and analog dimming control can be done defining accordingly the IN_SET current.

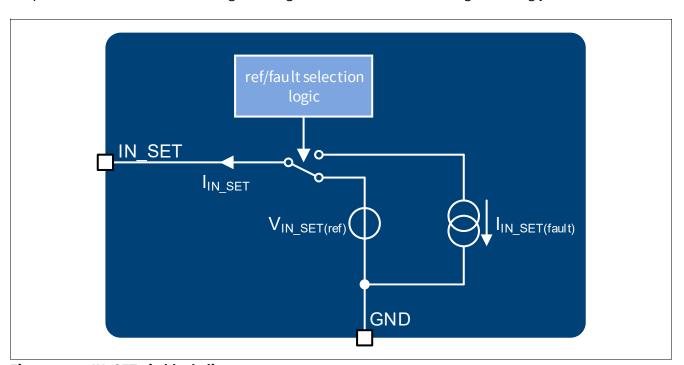


Figure 6 IN_SET pin block diagram

5.2.2 Output current adjustment via R_{SET}

The output current for the channel can be defined connecting a low power resistor (R_{SET}) between the IN_SET pin and GND. The dimensioning of the resistor can be done using the formula:

$$I_{OUT} = k \cdot I_{IN_SET} = k \cdot V_{IN_SET(ref)} / R_{SET}$$
(5.1)

The gain factor k (defined as the ratio I_{OUT}/I_{IN_SET}) is graphically described in **Figure 7**.

The current through the R_{SET} is defined by the resistor itself and the reference voltage $V_{IN_SET(ref)}$, which is applied to the IN_SET pin when the device is supplied and the channel enabled.

5.2.3 Output control via IN_SET

The IN_SET pin can be connected via R_{SET} to the open-drain output of a microcontroller or to an external NMOS transistor as described in **Figure 9**. This signal can be used to turn off the relative output stages of the IC.

A minimum IN_SET current of $I_{\text{IN_SET(ACT)}}$ is required to turn on the output stages. This feature is implemented to prevent glowing of LEDs caused by leakage currents on the IN_SET pin, see again **Figure 7** for details.

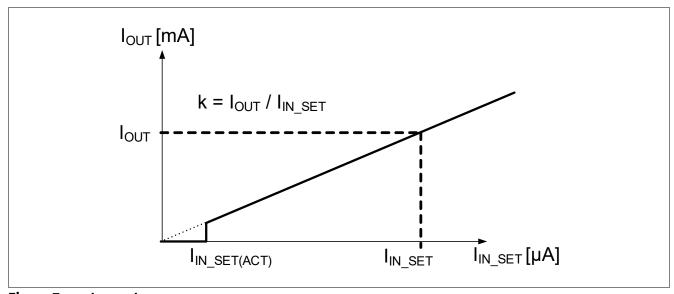


Figure 7 I_{OUT} vs $I_{IN SET}$

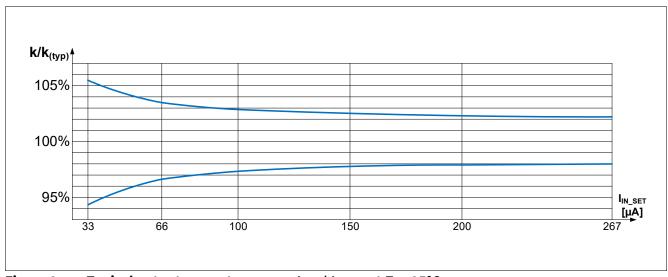


Figure 8 Typical output current accuracy I_{OUT}/I_{IN_SET} at $T_J = 25$ °C

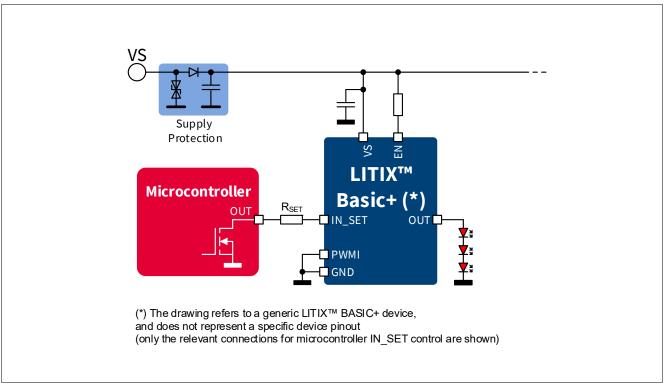


Figure 9 Output control via IN_SET pin and open-drain microcontroller out (simplified diagram)

5.2.4 IN_SET pin behavior during device fault management

If a fault condition arises on the channel controlled by the IN_SET pin, once the D-pin reaches the high level threshold $V_{D(th)}$, the current of the IN_SET pin is reduced to $I_{IN_SET(fault)}$, in order to minimise the current consumption of the whole device under fault condition (detailed description is in the load diagnosis section, **Chapter 6**).

5.2.5 OUT_SET pin

The OUT_SET pin, mirroring the IN_SET current defined by the external resistor R_{SET} , can be used to define the IN_SET current of an additional companion device.

If minimum IN_SET activation current $I_{\text{IN_SET(act)}}$ is not reached or if the D-pin reaches the high level threshold $V_{\text{D(th)}}$ the OUT_SET current is reduced to $I_{\text{OUT_SET(OFF)}}$. This allows to drive other devices via OUT_SET, even when digital dimming is required, without external components (see application drawing example in **Chapter 7**).

(infined

Power stage

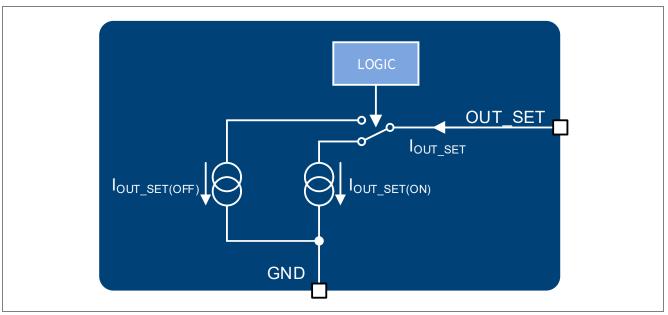


Figure 10 OUT_SET pin block diagram

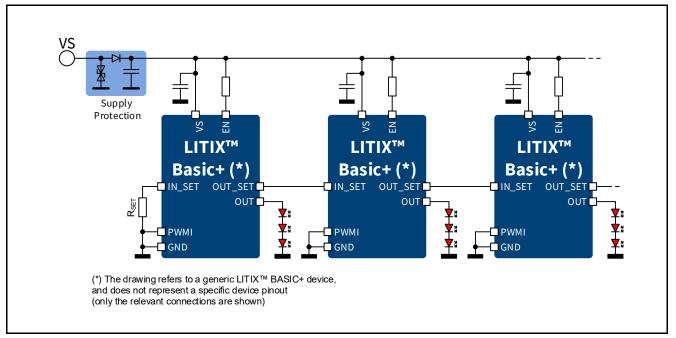


Figure 11 IN_SET to OUT_SET serial connection example

5.2.6 Direct control of PWMI

PWMI input can be controlled by the PWMO output of another device of LITIX™ Basic+ family or, alternatively, a push-pull output stage of a microcontroller: the host device decides the digital dimming characteristics by applying the proper control cycle in order to set the "on"/"off" timing, according to the chosen dimming function.

5.2.7 Timing diagrams

In the following diagrams (**Figure 12**, **Figure 13**, **Figure 14**) the influences of different driving inputs on output activation delays are shown.

LITIX™ Basic+

infineon

Power stage

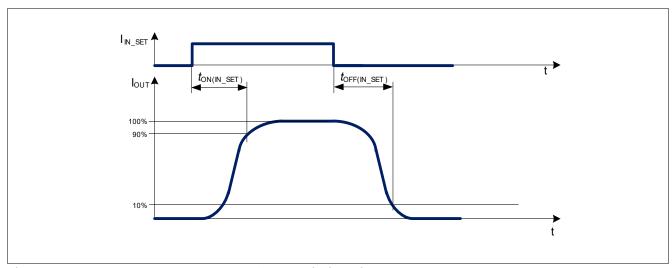


Figure 12 IN_SET turn on and turn off delay timing diagram

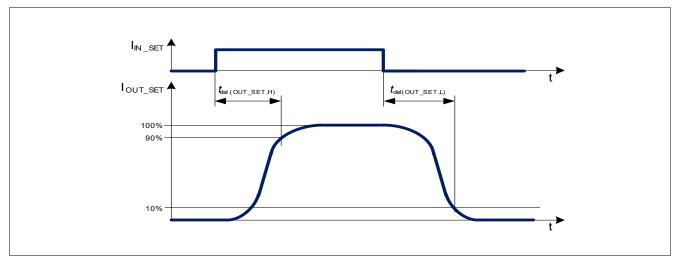


Figure 13 IN_SET to OUT_SET activation and deactivation delay timing diagram

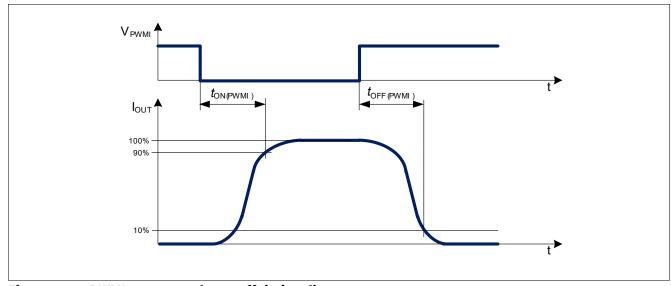


Figure 14 PWMI turn on and turn off timing diagram

5.3 Electrical characteristics power stage

Table 6 Electrical characteristics: Power stage

 T_J = -40°C to +150°C; V_S =5.5 V to 18 V; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Output leakage current	I _{OUT(leak)}	-	-	9	μΑ	$I_{\text{IN_SET}}^{1)}V_{\text{EN}} = 5.5 \text{ V}$ $I_{\text{IN_SET}} = 0 \mu\text{A}$ $V_{\text{OUT}} = 2.5 \text{ V}$ $T_{\text{J}} = 85^{\circ}\text{C}$	P_6.5.51
Output leakage current	I _{OUT(leak)}	-	_	21	μΑ	$I_{IN_SET}^{1)} V_{EN} = 5.5 \text{ V}$ $I_{IN_SET}^{1} = 0 \mu\text{A}$ $V_{OUT}^{1} = 2.5 \text{ V}$ $T_{J}^{1} = 150 ^{\circ}\text{C}$	P_6.5.60
Reverse output current	I _{OUT(rev)}	-	_	3	μΑ	$^{1)}V_{EN} = V_{S}$ $V_{S} = -18 \text{ V}$ Output load: LED with break down voltage < - 0.6 V	P_6.5.2
Output current accuracy							
Output current accuracy	\mathcal{K}_{LT}	837	900	963	_	$^{1)}T_{J} = 25 115$ °C $V_{S} = 8 18 \text{ V}$ $V_{PS} = 2 \text{ V}$ $I_{IN_SET} = 33 \mu\text{A}$	P_6.5.53
Output current accuracy	\mathcal{K}_{ALL}	801	900	999	_	$^{1)}T_{J} = -40 115$ °C $V_{S} = 8 18 \text{ V}$ $V_{PS} = 2 \text{ V}$ $I_{IN_SET} = 33 \mu\text{A}$	P_6.5.54
Output current accuracy	K _{LT}	855	900	945	-	$^{1)}T_{J} = 25 115$ °C $V_{S} = 8 18$ V $V_{PS} = 2$ V $I_{IN_SET} = 66$ μA	P_6.5.55
Output current accuracy	K _{ALL}	837	900	963	-	$^{1)}T_{J}$ = -40 115°C V_{S} = 8 18 V V_{PS} = 2 V I_{IN_SET} = 66 μA	P_6.5.56
Output current accuracy	K _{LT}	864	900	936	_	$^{1)}T_{J} = 25 115$ °C $V_{S} = 8 18 \text{ V}$ $V_{PS} = 2 \text{ V}$ $I_{IN_SET} = 200 \mu\text{A}$	P_6.5.57
Output current accuracy	K_{ALL}	855	900	945	_	$^{1)}T_{J}$ = -40 115°C V_{S} = 8 18 V V_{PS} = 2 V I_{IN_SET} = 200 μA	P_6.5.58

LITIX™ Basic+

Power stage

Table 6 **Electrical characteristics: Power stage** (cont'd)

 $T_{\rm J}$ = -40°C to +150°C; $V_{\rm S}$ =5.5 V to 18 V; $R_{\rm IN_SET}$ = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Required voltage drop during current control $V_{PS(CC)} = V_S - V_{OUT}$	V _{PS(CC)}	1.0	_	-	V	$I_{OUT}^{2)}V_{S} = 8 18 V$ $I_{OUT}^{2} > 90\% \text{ of }$ $K_{(typ)}^{*}I_{IN_SET}^{2}$	P_6.5.36
Required voltage drop during current control $V_{PS(CC)} = V_S - V_{OUT}$	V _{PS(CC)}	0.65	_	_	V	$I_{\text{IN_SET}}^{2)} V_{\text{S}} = 8 18 \text{ V}$ $I_{\text{IN_SET}} = 133 \mu\text{A}$ $I_{\text{OUT}} > 90\% \text{ of}$ $K_{\text{(typ)}}^{*} I_{\text{IN_SET}}$ $T_{\text{J}} = -40^{\circ}\text{C}$	P_6.5.37
Required voltage drop during current control $V_{PS(CC)} = V_S - V_{OUT}$	V _{PS(CC)}	0.75	_	_	V	$I_{\text{IN_SET}}^{2)} V_{\text{S}} = 8 18 \text{ V}$ $I_{\text{IN_SET}} = 133 \mu\text{A}$ $I_{\text{OUT}} > 90\% \text{ of}$ $K_{\text{(typ)}}^{*} I_{\text{IN_SET}}$ $T_{\text{J}} = 25^{\circ}\text{C}$	P_6.5.38
Required voltage drop during current control $V_{PS(CC)} = V_S - V_{OUT}$	V _{PS(CC)}	0.85	_	_	V	$I_{\text{IN_SET}} = 8 18V$ $I_{\text{IN_SET}} = 133 \mu\text{A}$ $I_{\text{OUT}} > 90\% \text{ of}$ $K_{\text{(typ)}} * I_{\text{IN_SET}}$ $I_{\text{J}} = 150^{\circ}\text{C}$	P_6.5.39
Required supply voltage for current control	V _{S(CC)}	5.5	-	-	V	$V_{\text{EN}} = 5.5 \text{ V}$ $V_{\text{OUT}} = 3 \text{ V}$ $R_{\text{IN_SET}} = 6.8 \text{ k}\Omega$ $I_{\text{OUT}} > 90\% \text{ of}$ $K^*I_{\text{IN_SET}}$	P_6.5.40
Required output voltage for current control	$V_{OUT(CC)}$	1.4	_	-	V	$V_{\rm S} = 8 18 \text{ V}$ $I_{\rm OUT} > 90\% \text{ of }$ $K^*I_{\rm IN_SET}$	P_6.5.41
Current reduction temperature threshold	$T_{J(CRT)}$	-	140	-	°C	1)	P_6.5.44
Output current during current reduction at high temperature	I _{OUT(CRT)}	85% of I _{OUT(typ)}	-	-	mA	¹⁾ T _J = 150°C	P_6.5.45

¹⁾ Not subjected to production test: specified by design.

²⁾ In these test conditions, the parameter $K_{(typ)}$ represents the typical value of output current accuracy.

5.4 Electrical characteristics IN_SET, OUT_SET and PWMI pins for output settings

Table 7 Electrical characteristics: IN_SET, OUT_SET and PWMI pins

 T_J = -40°C to +150°C; V_S =5.5 V to 18 V; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
IN_SET reference voltage	V _{IN_SET(ref)}	1.195	1.22	1.245	V	$^{1)}V_{EN} = 5.5 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$	P_6.6.1
IN_SET reference voltage	V _{IN_SET(ref)}	1.184	1.22	1.256	V	$^{1)}V_{EN} = 5.5 \text{ V}$ $T_{J} = -40 115^{\circ}\text{C}$	P_6.6.17
IN_SET output activation current	I _{IN_SET(ACT)}	-	-	15	μΑ	$V_{EN} = 5.5 \text{ V}$ $V_{PS} = 3 \text{ V}$ $I_{OUT} > 50\% \text{ of}$ $K_{(typ)} * I_{IN_SET}$	P_6.6.2
OUT_SET output current matching	$\Delta I_{\text{OUT_SET(ON)}}/I_{\text{I}}$ N_SET	-4	_	4	%	$V_S = 8 \text{ V to } 18 \text{ V}$ $V_{\text{OUT_SET}} = 1.2 \text{ V}$ $I_{\text{IN_SET}} = 267 \mu\text{A}$	P_6.6.3
PWMI low threshold	$V_{\text{PWMI(L)}}$	1.5	1.7	2	V	$V_{\rm S} = 8 \text{ V to } 18 \text{ V}$ $V_{\rm EN} = 5.5 \text{ V}$	P_6.6.6
PWMI high threshold	V _{PWMI(H)}	2.5	2.7	3	V	$V_{\rm S} = 8 \text{ V to } 18 \text{ V}$ $V_{\rm EN} = 5.5 \text{ V}$	P_6.6.7
Timing							
IN_SET turn on time	t _{on(in_set)}	-	-	20	μs	$I_{\rm INSET}^{(1)2)}V_{\rm S} = 13.5 \text{ V}$ $V_{\rm PS} = 4 \text{ V}$ $I_{\rm INSET}^{(1)}$ rising from 0 to 180 μ A $I_{\rm OUT}^{(1)} = 90\%$ of $K^*I_{\rm INSET}^{(1)}$	P_6.6.8
IN_SET turn off time	t _{OFF(IN_SET)}	-	-	10	μs	$^{1)2)}V_{\rm S} = 13.5 \text{ V}$ $V_{\rm PS} = 4 \text{ V}$ $I_{\rm IN_SET}$ falling from 180 to 0 μ A $I_{\rm OUT} = 10\%$ of $K^*I_{\rm IN_SET}$	P_6.6.9
OUT_SET activation time	$t_{ m del(OUT_SET,H)}$	_	-	5	μs	$I_{\text{IN_SET}}^{1)3)}V_{\text{S}} = 13.5 \text{ V}$ $I_{\text{IN_SET}}^{\text{rising from 0}}$ to 180 μ A $I_{\text{OUT_SET}}^{\text{OUT_SET}} = 90\% \text{ of}$ $I_{\text{IN_SET}}^{\text{IN_SET}}$	P_6.6.10
OUT_SET deactivation time	$t_{ m del(OUT_SET,L)}$	_	_	5	μs	$I_{\text{IN_SET}}$ falling from 180 to 0 μ A $I_{\text{OUT_SET}}$ = 10% of $I_{\text{IN_SET}}$	P_6.6.11

LITIX™ Basic+

Power stage

Electrical characteristics: IN_SET, OUT_SET and PWMI pins (cont'd) Table 7

 $T_{\rm J}$ = -40°C to +150°C; $V_{\rm S}$ =5.5 V to 18 V; $R_{\rm IN_SET}$ = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
PWMI turn on time	t _{ON(PWMI)}	-	-	15	μs	$V_{\rm EN} = 8 \text{ V to } 18 \text{ V}$ $V_{\rm EN} = 5.5 \text{ V}$ $V_{\rm PWMI}$ falling from 5 V to 0 V $I_{\rm OUT} = 90\%$ of $K^*I_{\rm IN_SET}$ $I_{\rm J} = -40 115^{\circ}\text{C}$	P_6.6.12
PWMI turn off time	t _{OFF(PWMI)}	-	-	10	μs	$V_{\rm S} = 8 \text{ V to } 18 \text{ V}$ $V_{\rm EN} = 5.5 \text{ V}$ $V_{\rm PWMI} = 0 \text{ rising}$ from 0 V to 5 V $V_{\rm OUT} = 10\% \text{ of}$ $V_{\rm IN_SET}$ $V_{\rm J} = -40 115 ^{\circ}\text{C}$	P_6.6.13

¹⁾ Not subjected to production test: specified by design.

- 2) Refer to Figure 12.
- 3) Refer to Figure 13.
- 4) Refer to Figure 14.

6 Load diagnosis

6.1 Error management via ERRN and D-pins

Several diagnosis features are integrated in the TLD2132-1EP:

- · Open load detection (OL).
- Short circuit OUT-GND (SC).
- Single LED Short detection (SLS).

6.1.1 ERRN pin

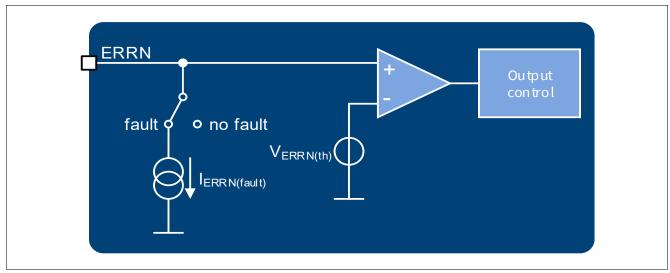


Figure 15 ERRN pin (block diagram)

The device is able to report a detected failure in its driven load and react to a fault detected by another LED driver in the system if a shared error network is implemented (i. e. driving LED chains of the same light function). This is possible with the usage of an external pull-up resistor, allowing multiple devices to share the open drain diagnosis output pin ERRN. All devices sharing the common error network are capable to detect the fault from any of the channels driven by the LITIX™ Basic+ LED drivers and, if desired, to switch multiple loads off.

LITIX™ Basic+

Load diagnosis

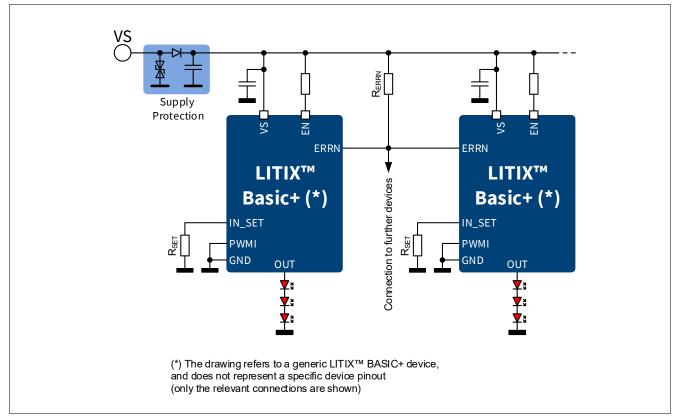


Figure 16 Shared error network principle between LITIX™ Basic+ family devices

When the channel is detected to be under fault conditions (for, at least, a filter time t_{fault}), the open-drain ERRN $pin sinks \ a \ pull-down \ current \ \textit{I}_{ERRN(fault)} \ toward \ GND. \ Therefore \ an \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ ERRN \ pin \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ can \ be \ detected \ at \ extends \ active \ low \ state \ low \ active \ low \ state \ low \ active \ low \ state \ low \ low \ active \ ac$ when $V_{\text{ERRN}} < V_{\text{ERRN}(\text{fault})}$ and if this condition is reached, provided the proper setup of the delay pin D, the channel is switched off. Similarly, when the fault is removed, ERRN pin is put back in high impedance state, and the channels reactivation procedure can be completed once D-pin voltage is below the value $V_{\rm D(th)}$, as illustrated in the timing diagrams in this chapter.

infineon

Load diagnosis

6.1.2 **D-pin**

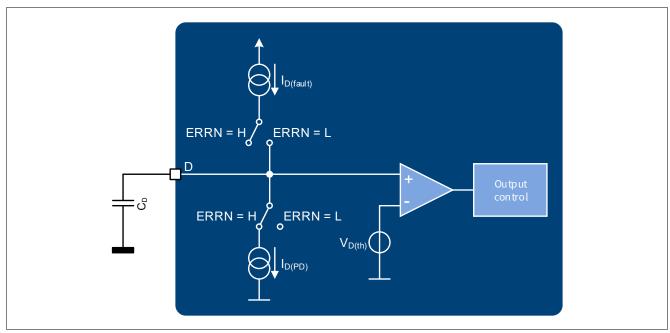


Figure 17 D-pin (block diagram).

The D-pin is designed for 2 main purposes:

- To react to error conditions in LED arrays according to the implemented fault management policy, in systems where multiple LED chains are used for a given light function.
- To extend the channel deactivation delay time of a value $t_{\rm D}$, adding a small signal capacitor from the D-pin to GND. In this way, an unstable or noisy fault condition may be prevented from switching off all the channels of a given light function (i.e. driven by several driver ICs sharing the same error network).

The functionality of the D-pin is shown in the Figure 17 simplified block diagram:

If one LED within one chain fails in open load condition or the device output is shorted to GND, the respective LED chain is off. Different automotive applications require a complete deactivation of a light function, if the desired brightness of the function (LED array) can not be achieved due to an internal error condition.

In normal operative status (no fault) a pull-down current $I_{D(PD)}$ is sunk from the D-pin to GND. If there is a fault condition (for, at least, a filter time t_{fault}) in one of the LED channels driven by the IC or in any of the devices sharing the same ERRN error network line, a pull-up current $I_{D(\text{fault})}$ is instead sourced from the D-pin. As a consequence, if a capacitive or open load is applied at this pin, its voltage starts rising.

When $V_{D(th)}$ is reached at D-pin, all the channels driven by the device are switched off and if other devices share the same ERRN and D-pins nodes, all the devices turn their outputs off.

Alternatively, if the D-pin is tied to GND, only the channel that has been detected with a fault is safely deactivated.

The capacitor value used at the D-pin, C_D , sets the delay times $t_{D(set/reset)}$ according to the following equations:

$$t_{D(set)} = \frac{C_D \cdot V_{D(th)}}{I_D} \tag{6.1}$$

$$t_{D(reset)} = \frac{C_D \cdot (V_{D(CL)} - V_{D(th)})}{I_D}$$

$$(6.2)$$

TLD2132-1EP LITIX™ Basic+

infineon

Load diagnosis

Note:

If the device detects a Single LED Short failure, the D-pin behavior and the overall fault management is slightly different (allows periodical retries with load reactivation, according to DS pin settings too), as described in **Chapter 6.3**.

6.2 Open Load (OL) and short OUT to GND (SC)

The behavior of the device during overload conditions that lead to an excess of internal heating up to overtemperature condition, is already described in **Chapter 5**.

Open load (OL) and OUT shorted to GND (SC) diagnosis features are also integrated in the TLD2132-1EP.

An open load condition is detected if the voltage drop over the output stage V_{PS} is below the threshold $V_{PS(OL)}$ at least for a filter time t_{fault} .

A short to GND condition is detected if the voltage of the output stages V_{OUT} is below the threshold $V_{\text{OUT(SC)}}$ at least for a filter time t_{fault} .

6.2.1 Fault management (D-pin open or connected with a capacitor to GND)

With D-pin open or connected with a capacitor to GND configuration, it is possible to switch off all the channels which share a common error network, without the need of an auxiliary microcontroller. For more details refer also to the timing diagram of **Figure 18**, **Figure 19**.

If there is an OL or SC condition on the output, a pull-up current $I_{\text{OUT(fault)}}$ then flows out from the channel, replacing the configured output current (but limited by the actual load impedance, e.g. reduced to zero with an ideal open load). Under these conditions, the ERRN pin starts sinking a current $I_{\text{ERRN(fault)}}$ toward GND and (with proper dimensioning of the external pull-up resistor) reaches a voltage level below $V_{\text{ERRN(fault)}}$.

After $t_{D(set)}$, the voltage $V_{D(th)}$ is reached at D-pin, the IN_SET goes in a weak pull-down state with a current consumption $I_{IN_SET(fault)}$ after an additional latency time $t_{IN_SET(del)}$. The ERRN low voltage can also be used as input signal for a microcontroller to perform the desired diagnosis policy.

The OL and SC error conditions are not latched: as soon as the fault condition is no longer present (at least for a filter time $t_{\rm fault}$) ERRN goes back to high impedance. When its voltage is above $V_{\rm ERRN(fault)}$, the D-pin voltage starts decreasing and after $t_{\rm D(reset)}$ goes below ($V_{\rm D(th)}$ - $V_{\rm D(th,hys)}$). Then the IN_SET voltage goes up to $V_{\rm IN_SET(ref)}$, again after a time $t_{\rm IN_SET(del)}$: at this point, the output stage are activated again. The total time between the fault removal and the IN_SET reactivation $t_{\rm ERR(reset)}$ is extended by an additional latency which depends on the external ERRN pin pull-up and filter circuitry.

infineon

Load diagnosis

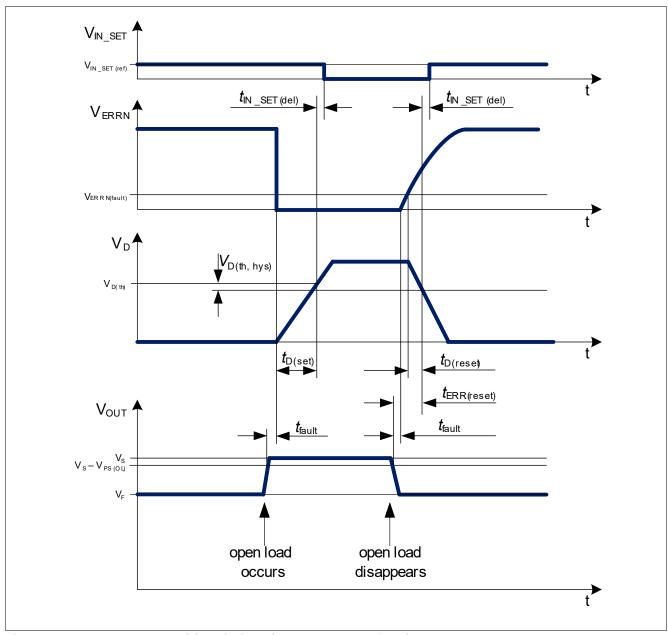


Figure 18 Open load condition timing diagram example (D-pin unconnected or connected to external capacitor to GND, $V_{\rm F}$ represents the typical forward voltage of the output load)

infineon

Load diagnosis

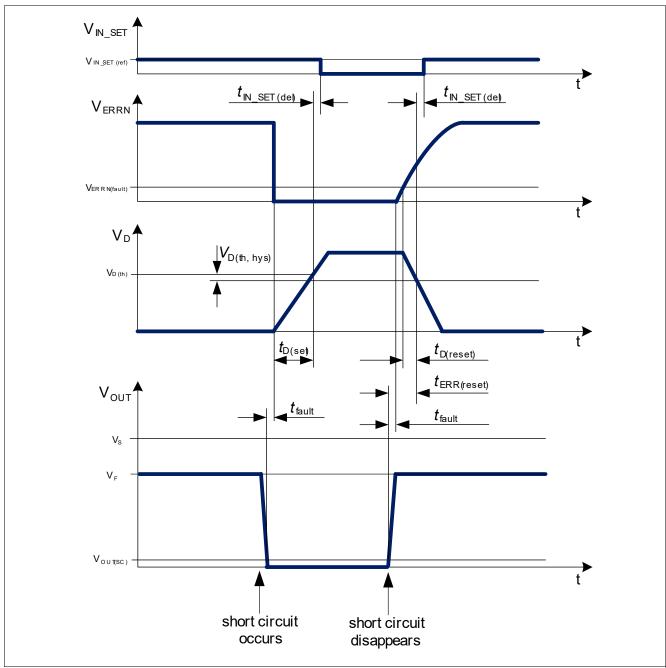


Figure 19 Short circuit to GND condition timing diagram example (D-pin not connected to external capacitor to GND, V_{Exvz} represents the forward voltage of the output loads)

6.2.2 Fault management (D-pin connected to GND)

With D-pin connected to GND configuration, it is possible to deactivate only the channel under fault conditions, still sharing ERRN pin in a common error network with other devices of LITIX™ Basic+ family.

If there is fault condition on the output, a pull-up current $I_{\text{OUT(fault)}}$ flows out from the channel, replacing the configured output current (but limited by the actual load impedance, e.g. reduced to zero with an ideal open load). Under fault conditions the ERRN pin starts sinking a current $I_{\text{ERRN(fault)}}$ to ground and the voltage level on this pin will drop below $V_{\text{ERRN(fault)}}$ if the external pull-up resistor is properly dimensioned. The ERRN low voltage can also be used as input signal for a μC to perform the desired diagnosis policy.

LITIX™ Basic+

Load diagnosis

The fault status is not latched: as soon as the fault condition is no longer present (at least for a filter time $t_{\rm fault}$), ERRN goes back to high impedance and, once its voltage is above $V_{\rm ERRN(fault)}$, finally the output stages are activated again.

Examples of open load or short to GND diagnosis with D-pin open or connected to GND are shown in the timing diagrams of **Figure 20** and **Figure 21**.

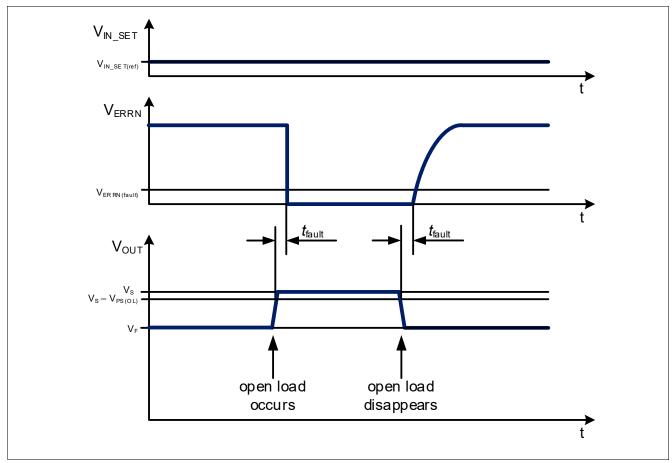


Figure 20 Open load condition timing diagram example (D-pin connected to GND, V_F represents the forward voltage of the output load)

infineon

Load diagnosis

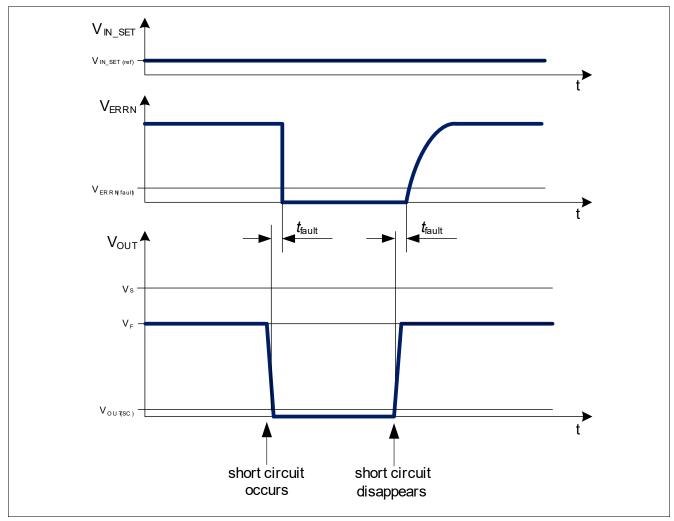


Figure 21 Short circuit condition timing diagram example (D-pin connected to GND, V_F represents the forward voltage of the output load)

6.3 Single LED Short detection, SLS_REF and DS pins

An output single LED short circuit (SLS) detection diagnosis feature is available. This allows an easy detection of loss of luminous flux in the light function due to this failure mode, which does not necessarily result in a condition similar or equivalent to an open load or short to GND condition. To make the SLS error management compliant with the majority of system requirements, the TLD2132-1EP allows the possibility to manage a low current consumption mode with a load reactivation and retry strategy (via D and DS pins connected to external capacitors), or with error detection via ERRN pin monitoring (with D-pin shorted to GND).

Load diagnosis

6.3.1 SLS REF pin

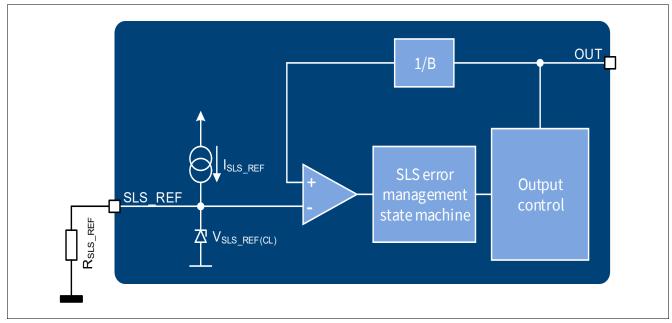


Figure 22 SLS_REF pin (block diagram) with resistor termination

The SLS_REF pin is designed to generate an accurate and tunable reference voltage to allow reliable detection of SLS failure.

This reference can be programmed to adapt the SLS detection to the load related variables (as number of LED in series, load currents, LED forward voltages fluctuation and mismatches, etc.).

The pin provides an accurate reference current I_{SLS_REF} (a replica of I_{IN_SET}) which can be used to generate the desired reference voltage with an external low cost precision resistor. The voltage $V_{\rm SLS\ REF}$ is then internally compared with a fraction of the OUT voltage: if the OUT voltage is below the minimum expected value, then the SLS error management starts (see Chapter 6.3.3 for more detailed description and reference formulas).

Figure 22 shows the basic block diagram of SLS_REF pin.

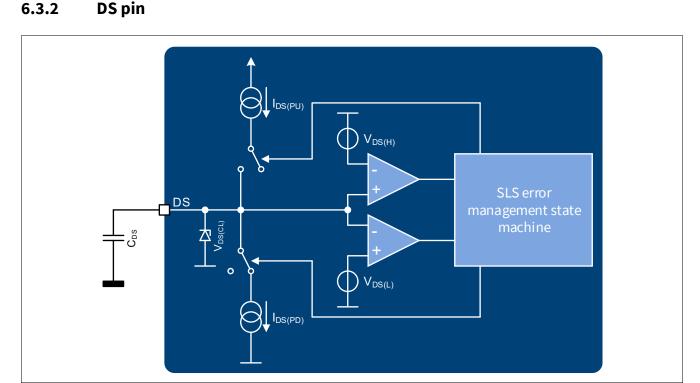


Figure 23 DS pin (block diagram)

The DS pin is used to implement a timer function which allows load reactivation retries during SLS failure.

By default, when no SLS fault is detected, a pull-down current $I_{\rm DS(PD)}$ is sunk from the DS pin to GND. If a SLS fault condition is verified, a capacitor on DS pin allows fault management with minimal current consumption of the device for a time which depends on the capacitive load applied, according to the detailed description of **Chapter 6.3.4**.

6.3.3 SLS fault detection

A single LED anode-cathode short circuit condition is detected if the OUT voltage is below a fixed multiple B_{SLS} of the voltage at SLS_REF pin, according to **Equation (6.3)**. The voltage V_{SLS_REF} can be adjusted applying a resistor from SLS_REF to GND, according to **Equation (6.4)** and the parameter K_{SLS_REF} (P_7.5.13).

$$V_{OUT} \le B_{SLS} \cdot V_{SLS REF} \tag{6.3}$$

$$V_{SLS_REF} = I_{SLS_REF} \cdot R_{SLS_REF}$$
 (6.4)

6.3.4 SLS fault management: D and DS pins open or connected with capacitors to GND (low power consumption mode with retry strategy)

Under this pin configuration, as described in the title of this chapter, if there is an SLS condition the output is turned off when the voltage level $V_{D(th)}$ is reached at D-pin.

Under fault condition the ERRN pin starts sinking a current $I_{\text{ERRN(fault)}}$ to ground and the voltage level on this pin will drop below $V_{\text{ERRN(fault)}}$ if the external pull-up resistor is properly dimensioned. After $t_{\text{D(set)}}$, the voltage $V_{\text{D(th)}}$ is reached at D-pin and the IN_SET pin goes into a weak pull-down state with a current consumption $I_{\text{IN SET(fault)}}$, after an additional latency time $t_{\text{IN SET(del)}}$.

Load diagnosis

Then (differently from the management of OL and SC detection) the voltage at DS pin also starts rising with a pull-up current $I_{\rm DS(PU)}$, until it reaches the threshold $V_{\rm DS(H)}$, when it starts discharging with the current $I_{\rm DS(PD)}$. Now the DS voltage can cross the lower voltage threshold $V_{\rm DS(L)}$: at this time a full wait time cycle $t_{\rm SL_WAIT}$ is completed and the device performs a load reactivation retry, turning the output current back on. If the SLS fault condition persists, a new $t_{\rm SL_WAIT}$ cycle is started. If at the end of one wait cycle the fault is not detected anymore, the device goes back to normal operation. The dimensioning of typical $t_{\rm SL_WAIT}$ is ruled by the following equations.

$$t_{DS(rise)} = \frac{C_{DS} \cdot V_{DS(H)}}{I_{DS(PU)}} \tag{6.5}$$

$$t_{DS(fall)} = \frac{C_{DS} \cdot \left(V_{DS(H)} - V_{DS(L)}\right)}{I_{DS(PD)}} \approx \frac{C_{DS} \cdot V_{DS(H)}}{I_{DS(PD)}} \tag{6.6}$$

$$t_{SL(wait)} = t_{DS(rise)} + t_{DS(fall)} + t_{IN-SET(del)} \approx t_{DS(rise)}$$
(6.7)

A graphical description is shown in the timing diagram example of Figure 24.

With this error management algorithm, it is possible to detect the SLS fault monitoring the device consumption from the VS line, which remains as low as $I_{S(fault)}$ during the whole wait cycle.

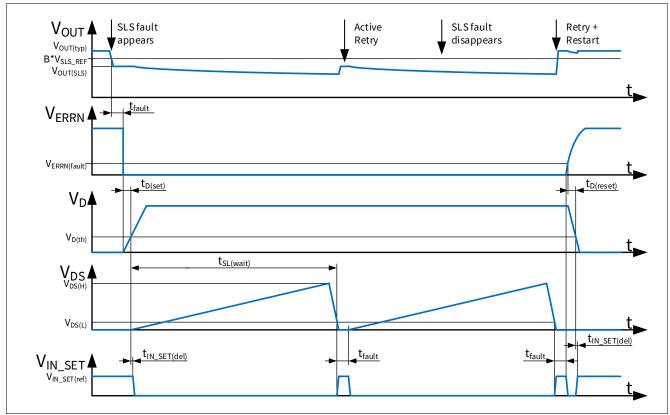


Figure 24 Single LED short condition timing diagram example (D pin not connected or connected to external capacitor to GND) output load)

6.3.5 SLS fault management: D-pin shorted to GND

Under D-pin shorted to GND configuration, the output affected by a single LED short fault is not turned off, different from an open load or short circuit to GND fault condition. The potential on the IN_SET pin remains

LITIX™ Basic+

Load diagnosis

 $V_{\rm IN_SET(ref)}$, the ERRN pin starts sinking a current $I_{\rm ERRN(fault)}$ toward GND. Again, the resulting ERRN low voltage can be used as input signal for a microcontroller to perform the desired diagnosis policy. Also the SLS status is not latched: as soon as the fault condition is no longer present (at least for a filter time $t_{\rm fault}$) ERRN goes back to high impedance.

An examples of this SLS diagnosis condition is shown in the timing diagrams of Figure 25.

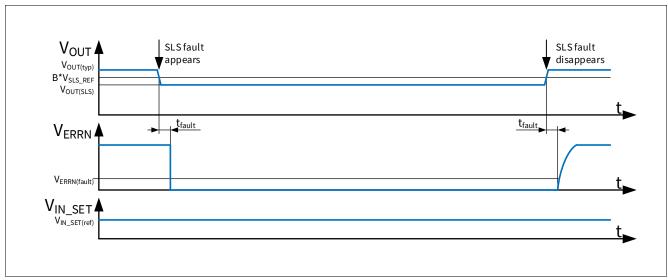


Figure 25 Single LED short condition timing diagram example (D pin shorted to GND)

6.4 Electrical characteristics: Load diagnosis and Overload management

Table 8 Electrical Characteristics: Fault management

 T_J = -40°C to +150°C; V_S =5.5 V to 18 V; R_{IN_SET} = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
IN_SET fault current	I _{IN_SET} (fault)	-	_	10	μΑ	$^{1)}V_{S} > 8 \text{ V}$ $V_{OUT} = 3.6 \text{ V}$ $V_{ERRN} = 0 \text{ V}$ $V_{IN_SET} = 1 \text{ V}$ D open $V_{EN} > V_{DEN(th,max)}$	P_7.5.1
ERRN fault current	I _{ERRN} (fault)	2	_	-	mA	$^{1)}V_{S} > 8 \text{ V}$ $V_{ERRN} = 0.8 \text{ V}$ Fault condition $V_{EN} > V_{DEN(th,max)}$	P_7.5.2
ERRN input threshold	V _{ERRN(th)}	0.8	-	2.0	V	$^{1)}V_{S} > 8 \text{ V}$	P_7.5.3
OL detection threshold	$V_{PS(OL)}$	0.2	-	0.4	V	$V_{\rm S} > 8 \rm V$ $V_{\rm EN} > V_{\rm DEN(th, max)}$	P_7.5.5
SC detection threshold	V _{OUT(SC)}	0.8	-	1.35	V	$V_{\rm S} > 8 \text{ V}$ $V_{\rm EN} > V_{\rm DEN(th, max)}$	P_7.5.6

LITIX™ Basic+

Load diagnosis

Electrical Characteristics: Fault management (cont'd) Table 8

 $T_{\rm J}$ = -40°C to +150°C; $V_{\rm S}$ =5.5 V to 18 V; $R_{\rm IN_SET}$ = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Fault detection current	I _{OUT(fault)}	50	_	180	μΑ	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = 0 \text{ V}$ $V_{\rm EN} > V_{\rm DEN(th, max)}$	P_7.5.7
D-pin							
Threshold voltage for function de-activation	$V_{\rm D(th)}$	1.4	-	2	V	$V_{\rm S}$ > 8 V $V_{\rm EN}$ = 5.5 V	P_7.5.8
Threshold hysteresis	$V_{D(hys)}$	-	100	_	mV	$^{1)}V_{S} > 8 \text{ V}$ $V_{EN} = 5.5 \text{ V}$ $V_{OUT} = V_{OUT(OL)}$	P_7.5.9
Fault pull-up current	/ _{D(fault)}	20	35	50	μΑ	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = V_{\rm OUT(OL)}$ $V_{\rm D} = 2 \text{ V}$	P_7.5.10
Pull-down current	I _{D(PD)}	40	60	95	μΑ	$V_S > 8 \text{ V}$ $V_{EN} = 5.5 \text{ V}$ $V_D = 1.4 \text{ V}$ $V_{ERRN} = 2 \text{ V}$ $V_{PS} = 3 \text{ V}$ No fault conditions	P_7.5.11
Internal clamp voltage	$V_{D(CL)}$	4	-	6	V	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = V_{\rm OUT(OL)}$ D-pin open	P_7.5.12
SLS_REF pin	·						
Relative pull-up current, related to IN_SET / _{SLS_REF} / I _{INSET}	K_{SLS_REF}	0.972	1	1.028	_	$V_{\rm S} > 8 \text{ V}$ $V_{\rm SLS_REF} = 0.75$ 3.25 V $I_{\rm IN_SET} = 50$ 270 μ A	P_7.5.13
Output attenuation factor for internal reference comparison	B _{SLS}	3.77	3.93	4.09	-	$V_{\rm S} > 14.65 \rm V$ $V_{\rm OUT} = 13 \rm V$	P_7.5.21
Output attenuation factor for internal reference comparison	B _{SLS}	3.76	3.93	4.10	_	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = 7 \text{ V}$	P_7.5.22
Output attenuation factor for internal reference comparison	B _{SLS}	3.75	3.93	4.11	-	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = 5 \text{ V}$	P_7.5.23
Output attenuation factor for internal reference comparison	B _{SLS}	3.73	3.93	4.13	-	$V_{\rm S} > 8 \text{ V}$ $V_{\rm OUT} = 3 \text{ V}$	P_7.5.24

LITIX™ Basic+

Load diagnosis

Table 8 **Electrical Characteristics: Fault management** (cont'd)

 $T_{\rm J}$ = -40°C to +150°C; $V_{\rm S}$ =5.5 V to 18 V; $R_{\rm IN_SET}$ = 10 k Ω ; all voltages with respect to GND, positive current flowing into input and I/O pins, positive current flowing out from output pins (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
SLS saturation voltage threshold	V _{SLS_REF(CL)}	3.5	-	6	V	$V_{\rm S} > 8 \text{ V}$ $V_{\rm EN} = 5.5 \text{ V}$ $V_{\rm PWMI} = 0 \text{ V}$ SLS_REF open	P_7.5.14
DS pin							
High threshold voltage (to trigger from pull up to pulldown current)	V _{DS(H)}	2.3	2.5	2.7	V	$V_S > 8 \text{ V}$ $V_{SLS_REF} = 1.5 \text{ V}$ $V_{OUT} = V_{OUT} = 7 \text{ V}$ $V_{OUT} = 5 \text{ V}$	P_7.5.15
Low threshold voltage for retry activation	V _{DS(L)}	0.2	0.3	0.4	V	$V_S > 8 \text{ V}$ $V_{SLS_REF} = 1.5 \text{ V}$ $V_{OUT} = V_{OUT} = 7 \text{ V}$ $V_{OUT} = 5 \text{ V}$	P_7.5.16
Pull-up current	I _{DS(PU)}	25	35	50	μΑ	$V_S > 8 \text{ V}$ $V_{SLS_REF} = 1.5 \text{ V}$ $V_{OUT} = V_{OUT} = 7 \text{ V}$ $V_{OUT} = 5 \text{ V}$	P_7.5.17
Pull-down current	I _{DS(PD)}	300	500	750	μА	$V_S > 8 \text{ V}$ $V_{EN} = 5.5 \text{ V}$ $V_{DS} = 0.4 \text{ V}$ $V_{ERRN} = 2 \text{ V}$ $V_{PS} = 3 \text{ V}$ No fault conditions	P_7.5.18
Timing					<u> </u>		
Fault to ERRN activation delay	t _{fault}	40	-	150	μs	$^{1)}V_{S} > 8 \text{ V}$ V_{OUT} rising from 5 V to V_{S} $V_{EN} > V_{DEN(th, max)}$	P_7.5.19
Fault appearance/removal to IN_SET deactivation/activation delay	t _{IN_SET(del)}	-	-	10	μs	1) V _S > 8 V OUT open D rising from 0 V to 5 V V _{EN} > V _{DEN(th, max)}	P_7.5.20

¹⁾ Not subjected to production test: specified by design.

Application information

7 Application information

Note:

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

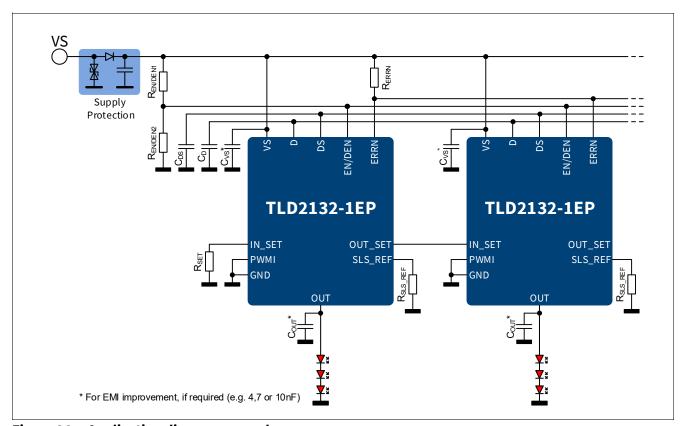


Figure 26 Application diagram example

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

Package outline

Package outline 8

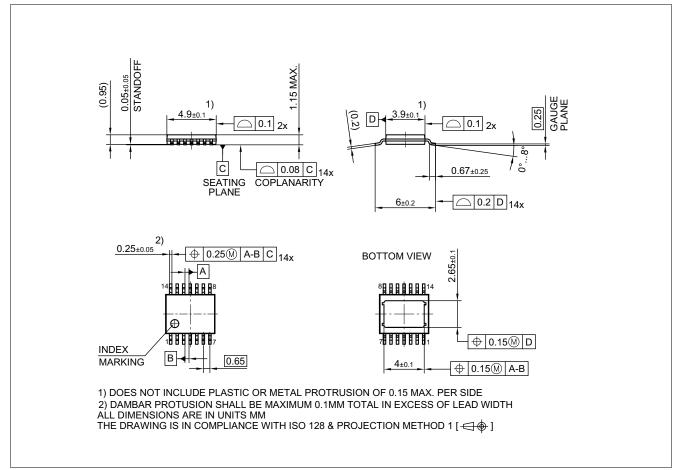


Figure 27 PG-TSDSO-14

Green product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

LITIX™ Basic+

Revision History

9 Revision History

Revision	Date	Changes
1.00	2018-10-09	Initial datasheet created

Trademarks

Edition 2018-10-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference LITIX[™] Basic+ **TLD2132-1EP**

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

TLD21321EPXUMA1