

Insulated Gate Bipolar Transistor (Warp 2 Speed IGBT), 90 A

SOT-227

PRODUCT SUMMARY				
V_{CES}	600 V			
I _C DC	90 A at 90 °C			
V _{CE(on)} typical at 100 A, 25 °C	2.40 V			
I _F DC	108 A at 90 °C			

FEATURES

 NPT warp 2 speed IGBT technology with positive temperature coefficient

Square RBSOA

- HEXFRED® antiparallel diodes with ultrasoft reverse recovery
- · Fully isolated package
- Very low internal inductance (≤ 5 nH typical)
- · Industry standard outline
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- Easy to assemble and parallel
- · Direct mounting to heatsink
- Plug-in compatible with other SOT-227 packages
- Higher switching frequency up to 150 kHz
- Lower conduction losses and switching losses
- Low EMI, requires less snubbing

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	147		
Continuous collector current	I _C	T _C = 90 °C	90		
Pulsed collector current	I _{CM}		300	A	
Clamped inductive load current	I _{LM}		300	A	
Diode continuous forward current		T _C = 25 °C	180		
	I _F	T _C = 90 °C	108		
Gate-to-emitter voltage	V _{GE}		± 20	V	
Davier discipation ICDT	В	T _C = 25 °C	625		
Power dissipation, IGBT	P _D	T _C = 90 °C	300	w	
Decrease discontinue discontinue		T _C = 25 °C	379	VV	
Power dissipation, diode	P _D	T _C = 90 °C	182		
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{BR(CES)}	V _{GE} = 0 V, I _C = 250 μA	600	-	-	
		$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}$	-	2.4	2.8	
Collector to emitter voltage	V _{CE(on)}	$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$	-	3	3.4	V
		$V_{GE} = 15 \text{ V}, I_{C} = 100 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$	-	3.3	-	
Gate threshold voltage	V	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3	3.9	5.0	
date threshold voltage	$V_{GE(th)}$	$V_{CE} = V_{GE}, I_{C} = 250 \mu A, T_{J} = 125 ^{\circ}C$	-	2.5	ı	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_C = 1$ mA (25 °C to 125 °C)	-	- 10	-	mV/°C
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$	-	7	100	μΑ
Collector to emitter leakage current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	1.5	6.0	mA
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$	-	6	10	IIIA
	V_{FM}	$I_C = 100 \text{ A}, V_{GE} = 0 \text{ V}$	-	1.6	2.1	
Forward voltage drop, diode		I _C = 100 A, V _{GE} = 0 V, T _J = 125 °C	-	1.56	2.0	V
		I _C = 100 A, V _{GE} = 0 V, T _J = 150 °C	-	1.53	-	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 200	nA

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q_{g}			-	460	690	
Gate to emitter charge (turn-on)	Q _{ge}	$I_C = 100 \text{ A}, V_{CC} = 480 \text{ V},$	V _{GE} = 15 V	-	160	250	nC
Gate to collector charge (turn-on)	Q _{gc}			-	70	130	1
Turn-on switching loss	E _{on}			-	0.39	-	
Turn-off switching loss	E _{off}			-	1.10	-	mJ
Total switching loss	E _{tot}	$I_C = 100 \text{ A}, V_{CC} = 360 \text{ V},$		-	1.49	-	
Turn-on delay time	t _{d(on)}	$V_{GE} = 15 \text{ V}, R_g = 5 \Omega,$		-	245	-	
Rise time	t _r	$L = 500 \mu H, T_J = 25 °C$	Energy losses	-	53	-	
Turn-off delay time	t _{d(off)}		include tail and	-	240	-	ns
Fall time	t _f		diode	-	63	-	
Turn-on switching loss	E _{on}		recovery.	-	0.52	-	
Turn-off switching loss	E _{off}		Diode used	-	1.24	-	mJ
Total switching loss	E _{tot}	$I_C = 100 \text{ A}, V_{CC} = 360 \text{ V},$	60APH06	-	1.76	-	
Turn-on delay time	t _{d(on)}	V_{GE} = 15 V, R_g = 5 Ω , L = 500 μ H, T_J = 125 °C		-	240	-	
Rise time	t _r			-	54	-	1
Turn-off delay time	t _{d(off)}			-	250	-	ns -
Fall time	t _f			-	80	-	
Reverse bias safe operating area	RBSOA	T_J = 150 °C, I_C = 300 A, R_g = 22 Ω , V_{GE} = 15 V to 0 V, V_{CC} = 400 V, V_P = 600 V, L = 500 μH			Fullsquare		
Diode reverse recovery time	t _{rr}	$I_F = 50 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_R = 200 \text{ V}$		-	95	-	ns
Diode peak reverse current	I _{rr}			-	10	-	Α
Diode recovery charge	Q _{rr}			-	480	-	nC
Diode reverse recovery time	t _{rr}	I _F = 50 A, dI _F /dt = 200 A/μs, V _R = 200 V, T _J = 125 °C		-	144	-	ns
Diode peak reverse current	I _{rr}			-	16	-	Α
Diode recovery charge	Q _{rr}			-	1136	-	nC

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature	T_J, T_{Stg}	- 40	-	150	°C
Junction to case	R_{thJC}	-	-	0.20	°C/W
Diode		-	-	0.33	
Case to sink thermal resistance, flat greased surface	R _{thCS}	-	0.1	-	
Mounting torque, on termianls and heatsink	Т	-	-	1.3	Nm
Weight		-	30	-	g
Case style		SOT-227			

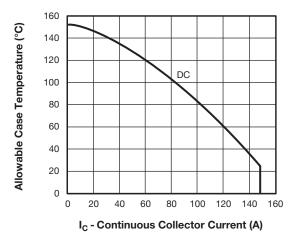


Fig. 1 - Maximum DC IGBT Collector Current vs.

Case Temperature

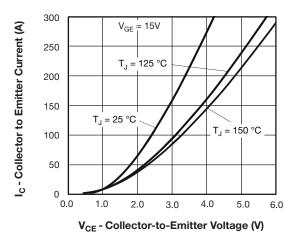


Fig. 2 - Typical Collector to Emitter Voltage (V)

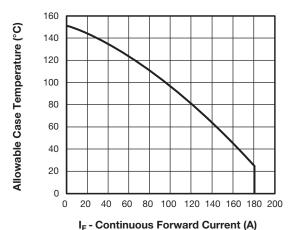


Fig. 3 - Maximum Allowable Forward Current vs. Case Temperature, Diode Leg

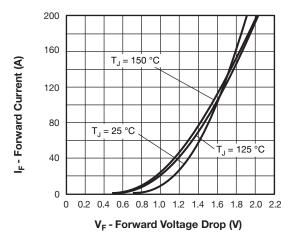


Fig. 4 - Typical Forward Voltage Drop Characteristics

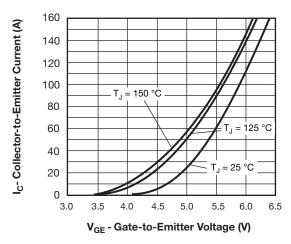


Fig. 5 - Typical IGBT Transfer Characteristics

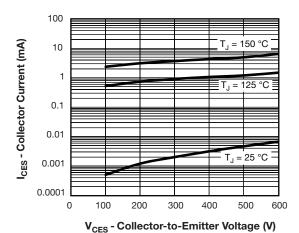


Fig. 6 - Typical IGBT Zero Gate Voltage Collector Current

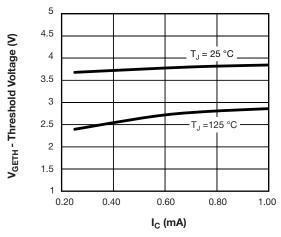


Fig. 7 - Typical IGBT Threshold Voltage

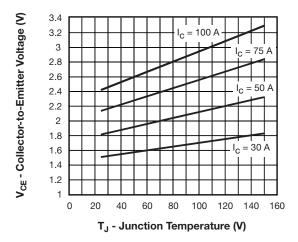


Fig. 8 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, V_{GE} = 15 V

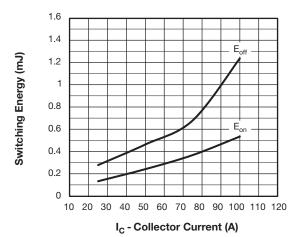


Fig. 9 - Typical IGBT Energy Losses vs. I_C T_J = 125 °C, L = 500 μ H, V_{CC} = 360 V, R_g = 5 Ω , V_{GE} = 15 V, Diode used: 60APH06

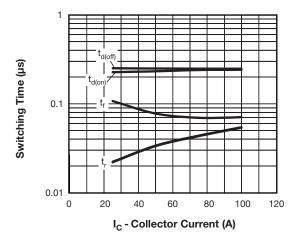


Fig. 10 - Typical IGBT Switching Time vs. I_C $T_J = 125$ °C, L = 500 μ H, V_{CC} = 360 V, $R_q = 5~\Omega$, V_{GE} = 15 V, Diode used: 60APH06

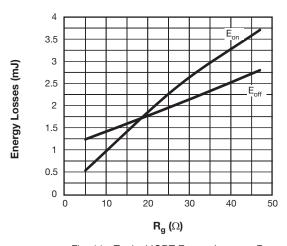


Fig. 11 - Typical IGBT Energy Loss vs. R_g T_J = 125 °C, I_C = 100 A, L = 500 μ H, V_{CC} = 360 V, V_{GE} = 15 V, Diode used: 60APH06

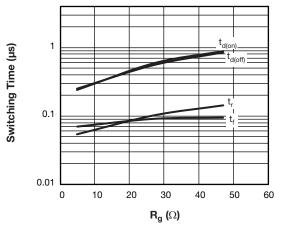


Fig. 12 - Typical IGBT Switching Time vs. R_g $T_J = 125$ °C, $L = 500~\mu H, V_{CC} = 360~V,$ $I_C = 100~A, V_{GE} = 15~V, Diode used: 60APH06$

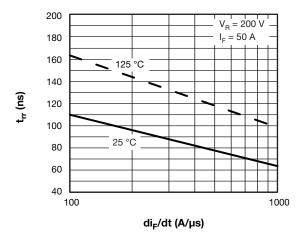


Fig. 13 - Typical Reverse RecoveryTime vs. dI_F/dt , of Diode

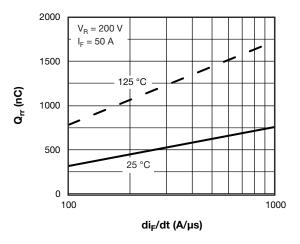


Fig. 14 - Typical Stored Charge vs. dl_F/dt of Diode

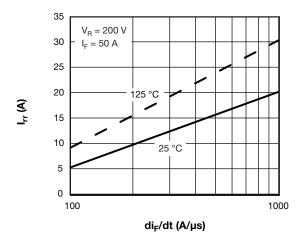


Fig. 15 - Typical Reverse Recovery Current vs. dl_F/dt of Diode

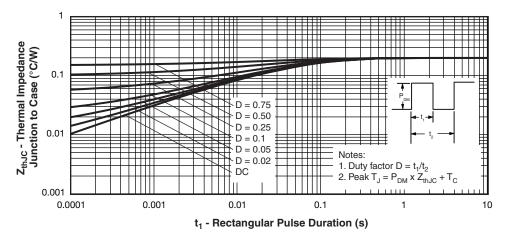


Fig. 16 - Maximum Thermal Impedance Z_{thJC} Characteristics, IGBT

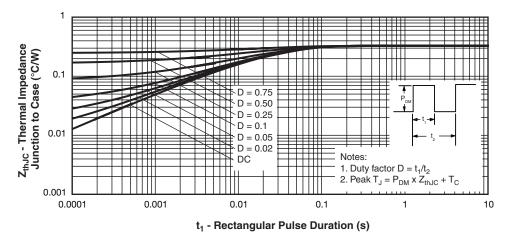
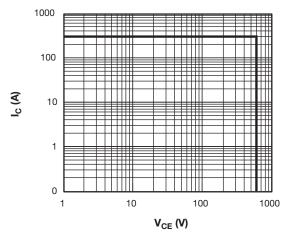
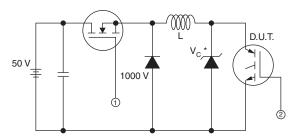
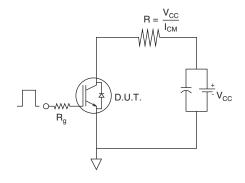
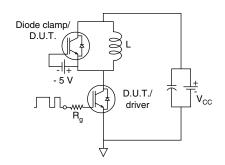


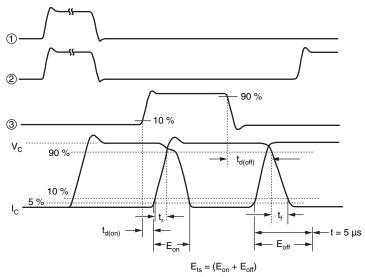
Fig. 17 - Maximum Thermal Impedance Z_{thJC} Characteristics, Diode

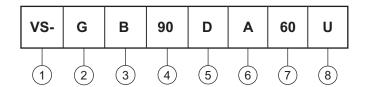

Fig. 18 - IGBT Reverse BIAS SOA, T_J = 150 °C, V_{GE} = 15 V



- * Driver same type as D.U.T.; V $_{C}$ = 80 % of V $_{\rm ce(max)}$ * Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain Id


19a - Clamped Inductive Load Test Circuit

19b - Pulsed Collector Current Test Circuit

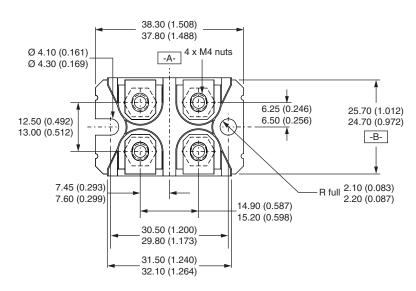

20a - Switching Loss Test Circuit

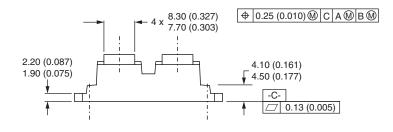
20b - Switching Loss Waveforms Test Circuit

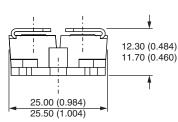
ORDERING INFORMATION TABLE

Device code

- Vishay Semiconductors product
- Insulated Gate Bipolar Transistor (IGBT)
- 3 B = IGBT Generation 5
- 4 Current rating (90 = 90 A)
- Circuit configuration (D = Single switch with antiparallel diode)
- 6 Package indicator (A = SOT-227)
- 7 Voltage rating (60 = 600 V)
- 8 Speed/type (U = Ultrafast IGBT)


CIRCUIT CONFI	CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
2 separate diodes, parallel pin-out	D	2 (G) 0 Lead Assignment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				


LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95423</u>				
Packaging information	www.vishay.com/doc?95425			



SOT-227 Generation II

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.