

SFP Controller with Dual LDD Interface

General Description

The DS1876 controls and monitors all functions for dual transmitter modules. The memory map is based on SFF-8472. The DS1876 supports APC and modulation control and eye safety functionality for two laser drivers. It continually monitors for high output current, high bias current, and low and high transmit power to ensure that laser shutdown for eye safety requirements are met without adding external components. Six ADC channels monitor VCC, temperature, and four external monitor inputs that can be used to meet all monitoring requirements.

Applications

Dual Tx Video SFP Modules

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS1876T+	-40°C to +95°C	28 TQFN-EP*
DS1876T+T&R	-40°C to +95°C	28 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. T&R = Tape and reel. *EP = Exposed pad.

Features

- Meets All SFF-8472 Transmitter Control and Monitoring Requirements
- Six Analog Monitor Channels: Temperature, V_{CC}, PMON1, BMON1, PMON2, BMON2
 PMON_ and BMON_ Support Internal and External Calibration
 Scalable Dynamic Range
 Internal Direct-to-Digital Temperature Sensor
 Alarm and Warning Flags for All Monitored Channels
- Six Quick Trips for Fast Monitoring of Critical Functions for Laser Safety
- Four 10-Bit Delta-Sigma Outputs Each Controlled by 72-Entry Temperature Lookup Table (LUT)
- ◆ Digital I/O Pins: Six Inputs, Five Outputs
- Comprehensive Fault Measurement System with Maskable Laser Shutdown Capability
- Flexible, Two-Level Password Scheme Provides Three Levels of Security
- 256 Additional Bytes Located at A0h Slave Address
- Transmitter 1 is Accessed at A2h Slave Address
- Transmitter 2 is Accessed at B2h Slave Address
- ♦ I²C-Compatible Interface
- + +2.85V to +3.9V Operating Voltage Range
- ♦ -40°C to +95°C Operating Temperature Range
- 28-Pin TQFN (5mm x 5mm x 0.8mm) Package

TABLE OF CONTENTS	
Absolute Maximum Ratings	
Recommended Operating Conditions	
DC Electrical Characteristics	
MOD_, APC_ Electrical Characteristics	
Analog Quick-Trip Characteristics	
Analog Voltage Monitoring Characteristics	
Digital Thermometer Characteristics	
AC Electrical Characteristics	
Quick-Trip Timing Characteristics	
I ² C AC Electrical Characteristics	
Nonvolatile Memory Characteristics	
Typical Operating Characteristics	
Pin Configuration	
Pin Description	
Block Diagram	
Typical Operating Circuit	
Detailed Description	
DACs During Power-Up	
DACs as a Function of Transmit Disable (TXD1, TXD2)	
Quick-Trip Timing	
Monitors and Fault Detection	
Monitors	
Six Quick-Trip Monitors and Alarms	
Six ADC Monitors and Alarms	
ADC Timing	
Right-Shifting ADC Result	
Low-Voltage Operation	
Delta-Sigma Outputs	
Digital I/O Pins.	
IN1, RSEL, OUT1, RSELOUT	
TXF1, TXF2, TXFOUT, TXD1, TXD2, TXDOUT1, TXDOUT2	
Transmit Fault (TXFOUT) Output	
Die Identification	
I ² C Communication	
I ² C Definitions	
I ² C Protocol	

SFP Controller with Dual LDD Interface

TABLE OF CONTENTS (continued)	
- Memory Organization	
Shadowed EEPROM	
Register Descriptions	
Memory Map Access Codes	
Memory Addresses A0h, A2h, and B2h	
Lower Memory Register Map	
Table 01h Register Map	
Table 02h Register Map	
Table 04h Register Map	
Table 05h Register Map	
Table 06h Register Map	
Auxiliary Memory A0h Register Map	
Lower Memory Register Descriptions	
Table 01h Register Descriptions	
Table 02h Register Descriptions	
Table 04h Register Descriptions	
Table 06h Register Descriptions	
Auxiliary Memory A0h Register Descriptions	
Applications Information	
Power-Supply Decoupling	
SDA and SCL Pullup Resistors	
Package Information.	

LIST OF FIGURES

Figure 1. Power-Up Timing	. 13
Figure 2. TXD1, TXD2 Timing	. 13
Figure 3. Quick-Trip Sample Timing	. 14
Figure 4. ADC Round-Robin Timing	. 15
Figure 5. Low-Voltage Hysteresis Example	. 16
Figure 6. Recommended RC Filter for DAC Outputs in Voltage Mode and Current Sink Mode	. 16
Figure 7. 3-Bit (8-Position) Delta-Sigma Example	. 17
Figure 8. DAC OFFSET LUTs	. 17
Figure 9. Logic Diagram 1	. 18
Figure 10. Logic Diagram 2	. 18
Figure 11a. TXFOUT Nonlatched Operation	. 19
Figure 11b. TXFOUT Latched Operation	. 19
Figure 12. I ² C Timing	. 20
Figure 13. Example I ² C Timing	. 21
Figure 14. Memory Map	. 23

LIST OF TABLES

Table 1. Acronyms	13
Table 2. ADC Default Monitor Full-Scale Ranges	14

SFP Controller with Dual LDD Interface

ABSOLUTE MAXIMUM RATINGS

 Continuous Power Dissipation

28-Pin TQFN (derate 34.5mW/°C)) above +70°C2758.6mW
Operating Temperature Range	-40°C to +95°C
Programming Temperature Range.	
Storage Temperature Range	-55°C to +125°C
Soldering Temperature	Refer to the IPC/JEDEC
	J-STD-020 Specification.

*Subject to not exceeding +6V.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

 $(T_A = -40^{\circ}C \text{ to } +95^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS
Main Supply Voltage	Vcc	(Note 1)	+2.85		+3.9	V
High-Level Input Voltage (SDA, SCL)	VIH:1		0.7 x V _{CC}		V _{CC} + 0.3	V
Low-Level Input Voltage (SDA, SCL)	VIL:1		-0.3		0.3 x V _{CC}	V
High-Level Input Voltage (TXD_, TXF_, RSEL, IN1)	VIH:2		2.0		V _{CC} + 0.3	V
Low-Level Input Voltage (TXD_, TXF_, RSEL, IN1)	VIL:2		-0.3		+0.8	V

DC ELECTRICAL CHARACTERISTICS

(VCC = +2.85V to +3.9V, TA = -40° C to $+95^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc	(Notes 1, 2)		2.5	10	mA
Output Leakage (SDA, OUT1, RSELOUT, TXFOUT)	ILO				1	μA
Low-Level Output Voltage (SDA, OUT1, RSELOUT,	Vol	I _{OL} = 4mA			0.4	v
TXDOUT_, MOD_, APC_, TXFOUT)	VOL	I _{OL} = 6mA			0.6	Ň
High-Level Output Voltage (MOD_, APC_, TXDOUT_)	VOH	I _{OH} = 4mA	VCC - 0.4			V
TXDOUT_ Before EEPROM Recall				10	100	nA
MOD_, APC_ Before Recall		Figure 1		10	100	nA
Input Leakage Current (SCL, TXD_, RSEL, IN1, TXF_)	ILI				1	μA
Digital Power-On Reset	POD		1.0		2.2	V
Analog Power-On Reset	POA		2.0		2.75	V

MOD_, APC_ ELECTRICAL CHARACTERISTICS

(VCC = +2.85V to +3.9V, TA = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Main Oscillator Frequency	fosc			5		MHz
Delta-Sigma Input-Clock Frequency	fDS			f _{OSC} /2		MHz
Reference Voltage Input (REFIN)	VREFIN	Minimum 0.1µF to GND	2		Vcc	V
Output Range			0		VREFIN	V
Output Resolution		See the <i>Delta-Sigma Outputs</i> section for details			10	Bits
Output Impedance	R _{DS}			35	100	Ω

ANALOG QUICK-TRIP CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40° C to $+95^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
TXP HI, TXP LO Full-Scale Voltage				2.507		V
HBIAS Full-Scale Voltage				1.25		V
PMON_ Input Resistance			35	50	65	kΩ
Resolution				8		Bits
Error		$T_A = +25^{\circ}C$		±2		%FS
Integral Nonlinearity			-1		+1	LSB
Differential Nonlinearity			-1		+1	LSB
Temperature Drift			-2.5		+2.5	%FS
Offset			-5		+10	mV

ANALOG VOLTAGE MONITORING CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
ADC Resolution				13		Bits
Input/Supply Accuracy (BMON_, PMON_, VCC)	ACC	At factory setting		0.25	0.5	%FS
Update Rate for Temperature, BMON_, PMON_, V _{CC}	trr			64	78	ms
Input/Supply Offset (BMON_, PMON_, V _{CC})	V _{OS}	(Note 3)		0	5	LSB
Factory Setting (Note 4)		BMON_, PMON_		2.5		V
		VCC		6.5536		v

SFP Controller with Dual LDD Interface

DIGITAL THERMOMETER CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Thermometer Error	TERR	-40°C to +95°C	-3		+3	°C

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TXD_ Enable	tOFF	From TXD_			5	μs
Recovery from TXD_ Disable (Figure 2)	ton	From TXD_			1	ms
	tinitr1	From TXD_		131		
Fault Reset Time (to TXFOUT = 0)	tinitr2	On power-up or TXD_, when VCC LO alarm is detected (Note 5)		161		ms
Fault Assert Time (to TXFOUT = 1)	t FAULT	After HTXP_, LTXP_, HBATH_	1.6		10.5	μs

QUICK-TRIP TIMING CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40°C to +95°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Output-Enable Time Following POA	tinit			20		ms
Sample Time per Quick-Trip Comparison	tREP			1.6		μs

I²C AC ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, T_A = -40°C to +95°C, timing referenced to V_{IL(MAX)} and V_{IH(MIN)}, unless otherwise noted. See the *I*²C Communication section.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SCL Clock Frequency	fSCL	(Note 6)	0		400	kHz
Clock Pulse-Width Low	tLOW		1.3			μs
Clock Pulse-Width High	thigh		0.6			μs
Bus Free Time Between STOP and START Condition	tBUF		1.3			μs
START Hold Time	thd:Sta		0.6			μs
START Setup Time	tsu:sta		0.6			μs
Data Out Hold Time	thd:dat		0		0.9	μs
Data In Setup Time	tsu:dat		100			ns
Rise Time of Both SDA and SCL Signals	tR	(Note 7)	20 + 0.1CB		300	ns
Fall Time of Both SDA and SCL Signals	t⊨	(Note 7)	20 + 0.1CB		300	ns
STOP Setup Time	tsu:sto		0.6			μs
Capacitive Load for Each Bus Line	Св				400	рF
EEPROM Write Time	twR	(Note 8)			20	ms

NONVOLATILE MEMORY CHARACTERISTICS

(V_{CC} = +2.85V to +3.9V, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
EEPROM Write Cycles		At +25°C	200,000			
		At +85°C	50,000			

Note 1: All voltages are referenced to ground. Current into the IC is positive, and current out of the IC is negative.

Note 2: Inputs are at supply rail. Outputs are not loaded.

Note 3: This parameter is guaranteed by design.

Note 4: Full scale is user programmable.

Note 5: A temperature conversion is completed and MOD1 DAC, MOD2 DAC, APC1 DAC, and APC2 DAC values are recalled from the LUT and V_{CC} has been measured to be above VCC LO alarm, if the VCC LO alarm is enabled.

Note 6: I²C interface timing shown is for fast-mode (400kHz) operation. This device is also backward compatible with I²C standard mode.

Note 7: CB—Total capacitance of one bus line in pF.

Note 8: EEPROM write begins after a STOP condition occurs.

(V_{CC} = 3.3V, T_A = $+25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics

APC1/2 AND MOD1/2 DAC INL

Pin Configuration

DIN		FUNCTION		
PIN	NAME	FUNCTION		
1	RSELOUT	Rate-Select Output		
2	SCL	I ² C Serial-Clock Input		
3	SDA	I ² C Serial-Data Input/Output		
4	TXFOUT	Transmit Fault Output, Open Drain		
5	TXF1	Transmit Fault Input 1		
6 IN1		Digital Input. General-purpose input, AS1 in SFF-8079, or RS1 in SFF-8431.		
7	TXD1	Transmit Disable Input 1		
8, 18, 21	GND	Ground Connection		
9	RSEL	Rate-Select Input		
10	TXDOUT1	Transmit Disable Output 1		
11	PMON2	External Monitor Input PMON2 and HTXP2/LTXP2 Quick Trip		
12 BMON2		External Monitor Input BMON2 and HBATH2 Quick Trip		
13	PMON1	External Monitor Input PMON1 and HTXP1/LTXP1 Quick Trip		

PIN	NAME	FUNCTION
14	BMON1	External Monitor Input BMON1 and HBATH1 Quick Trip
15	N.C.	No Connection
16, 26	Vcc	Power-Supply Input
17	TXDOUT2	Transmit Disable Output 2
19	MOD2	MOD2 DAC, Delta-Sigma Output
20	MOD1	MOD1 DAC, Delta-Sigma Output
22	REFIN	Reference Input for DAC1 and DAC2
23	TXD2	Transmit Disable Input 2
24	APC2	APC2 DAC, Delta-Sigma Output
25	APC1	APC1 DAC, Delta-Sigma Output
27	TXF2	Transmit Fault Input 2
28	OUT1	Digital Output. General-purpose output, AS1 output in SFF-8079, or RS1 output in SFF-8431.
_	EP	Exposed Pad (Connect to GND)

Pin Description

SFP Controller with Dual LDD Interface

Block Diagram

Typical Operating Circuit

Detailed Description

The DS1876 integrates the control and monitoring functionality required in a dual transmitter system. Key components of the DS1876 are shown in the *Block Diagram* and described in subsequent sections.

DACs During Power-Up

On power-up, the DS1876 sets the DACs to high impedance. After time t_{INIT} , the DACs are set to an initial condition

set in EEPROM. After a temperature conversion is completed and if the VCC LO alarm is enabled, an additional V_{CC} conversion above the customer-defined VCC LO alarm level is required before the DACs are updated with the value determined by the temperature conversion and the DAC LUT.

If a fault is detected, and TXD1 and TXD2 are toggled to re-enable the outputs, the DS1876 powers up following a similar sequence to an initial power-up. The

SFP Controller with Dual LDD Interface

Table 1. Acronyms

ACRONYM	DESCRIPTION
ADC	Analog-to-Digital Converter
AGC	Automatic Gain Control
APC	Automatic Power Control
APD	Avalanche Photodiode
ATB	Alarm Trap Bytes
DAC	Digital-to-Analog Converter
LOS	Loss of Signal
LUT	Lookup Table
NV	Nonvolatile
QT	Quick Trip
TE	Tracking Error
TIA	Transimpedance Amplifier
ROSA	Receiver Optical Subassembly
SEE	Shadowed EEPROM
SFF	Small Form Factor
SFF-8472	Document Defining Register Map of SFPs and SFFs
SFP	Small Form Factor Pluggable
SFP+	Enhanced SFP
TOSA	Transmit Optical Subassembly
TXP	Transmit Power

only difference is that the DS1876 already has determined the present temperature, so the t_{INIT} time is not required for the DS1876 to recall the APC and MOD set points from EEPROM. See Figure 1.

DACs as a Function of Transmit Disable (TXD1, TXD2)

If TXD1 or TXD2 are asserted (logic 1) during normal operation, the associated outputs are disabled within tOFF. When TXD1 or TXD2 are deasserted (logic 0), the DS1876 sets the DACs with the value associated with the present temperature. When asserted, soft TXD1 or soft TXD2 (TXDC) (Lower Memory, Register 6Eh) would allow a software control identical to the TXD1 or TXD2 pin (Figure 2). The POLARITY register (Table 02h, Register C6h) determines if the off-state value of the DACs is VREFIN or 0V.

Quick-Trip Timing

As shown in Figure 3, the DS1876's input comparator is shared among the six quick-trip alarms (TXP1 HI, TXP1 LO, TXP2 HI, TXP2 LO, BIAS1 HI, and BIAS2 HI). The comparator polls the alarms in a multiplexed sequence. The updates are used to compare the HTXP1, LTXP1, HTXP2, and LTXP2 (monitor diode voltages) and the HBATH1 and HBATH2 (BMON1, BMON2) signals against the internal APC and BIAS reference, respectively. Depending on the results of the comparison, the

Figure 1. Power-Up Timing

Figure 2. TXD1, TXD2 Timing

Figure 3. Quick-Trip Sample Timing

Table 2. ADC Default Monitor Full-Scale Ranges

SIGNAL (UNITS)	+FS SIGNAL	+FS HEX	-FS SIGNAL	-FS HEX	
Temperature (°C)	127.996	7FFF	-128	8000	
V _{CC} (V)	6.5528	FFF8	0	0000	
PMON1, PMON2 and BMON1, BMON2 (V)	2.4997	FFF8	0	0000	

corresponding alarms and warnings (TXP HI1, TXP LO1, TXP HI2, TXP LO2, BIAS HI1, and BIAS HI2) are asserted or deasserted.

After resetting, the device completes one QT cycle before making comparisons. The TXP LO quick-trip alarm updates its alarm bit, but does not create FETG until after TXDEXT. TXP HI and BIAS HI can also be configured to wait for TXDEXT; however, this can be disabled using QTHEXT_ (Table 02h, Register 88h).

Monitors and Fault Detection Monitors

Monitoring functions on the DS1876 include six quicktrip comparators and six ADC channels. This monitoring combined with the alarm enables (Table 01h/05h) determines when/if the DS1876 turns off DACs and triggers the TXFOUT and TXDOUT1, TXDOUT2 outputs. All the monitoring levels and interrupt masks are user programmable.

Six Quick-Trip Monitors and Alarms

Six quick-trip monitors are provided to detect potential laser safety issues and LOS status. These monitor the following:

- 1) High Bias Current 1 (HBATH1), causing QT BIAS1 HI
- 2) Low Transmit Power 1 (LTXP1), causing QT TXP1 LO
- 3) High Transmit Power 1 (HTXP1), causing QT TXP1 HI
- 4) High Bias Current 2 (HBATH2), causing QT BIAS2 HI
- 5) Low Transmit Power 2 (LTXP2), causing QT TXP2 LO
- 6) High Transmit Power 2 (HTXP2), causing QT TXP2 HI

The high and low transmit power quick-trip registers (HTXP1, HTXP2, LTXP1, and LTXP2) set the thresholds used to compare against the PMON1 and PMON2 voltages to determine if the transmit power is within specification. The HBATH1 and HBATH2 QTs compare the BMON1 and BMON2 inputs (generally from the laser driver's bias monitor output) against their threshold settings to determine if the present bias current is above specification. The bias and power QTs are routed to FETG through interrupt masks to allow combinations of these alarms to be used to trigger FETG. The bias and power QTs are directly connected to TXFOUT (see Figure 9). The user can program up to eight different temperature-indexed threshold levels for HBATH1 and HBATH2 (Table 06h, Registers E0h–E7h).

Six ADC Monitors and Alarms

The ADC monitors six channels that measure temperature (internal temp sensor), V_{CC}, PMON1, PMON2, BMON1, and BMON2 using an analog multiplexer to measure them round-robin with a single ADC (see the ADC Timing section). The channels have a customerprogrammable full-scale range, and all channels have a customer-programmable offset value that is factory programmed to a default value (see Table 2). Additionally, PMON1, PMON2 and BMON1, BMON2 can right-shift results by up to 7 bits before the results are compared to alarm thresholds or read over the I²C bus. This allows customers with specified ADC ranges to calibrate the ADC full scale to a factor of 1/2ⁿ of their specified range to measure small signals. The DS1876 can then rightshift the results by n bits to maintain the bit weight of their specification.

SFP Controller with Dual LDD Interface

The ADC results (after right-shifting, if used) are compared to the alarm and warning thresholds after each conversion, and the corresponding alarms are set that can be used to trigger the TXFOUT output. These ADC thresholds are user programmable, as are the masking registers that can be used to prevent the alarms from triggering the TXFOUT output.

ADC Timing

There are six analog channels that are digitized in a round-robin fashion in the order as shown in Figure 4. The total time required to convert all six channels is t_{RR} (see the *Analog Voltage Monitoring Characteristics* table for details).

Right-Shifting ADC Result

If the weighting of the ADC digital reading must conform to a predetermined full-scale (PFS) value defined by a standard's specification (e.g., SFF-8472), then rightshifting can be used to adjust the PFS analog measurement range while maintaining the weighting of the ADC results. The DS1876's range is wide enough to cover all requirements; when the maximum input value is $\leq 1/2$ the FS value, right-shifting can be used to obtain greater accuracy. For instance, the maximum voltage might be 1/8 the specified PFS value, so only 1/8 of the converter's range is effective over this range. An alternative is to calibrate the ADC's full-scale range to 1/8 the readable PFS value and use a right-shift value of 3. With this implementation, the resolution of the measurement is increased by a factor of 8, and because the result is digitally divided by 8 by right-shifting, the bit weight of the measurement still meets the standard's specification (i.e., SFF-8472).

The right-shift operation on the ADC result is carried out based on the contents of right-shift control registers (Table 02h, Registers 8Eh–8Fh) in EEPROM. Four analog channels—PMON1, PMON2, BMON1, and BMON2 each have 3 bits allocated to set the number of rightshifts. Up to seven right-shift operations are allowed and are executed as a part of every conversion before the results are compared to the high and low alarm levels, or loaded into their corresponding measurement registers (Lower Memory, Registers 64h–6Bh). This is true during the setup of internal calibration as well as during subsequent data conversions.

Low-Voltage Operation

The DS1876 contains two power-on reset (POR) levels. The lower level is a digital POR (POD) and the higher level is an analog POR (POA). At startup, before the supply voltage rises above POA, the outputs are disabled, all SRAM locations are set to their defaults, shadowed EEPROM (SEE) locations are zero, and all analog circuitry is disabled. When VCC reaches POA, the SEE is recalled, and the analog circuitry is enabled. While VCC remains above POA, the device is in its normal operating state, and it responds based on its nonvolatile configuration. If during operation VCC falls below POA, but is still above POD, the SRAM retains the SEE settings from the first SEE recall, but the device analog is shut down and the outputs disabled. If the supply voltage recovers back above POA, the device immediately resumes normal operation. If the supply voltage falls below POD, the device SRAM is placed in its default state and another SEE recall is required to reload the nonvolatile settings. The EEPROM recall occurs the next time VCC next exceeds POA. Figure 5 shows the sequence of events as the voltage varies.

Any time V_{CC} is above POD, the I²C interface can be used to determine if V_{CC} is below the POA level. This is accomplished by checking the RDYB bit in the status byte (Lower Memory, Register 6Eh). RDYB is set when V_{CC} is below POA; when V_{CC} rises above POA, RDYB is timed (within 500µs) to go to 0, at which point the part is fully functional.

Figure 4. ADC Round-Robin Timing

Figure 5. Low-Voltage Hysteresis Example

Figure 6. Recommended RC Filter for DAC Outputs in Voltage Mode and Current Sink Mode

For all device addresses sourced from EEPROM (Table 02h, Register 8Bh), the default device addresses are A2h and B2h until VCC exceeds POA allowing the device address to be recalled from the EEPROM.

Delta-Sigma Outputs

Four delta-sigma outputs are provided: MOD1, MOD2, APC1, and APC2. With the addition of an external RC filter, these outputs provide 10-bit resolution analog outputs with the full-scale range set by the input REFIN. Each output is either manually controlled or controlled using a temperature-indexed LUT.

A delta-sigma DAC has a digital output using pulsedensity modulation. It provides much lower output ripple than a standard digital PWM output given the same clock rate and filter components. Before t_{INIT} , the DAC outputs are high impedance. The external RC filter components are chosen based on ripple requirements, output load, delta-sigma frequency, and desired response time. Figure 6 shows a recommended filter.

For illustrative purposes, a 3-bit example is provided in Figure 7.

In LUT mode the DACs are each controlled by an LUT with high-temperature resolution and an OFFSET LUT with lower temperature resolution. The high-resolution LUTs each have 2°C resolutions. The OFFSET LUTs are located in the upper eight registers (F8h–FFh) of the table containing each high-resolution LUT. The DAC values are determined as follows:

DAC value = LUT + $4 \times (OFFSET LUT)$

An example calculation for MOD1 DAC is as follows: Assumptions:

- 1) Temperature is +43°C
- 2) Table 04h (MOD1 OFFSET LUT), Register FCh = 2Ah
- 3) Table 04h (MOD1 LUT), Register AAh = 7Bh

Because the temperature is +43°C, the MOD1 LUT index is AAh and the MOD1 OFFSET LUT index is FCh.

MOD1 DAC = 7Bh + 4 x 2Ah = 123h = 291

SFP Controller with Dual LDD Interface

Figure 7. 3-Bit (8-Position) Delta-Sigma Example

Figure 8. DAC OFFSET LUTs

When temperature controlled, the DACs are updated after each temperature conversion.

The reference input, REFIN, is the supply voltage for the output buffer of all four DACs. The voltage connected to

REFIN and its decoupling must be able to support the edge rate requirements of the delta-sigma outputs. In a typical application, a $0.1\mu F$ capacitor should be connected between REFIN and ground.

Figure 9. Logic Diagram 1

Figure 10. Logic Diagram 2

Digital I/O Pins

Six digital input pins and five digital output pins are provided for monitoring and control.

IN1, RSEL, OUT1, RSELOUT

Digital input pins IN1 and RSEL primarily serve to meet the rate-select requirements of SFP and SFP+. They can also serve as general-purpose inputs. OUT1 and RSELOUT are driven by a combination of the IN1, RSEL, and logic dictated by control registers in the EEPROM (see Figure 10). The levels of IN1 and RSEL can be read from the STATUS register (Lower Memory, Register 6Eh). The open-drain output OUT1 can be controlled and/or inverted using the CNFGB register (Table 02h, Register 89h). The open-drain RSELOUT output is software controlled and/or inverted through the STATUS register and CNFGA register (Table 02h, Register 88h). External pullup resistors must be provided on OUT1 and RSELOUT to realize high logic levels.

TXF1, TXF2, TXFOUT, TXD1, TXD2, TXDOUT1, TXDOUT2

TXDOUT1 and TXDOUT2 are generated from a combination of TXF1, TXF2, TXD1, TXD2, and the internal signals FETG1 and FETG2 (Table 02h, Register 8Ah). A software control identical to TXD1 and TXD2 is also available (TXDC1 and TXDC2, Lower Memory, Register 6Eh). A TXD1 or TXD2 pulse is internally extended (TXDEXT) by time tINITR1 to inhibit the latching of low alarms and warnings related to the APC loop to allow for the loop to stabilize. The nonlatching alarms and warnings are TXP LO, BMON1 LO, BMON2 LO, PMON1 LO, and PMON2 LO. In addition, TXP LO is disabled from creating FETG. See the Transmit Fault (TXFOUT) Output section for a detailed explanation of TXFOUT. As shown in Figure 9, the same signals and faults can also be used to generate the internal signal FETG. FETG is used to send a fast "turn-off" command to the laser driver. The intended use is a direct connection to the laser driver's TXD1, TXD2 input if this is desired. When VCC < POA, TXDOUT1 and TXDOUT2 are high impedance.

SFP Controller with Dual LDD Interface

Figure 11b. TXFOUT Latched Operation

Transmit Fault (TXFOUT) Output

TXFOUT can be triggered by all alarms, warnings, QTs, TXD1, TXD2, TXF1, and TXF2 (see Figure 9). The six ADC alarms and warnings are controlled by enable bits (Table 01h/05h, Registers F8h and FCh). See Figures 11a and 11b for nonlatched and latched operation for TXFOUT. The CNFGB register (Table 02h, Register 89h) controls the latching of the alarms.

Die Identification

The DS1876 has an ID hardcoded in its memory. Two registers (Table 02h, Registers 86h–87h) are assigned for this feature. Register 86h reads 76h to identify the part as the DS1876; Register 87h reads the present device version.

I²C Communication

I²C Definitions

The following terminology is commonly used to describe I^2C data transfers.

Master Device: The master device controls the slave devices on the bus. The master device generates SCL clock pulses and START and STOP conditions.

Slave Devices: Slave devices send and receive data at the master's request.

Bus Idle or Not Busy: Time between STOP and START conditions when both SDA and SCL are inactive and in their logic-high states.

START Condition: A START condition is generated by the master to initiate a new data transfer with a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. See Figure 12 for applicable timing.

STOP Condition: A STOP condition is generated by the master to end a data transfer with a slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition. See Figure 12 for applicable timing.

Repeated START Condition: The master can use a repeated START condition at the end of one data transfer to indicate that it will immediately initiate a new data transfer following the current one. Repeated STARTs are commonly used during read operations to identify a specific memory address to begin a data transfer. A repeated START condition is issued identically to a normal START condition. See Figure 12 for applicable timing.

Bit Write: Transitions of SDA must occur during the low state of SCL. The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the setup and hold time requirements (Figure 12). Data is shifted into the device during the rising edge of the SCL.

Bit Read: At the end of a write operation, the master must release the SDA bus line for the proper amount of setup time (Figure 12) before the next rising edge

of SCL during a bit read. The device shifts out each bit of data on SDA at the falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. Remember that the master generates all SCL clock pulses, including when it is reading bits from the slave.

Acknowledgement (ACK and NACK): An acknowledgement (ACK) or not-acknowledge (NACK) is always the 9th bit transmitted during a byte transfer. The device receiving data (the master during a read or the slave during a write operation) performs an ACK by transmitting a zero during the 9th bit. A device performs a NACK by transmitting a one during the 9th bit. Timing (Figure 12) for the ACK and NACK is identical to all other bit writes. An ACK is the acknowledgment that the device is properly receiving data. A NACK is used to terminate a read sequence or as an indication that the device is not receiving data.

Byte Write: A byte write consists of 8 bits of information transferred from the master to the slave (most significant bit first) plus a 1-bit acknowledgement from the slave to the master. The 8 bits transmitted by the master are done according to the bit write definition and the acknowledgement is read using the bit read definition.

Byte Read: A byte read is an 8-bit information transfer from the slave to the master plus a 1-bit ACK or NACK from the master to the slave. The 8 bits of information that are transferred (most significant bit first) from the slave to the master are read by the master using the bit read definition, and the master transmits an ACK using the bit write definition to receive additional data bytes. The master must NACK the last byte read to terminate communication so the slave returns control of SDA to the master.

Slave Address Byte: Each slave on the I²C bus responds to a slave address byte sent immediately following a START condition. The slave address byte contains the slave address in the most significant 7 bits and the R/W bit in the least significant bit.

The DS1876 responds to three slave addresses. The auxiliary memory always responds to a fixed I²C slave address. A0h. (If the main device's slave address is programmed to be A0h, access to the auxiliary memory is disabled.) The Lower Memory and Tables 00h–06h respond to I²C slave addresses whose lower 3 bits are configurable (A0h-AEh, B0h-BEh) using the DEVICE ADDRESS byte (Table 02h, Register 8Bh). The user also must set the ASEL bit (Table 02h, Register 88h) for this address to be active. By writing the correct slave address with $R/\overline{W} = 0$, the master indicates it writes data to the slave. If R/W = 1, the master reads data from the slave. If an incorrect slave address is written, the DS1876 assumes the master is communicating with another I²C device and ignores the communications until the next START condition is sent.

Memory Address: During an I²C write operation to the DS1876, the master must transmit a memory address to identify the memory location where the slave is to store the data. The memory address is

Figure 12. I²C Timing

SFP Controller with Dual LDD Interface

always the second byte transmitted during a write operation following the slave address byte.

I²C Protocol

See Figure 13 for an example of I²C timing.

Writing a Single Byte to a Slave: The master must generate a START condition, write the slave address byte ($R\overline{W} = 0$), write the memory address, write the byte of data, and generate a STOP condition. Remember that the master must read the slave's acknowledgement during all byte write operations.

Writing Multiple Bytes to a Slave: To write multiple bytes to a slave, the master generates a START condition, writes the slave address byte (R/W = 0), writes the memory address, writes up to 8 data bytes, and generates a STOP condition. The DS1876 writes 1 to 8 bytes (one page or row) with a single write transaction. This is internally controlled by an address counter that allows data to be written to consecutive addresses without transmitting a memory address before each data byte is sent. The address counter limits the write to one 8-byte page (one row of the memory map). Attempts to write to additional pages of memory without sending a STOP condition between pages result in the address counter wrapping around to the beginning of the present row.

For example: A 3-byte write starts at address 06h and writes three data bytes (11h, 22h, and 33h) to three "consecutive" addresses. The result is that addresses 06h and 07h would contain 11h and 22h, respectively, and the third data byte, 33h, would be written to address 00h.

To prevent address wrapping from occurring, the master must send a STOP condition at the end of the page, then wait for the bus-free or EEPROM write time to elapse. Then the master can generate a new START condition and write the slave address byte $(R/\overline{W} = 0)$ and the first memory address of the next memory row before continuing to write data.

Acknowledge Polling: Any time a EEPROM page is written, the DS1876 requires the EEPROM write time (tWR) after the STOP condition to write the contents of the page to EEPROM. During the EEPROM write time, the DS1876 does not acknowledge its slave address because it is busy. It is possible to take advantage of that phenomenon by repeatedly addressing the DS1876, which allows the next page to be written as soon as the DS1876 is ready to receive the data. The alternative to acknowledge polling is to wait for maximum period of tWR to elapse before attempting to write again to the DS1876.

Figure 13. Example I²C Timing

Maxim Integrated

EEPROM Write Cycles: When EEPROM writes occur, the DS1876 writes the whole EEPROM memory page, even if only a single byte on the page was modified. Writes that do not modify all 8 bytes on the page are allowed and do not corrupt the remaining bytes of memory on the same page. Because the whole page is written, bytes on the page that were not modified during the transaction are still subject to a write cycle. This can result in a whole page being worn out over time by writing a single byte repeatedly. Writing a page 1 byte at a time wears the EEPROM out 8x faster than writing the entire page at once. The DS1876's EEPROM write cycles are specified in the Nonvolatile Memory Characteristics table. The specification shown is at the worst-case temperature. It can handle approximately 10x that many writes at room temperature. Writing to SRAM-shadowed EEPROM memory with SEEB = 1 does not count as a EEPROM write cycle when evaluating the EEPROM's estimated lifetime.

Reading a Single Byte from a Slave: Unlike the write operation that uses the memory address byte to define where the data is to be written, the read operation occurs at the present value of the memory address counter. To read a single byte from the slave, the master generates a START condition, writes the slave address byte with R/W = 1, reads the data byte with a NACK to indicate the end of the transfer, and generates a STOP condition.

Manipulating the Address Counter for Reads: A dummy write cycle can be used to force the address pointer to a particular value. To do this, the master generates a START condition, writes the slave address byte (R/W = 0), writes the memory address where it desires to read, generates a repeated START condition, writes the slave address byte (R/W = 1), reads data with ACK or NACK as applicable, and generates a STOP condition.

Memory Organization

The DS1876 features nine separate memory tables that are internally organized into 8-byte rows. The main device located at A2h is used for overall device configuration and transmitter 1 control, calibration, alarms, warnings, and monitoring.

Lower Memory, A2h is addressed from 00h–7Fh and contains alarm and warning thresholds, flags, masks, several control registers, password entry area (PWE), and the table-select byte.

Table 01h, A2h primarily contains user EEPROM (with PW1 level access) as well as alarm and warning enable bytes.

Table 02h, A2h/B2h is a multifunction space that contains configuration registers, scaling and offset values, passwords, and interrupt registers as well as other miscellaneous control bytes. All functions and status can be written and read from either A2h or B2h addresses.

Table 04h, A2h contains a temperature-indexed LUT for control of the MOD1 voltage. The MOD1 LUT can be programmed in 2°C increments over the -40°C to +102°C range. This also contains a temperature-indexed LUT for the MOD1 offsets.

Table 05h, A2h is empty by default. It can be configured to contain the alarm and warning enable bytes from Table 01h, Registers F8h–FFh with the MASK bit enabled (Table 02h, Register 88h). In this case Table 01h is empty.

Table 06h, A2h contains a temperature-indexed LUT for control of the APC1 voltage. The APC1 LUT can be programmed in 2°C increments over the -40°C to +102°C range. This also contains a temperature-indexed LUT for the APC1 offsets.

The main device located at B2h is used for transmitter 2 control, calibration, alarms, warnings, and monitoring.

Lower Memory, B2h is addressed from 00h–7Fh and contains alarm and warning thresholds, flags, masks, several control registers, PWE, and the table-select byte.

Table 01h, B2h contains alarm and warning enable bytes.

Table 04h, B2h contains a temperature-indexed LUT for control of the MOD2 voltage. The MOD2 LUT can be programmed in 2°C increments over the -40°C to +102°C range. This also contains a temperature-indexed LUT for the MOD2 offsets.

Table 05h, B2h is empty by default. It can be configured to contain the alarm and warning enable bytes from Table 01h, Registers F8h–FFh with the MASK bit enabled (Table 02h, Register 88h). In this case Table 01h is empty.

Table 06h, B2h contains a temperature-indexed LUT for control of the APC2 voltage. The APC2 LUT can be programmed in 2°C increments over the -40°C to +102°C range. This also contains a temperature-indexed LUT for the APC2 offsets.

SFP Controller with Dual LDD Interface

Figure 14. Memory Map

Auxiliary Memory (Device A0h) contains 256 bytes of EE memory accessible from address 00h–FFh. It is selected with the device address of A0h.

See the *Register Descriptions* section for a more complete detail of each byte's function, as well as for read/ write permissions for each byte.

Shadowed EEPROM

Many nonvolatile memory locations (listed within the *Register Descriptions* section) are actually shadowed EEPROM and are controlled by the SEEB bit in Table 02h, Register 80h.

The DS1876 incorporates shadowed EEPROM memory locations for key memory addresses that can be written many times. By default the shadowed EEPROM bit,

SEEB, is not set and these locations act as ordinary EEPROM. By setting SEEB, these locations function like SRAM cells, which allow an infinite number of write cycles without concern of wearing out the EEPROM. This also eliminates the requirement for the EEPROM write time, tWR. Because changes made with SEEB enabled do not affect the EEPROM, these changes are not retained through power cycles. The power-on value is the last value written with SEEB disabled. This function can be used to limit the number of EEPROM writes during calibration or to change the monitor thresholds periodically during normal operation helping to reduce the number of times EEPROM is written. Figure 14 shows the memory map and indicates which locations are shadowed EEPROM.

Register Descriptions

The register maps show each byte/word (2 bytes) in terms of its row in the memory. The first byte in the row is located in memory at the row address (hexadecimal) in the leftmost column. Each subsequent byte on the row is one/two memory locations beyond the previous byte/ word's address. A total of 8 bytes are present on each row. For more information about each of these bytes, see the corresponding register description.

Memory Map Access Codes

The following section provides the DS1876 register definitions. Each register or row of registers has an access descriptor that determines the password level required to read or write the memory. Level 2 password is intended for the module manufacture access only. Level 1 password allows another level of protection for items the end consumer wishes to protect. Many registers are always readable, but require password access to write. There are a few registers that cannot be read without password access. The following access codes describe each mode used by the DS1876 with factory settings for the PW_ENA and PW_ENB (Table 02h, Registers C0h– C1h) registers.

ACCESS CODE	READ ACCESS	WRITE ACCESS
<0/_>		nt than the rest of the row/byte, so look at each byte/bit ely for permissions.
<1/_>	Read all	Write PW2
<2/_>	Read all	Write not applicable
<3/_>	Read all	Write all, but the DS1876 hardware also writes to these bytes/bits
<4/_>	Read PW2	Write PW2 + mode_bit
<5/_>	Read all	Write all
<6/_>	Read not applicable	Write all
<7/_>	Read PW1	Write PW1
<8/_>	Read PW2	Write PW2
<9/_>	Read not applicable	Write PW2
<10/_>	Read PW2	Write not applicable
<11/_>	Read all	Write PW1

Memory Addresses A0h, A2h, and B2h

There are three separate I²C addresses in the DS1876: A0h, A2h, and B2h. A2h and B2h are used to configure and monitor two transmitters. Transmitter 1 is accessed using A2h. Transmitter 2 is accessed using B2h. Many of the registers in A2h and B2h are shared registers. These registers can be read and written from both A2h and B2h.

MEMORY CODE	A2h AND B2h REGISTERS
<c> or <_/C></c>	A common memory location is used for A2h and B2h device addresses. Reading or writing to these locations is identical, regardless of using A2h or B2h addresses.
<d> or <_/D></d>	Different memory locations are used for A2h and B2h device addresses.
<m> or <_/M></m>	Mixture of common and different memory locations for A2h and B2h device addresses. See the individual bytes within the row for clarification. If "M" is used on an individual byte, see the expanded bit descriptions to determine which bits are common vs. different.

SFP Controller with Dual LDD Interface

Lower Memory	Register Map
--------------	--------------

	LOWER MEMORY										
ROW	ROW NAME	WORD 0		wo	WORD 1		WORD 2		WORD 3		
(HEX)		BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F		
00	<1/C> THRESHOLD0	TEMP A	_ARM HI	TEMP AL	ARM LO	TEMP V	/ARN HI	TEMP W	ARN LO		
08	<1/C > THRESHOLD1	V _{CC} AL	ARM HI	V _{CC} AL	ARM LO	ARM LO V _{CC} WARN HI		VCC W	ARN LO		
10	<1/D> THRESHOLD2	BMON ALARM HI		BMON ALARM LO		BMON WARN HI		RN HI BMON W			
18	<1/D> THRESHOLD3	PMON A	LARM HI	PMON A	LARM LO	PMON V	VARN HI	PMON WARN LO			
20-40	<1/C > EEPROM	E	E	EE EE		E	E				
48–50	<1/D > EEPROM	E	E	EE		E	E	E	E		
58	<1/C > EEPROM	EE	EE	EE	EE	EE	EE	EE	EE		
60	<2/M> ADC VALUES0	<c>TEM</c>	P VALUE	<c> ACC</c>	<c> VCC VALUE</c>		N VALUE	<d>PMO</d>	N VALUE		
68	<0/M> ADC VALUES1	RESE	RVED	RESE	RVED	RESERVED		<0/M>STATUS	<3/D> UPDATE		
70	<5/D> ALARM/WARN	ALARM3	ALARM ₂	ALARM1	RESERVED	WARN3	RESERVED	RESERVED	RESERVED		
78	<0/M> TABLE SELECT	RESERVED	RESERVED	RESERVED	<6/C> P\	WE MSW	<6/C> PWE LSW		<5/D> TBL SEL		

<C> or $<_/C> = Common$, <D> or $<_/D> = Different$, <M> or $<_/M> = Mixture of common and different.$

_Table 01h Register Map

	TABLE 01h												
ROW	ROW NAME	WOF	RD 0	WORD 1		WORD 2		WORD 3					
(HEX)	NOW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F				
80–F7	<1/C> EEPROM	EE	EE	EE	EE	EE	EE	EE	EE				
F8	<7/M>ALARM ENABLE	<m>ALARM EN3</m>	RESERVED	<d>ALARM EN1</d>	RESERVED	<m>WARN EN3</m>	RESERVED	RESERVED	RESERVED				

<C> or $<_/C> = Common$, <D> or $<_/D> = Different$, <M> or $<_/M> = Mixture of common and different.$

Note: The ALARM ENABLE bytes (Registers F8h–FFh) can be configured to exist in Table 05h instead of here at Table 01h with the MASK bit (Table 02h, Register 88h). If the row is configured to exist in Table 05h, these location are empty in Table 01h.

The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h). These registers also allow for custom permissions.

ACCESS CODE	<0/_>	<1/_>	<2/_>	<3/_>	<4/_>	<5/_>	<6/_>	<7/_>	<8/_>	<9/_>	<10/_>	<11/_>
Read Access	See each	All	All	All	PW2	All	N/A	PW1	PW2	N/A	PW2	All
Write Access	bit/byte separately	PW2	N/A	All and DS1876 Hardware	PW2 + mode bit	All	All	PW1	PW2	PW2	N/A	PW1

_Table 02h Register Map

	TABLE 02h (PW2)													
ROW	ROW NAME	WO	RD 0	wo	RD 1	WO	RD 2	WO	RD 3					
(HEX)	ROW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F					
80	<0/C> CONFIG0	<8/C>MODE	<4/C>TINDEX	RESERVED	RESERVED	RESERVED	RESERVED	<10> DEVICE ID	<10> DEVICE VER					
88	<8/C> CONFIG1	CNFGA	CNFGB	CNFGC	DEVICE ADDRESS	RANGING ₂	RANGING1	RSHIFT ₂	RSHIFT1					
90	<8/C> SCALE0	RESE	RVED	VCC S	SCALE	RESE	RVED	RESE	RVED					
98	<8/C> SCALE1	BMON2	SCALE	PMON2	PMON2 SCALE BMON1 SCALE		PMON1	SCALE						
A0	<8/C> OFFSET0	INTERNAL T	EMP OFFSET*	VCC C	OFFSET	RESE	RVED	RESE	RVED					
A8	<8/C> OFFSET1	BMON2	OFFSET	PMON2	PMON2 OFFSET BMON1 OFFSET PM		PMON1	OFFSET						
B0	<9/C> PWD VALUE	PW1	MSW	PW1	LSW	PW2	MSW	PW2	LSW					
B8	<8/C> THRESHOLD	RESERVED	HBIAS2 DAC	HTXP2 DAC	LTXP2 DAC	RESERVED	HBIAS1 DAC	HTXP1 DAC	LTXP1 DAC					
C0	<8/C> PWD ENABLE	PW_ENA	PW_ENB	RESERVED	RESERVED	RESERVED	RESERVED	POLARITY	TBLSELPON					
C8	<4/C> DAC VALUES	MOD	2 DAC	APC2	2 DAC	MOD1 DAC		APC1 DAC						
D0-FF	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY					

<C> or $<_/C> = Common$, <D> or $<_/D> = Different$, <M> or $<_/M> = Mixture$ of common and different.

*The final result must be XORed with BB40h before writing to this register.

_Table 04h Register Map

	TABLE 04h (MODULATION LUT)												
ROW	ROW NAME	woi	RD 0	woi	RD 1	woi	RD 2	WORD 3					
(HEX)	ROW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F				
80–C7	<8/D> LUT4	MOD											
C8–F7	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY				
F8	<8/D> MOD OFFSET	MOD OFFSET LUT											

<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.

The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h). These registers also allow for custom permissions.

ACCESS CODE	<0/_>	<1/_>	<2/_>	<3/_>	<4/_>	<5/_>	<6/_>	<7/_>	<8/_>	<9/_>	<10/_>	<11/_>
Read		All	All	All	PW2	All	N/A	PW1	PW2	N/A	PW2	All
Access	See each				=		,/ .			,/ .		
Write Access	bit/byte separately	PW2	N/A	All and DS1876 Hardware	PW2 + mode bit	All	All	PW1	PW2	PW2	N/A	PW1

SFP Controller with Dual LDD Interface

_Table 05h Register Map

	TABLE 05h												
ROW	ROW NAME	WOF	RD 0	WORD 1		WORD 2		WORD 3					
(HEX)	NOW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F				
80–F7	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY				
F8	<7/M> ALARM ENABLE	<m>ALARM EN3</m>	RESERVED	<d>ALARM EN1</d>	RESERVED	<m>WARN EN3</m>	RESERVED	RESERVED	RESERVED				

<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.

Note: Table 05h is empty by default. It can be configured to contain the alarm and warning enable bytes from Table 01h, Registers F8h–FFh with the MASK bit enabled (Table 02h, Register 88h). In this case Table 01h is empty.

Table 06h Register Map

	TABLE 06h (APC LUT)												
ROW	ROW NAME	woi	RD 0	WORD 1		woi	RD 2	WORD 3					
(HEX)	ROW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F				
80–C7	<8/D> LUT6	APC LUT											
C8–DF	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY	EMPTY				
E0	<8/D> HBATH	HBATH LUT											
E8	<8/D> HTXP	HTXP LUT											
F0	<8/D> LTXP	LTXP LUT											
F8	<8/D> APC OFFSET	APC OFFSET LUT											

<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.

Auxiliary Memory A0h Register Map

	AUXILIARY MEMORY (A0h)												
ROW	ROW NAME	WOR	D 0	WORD 1		WOR	D 2	WORD 3					
(HEX)	ROW NAME	BYTE 0/8	BYTE 1/9	BYTE 2/A	BYTE 3/B	BYTE 4/C	BYTE 5/D	BYTE 6/E	BYTE 7/F				
00–7F	<5> AUX EE	EE	EE	EE	EE	EE	EE	EE	EE				
80–FF	<5> AUX EE	EE	EE	EE	EE	EE	EE	EE	EE				

<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.

The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h). These registers also allow for custom permissions.

ACCESS CODE	<0/_>	<1/_>	<2/_>	<3/_>	<4/_>	<5/_>	<6/_>	<7/_>	<8/_>	<9/_>	<10/_>	<11/_>
Read Access	See each	All	All	All	PW2	All	N/A	PW1	PW2	N/A	PW2	All
Write Access	bit/byte separately	PW2	N/A	All and DS1876 Hardware	PW2 + mode bit	All	All	PW1	PW2	PW2	N/A	PW1

Lower Memory Register Descriptions

Lower Memory, Register 00h–01h: TEMP ALARM HI Lower Memory, Register 04h–05h: TEMP WARN HI

	FACTORY DE	FAULT	7FFFh										
	READ ACCES	SS	All										
	WRITE ACCE	SS	PW2 or (PW1	and WLOWER)								
	A2h AND B2h	n MEMORY	Common A2h	Common A2h and B2h memory location									
	MEMORY TYP	PE	Nonvolatile (SEE)										
00h, 04h	S	26	25	24	23	2 ²	21	20					
01h, 05h	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2-6	2-7	2 ⁻⁸					
	BIT 7												

Temperature measurement updates above this two's complement threshold set its corresponding alarm or warning bit. Temperature measurement updates equal to or below this threshold clear its alarm or warning bit.

Lower Memory, Register 02h–03h: TEMP ALARM LO Lower Memory, Register 06h–07h: TEMP WARN LO

FACTORY DEFAULT	8000h
READ ACCESS	All
WRITE ACCESS	PW2 or (PW1 and WLOWER)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

02h, 06h	S	26	25	24	2 ³	22	21	20
03h, 07h	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8
	BIT 7							BIT 0

Temperature measurement updates below this two's complement threshold set its corresponding alarm or warning bit. Temperature measurement updates equal to or above this threshold clear its alarm or warning bit.

SFP Controller with Dual LDD Interface

Lower Memory, Register 08h–09h: V_{CC} ALARM HI Lower Memory, Register 0Ch–0Dh: V_{CC} WARN HI

	FACTORY DEFAULT		FFFFh					
	READ ACCESS		All					
	WRITE ACCESS		PW2 or (PW1 and WLOWER)					
	A2h AND B2h MEMORY		Common A2h and B2h memory location					
	MEMORY TYPE		Nonvolatile (SEE)					
08h, 0Ch	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
09h, 0Dh	27	26	2 ⁵	24	23	2 ²	21	20
	BIT 7							BIT 0

Voltage measurement updates above this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or below this threshold clear its alarm or warning bit.

Lower Memory, Register 0Ah–0Bh: V_{CC} ALARM LO Lower Memory, Register 0Eh–0Fh: V_{CC} WARN LO

BIT 7

	FACTORY DEFAULT		0000h							
	READ ACCESS		All							
	WRITE ACCESS		PW2 or (PW1 and WLOWER)							
	A2h AND B2h MEMORY		Common A2h and B2h memory location							
	MEMORY TYPE		Nonvolatile (SEE)							
0Ah, 0Eh	215	214	213	212	211	210	2 ⁹	2 ⁸]	
0Bh, 0Fh	27	26	2 ⁵	24	2 ³	22	21	20]	

Voltage measurement updates below this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or above this threshold clear its alarm or warning bit.

BIT 0

Lower Memory, Register 10h–11h: BMON ALARM HI Lower Memory, Register 14h–15h: BMON WARN HI Lower Memory, Register 18h–19h: PMON ALARM HI Lower Memory, Register 1Ch–1Dh: PMON WARN HI

FACTORY DEFAULT	FFFFh
READ ACCESS	All
WRITE ACCESS	PW2 or (PW1 and WLOWER)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (SEE)

10h, 14h, 18h, 1Ch	215	2 ¹⁴	213	212	211	210	29	28
11h, 15h, 19h, 1Dh	27	26	25	24	23	2 ²	21	20
	BIT 7							BIT 0

Voltage measurement updates above this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or below this threshold clear its alarm or warning bit.

Lower Memory, Register 12h–13h: BMON ALARM LO Lower Memory, Register 16h–17h: BMON WARN LO Lower Memory, Register 1Ah–1Bh: PMON ALARM LO Lower Memory, Register 1Eh–1Fh: PMON WARN LO

FACTORY DEFAULT	0000h
READ ACCESS	All
WRITE ACCESS	PW2 or (PW1 and WLOWER)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (SEE)

12h, 16h, 1Ah, 1Eh	215	2 ¹⁴	213	212	211	210	29	28
13h, 17h, 1Bh, 1Fh	27	26	25	24	2 ³	22	21	20
	BIT 7							BIT 0

Voltage measurement updates below this unsigned threshold set its corresponding alarm or warning bit. Voltage measurements equal to or above this threshold clear its alarm or warning bit.

SFP Controller with Dual LDD Interface

Lower Memory, Register 20h-47h: EE

FACTORY DEFAULT	00h
READ ACCESS	All
WRITE ACCESS	PW2 or (PW1 and WLOWER)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (EE)

20h–47h	EE	EE	EE	EE	EE	EE	EE	EE
	BIT 7							BIT 0

PW2 level access-controlled EEPROM.

Lower Memory, Register 48h-57h: EE

	FACTORY DEFAULT		00h						
	READ ACCESS		All						
	WRITE ACCESS		PW2 or (PW1 and WLOWER)						
	A2h AND B2h MEMORY		Different A2h and B2h memory locations						
	MEMORY TYPE		Nonvolatile (E	E)					
48h–57h	EE	EE	EE	EE	EE	EE	EE	EE	
	BIT 7							BIT 0	

PW2 level access-controlled EEPROM.

Lower Memory, Register 58h–5Fh: EE

FACTORY DEFAULT	00h
READ ACCESS	All
WRITE ACCESS	PW2 or (PW1 and WLOWER)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (EE)

58h–5Fh	EE	EE	EE	EE	EE	EE	EE	EE	
	BIT 7							BIT 0	

PW2 level access-controlled EEPROM.

Lower Memory, Register 60h-61h: TEMP VALUE

FACTORY DEFAULT	0000h
READ ACCESS	All
WRITE ACCESS	N/A
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

60h	S	26	2 ⁵	24	2 ³	22	21	20
61h	2 ⁻¹	2-2	2 ⁻³	2-4	2 ⁻⁵	2-6	2-7	2 ⁻⁸
	BIT 7							BIT 0

Signed two's complement direct-to-temperature measurement.

Lower Memory, Register 62h–63h: V_{CC} VALUE

	POWER-ON VALUE READ ACCESS WRITE ACCESS A2h AND B2h MEMORY MEMORY TYPE		0000h All N/A Common A2h Volatile	n and B2h men	nory location			
62h	215	214	213	212	211	210	29	28
63h	27	26	2 ⁵	24	2 ³	2 ²	2 ¹	20
	BIT 7							BIT 0

Left-justified unsigned voltage measurement.

BIT 0

SFP Controller with Dual LDD Interface

Lower Memory, Register 64h–65h: BMON VALUE Lower Memory, Register 66h–67h: PMON VALUE

	POWER-ON \	/ALUE	0000h							
	READ ACCESS		All							
	WRITE ACCESS		N/A							
	A2h AND B2h MEMORY		Different A2h and B2h memory locations							
	MEMORY TYPE		Volatile							
64h, 66h	2 ¹⁵	214	213	212	211	210	2 ⁹	2 ⁸		
65h, 67h	27	26	2 ⁵	24	23	2 ²	21	20		

BIT 7

Left-justified unsigned voltage measurement.

Lower Memory, Register 68h–6Dh: RESERVED

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

68h, 6Dh [0	0	0	0	0	0	0	0
_	BIT 7							BIT 0

These registers are reserved. The value when read is 00h.

Lower Memory, Register 6Eh: STATUS

POWER-ON VALUE	X0XX 0XXXb
READ ACCESS	All
WRITE ACCESS	See below
A2h AND B2h MEMORY	Mixture of common m
MEMORY TYPE	Volatile

nemory locations and different memory locations (see below)

Wri

rite Access	N/A	All	N/A	All	All	N/A	N/A	N/A	
6Eh	<d>TXDS</d>	<d>TXDC</d>	<c>IN1S</c>	<c>RSELS</c>	<c>RSELC</c>	<d>TXFS</d>	<d>RAM</d>	<c>RDYB</c>	
	BIT 7							BIT 0	

BIT 7 TXDS1 [A2h]: TXD1 status bit. Reflects the logic state of the TXD1 pin (read-only). 0 = TXD1 pin is logic-low. 1 = TXD1 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 1 = TXD2 pin is logic-low. 0 = (default) 1 = TXD2 software control bit. This bit allows for software control that is identical to the TXD1 pin. 0 = (default) 1 = Forces the device into a TXD1 state regardless of the value of the TXD1 pin. 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. TXD2 pin is logic-low. 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. TXD2 pin is logic-low. 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. TXD2 pin is logic-low. 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. TXD2 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is l		
BIT 6 TXD1 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further information. Its value is wire-ORed with the logic value of the TXD1 pin (writable by all users). 0 = (default) 1 = Forces the device into a TXD1 state regardless of the value of the TXD1 pin. TXD2 [B2h]: TXD2 software control bit. This bit allows for software control that is identical to the TXD2 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further information. Its value is wire-ORed with the logic value of the TXD2 pin (writable by all users). 0 = (default) 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. 0 = (default) 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. 0 = (default) 1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin. BIT 5 IN1S [A2h or B2h]: IN1 status bit. Reflects the logic state of the IN1 pin (read-only). 0 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = IN1 pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin is logic-low. 1 = RSEL pin	BIT 7	 0 = TXD1 pin is logic-low. 1 = TXD1 pin is logic-high. TXDS2 [B2h]: TXD2 status bit. Reflects the logic state of the TXD2 pin (read-only). 0 = TXD2 pin is logic-low.
BIT 5 0 = IN1 pin is logic-low. 1 = IN1 pin is logic-high. BIT 4 RSELS [A2h or B2h]: RSEL status bit. Reflects the logic state of the RSEL pin (read-only). 0 = RSEL pin is logic-high. BIT 4 RSELC [A2h or B2h]: RSEL software control bit. This bit allows for software control that is identical to the RSEL pin. Its value is wire-ORed with the logic value of the RSEL pin to create the RSELOUT pin's logic value (writable by all users). 0 = (default) 1 = Forces the device into a RSEL state regardless of the value of the RSEL pin. TXFS1 [A2h]: Reflects state of the TXF1 pin (read-only). 0 = TXF1 pin is low. 1 = TXF1 pin is high. TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is high. RAM1 [A2h]: Volatile memory location. RAM2 [B2h]: Volatile memory location. RAM2 [B2h]: Volatile memory location. B	BIT 6	 TXD1 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further information. Its value is wire-ORed with the logic value of the TXD1 pin (writable by all users). 0 = (default) 1 = Forces the device into a TXD1 state regardless of the value of the TXD1 pin. TXDC2 [B2h]: TXD2 software control bit. This bit allows for software control that is identical to the TXD2 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further information. Its value is wire-ORed with the logic value of the TXD2 pin (writable by all users). 0 = (default)
BIT 4 0 = RSEL pin is logic-low. 1 = RSEL pin is logic-high. RSELC [A2h or B2h]: RSEL software control bit. This bit allows for software control that is identical to the RSEL pin. Its value is wire-ORed with the logic value of the RSEL pin to create the RSELOUT pin's logic value (writable by all users). 0 = (default) 1 = Forces the device into a RSEL state regardless of the value of the RSEL pin. TXFS1 [A2h]: Reflects state of the TXF1 pin (read-only). 0 = TXF1 pin is low. 1 = TXF2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is low. 1 = TXF2 pin is high. TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is high. RIT 1 RAM1 [A2h]: Volatile memory location. RAM2 [B2h]: Volatile memory location. BIT 0 0 = Vcc is above POA.	BIT 5	0 = IN1 pin is logic-low.
BIT 3 tical to the RSEL pin. Its value is wire-ORed with the logic value of the RSEL pin to create the RSELOUT pin's logic value (writable by all users). 0 = (default) 1 = Forces the device into a RSEL state regardless of the value of the RSEL pin. TXFS1 [A2h]: Reflects state of the TXF1 pin (read-only). 0 = TXF1 pin is low. 1 = TXF1 pin is low. 1 = TXF1 pin is high. TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is high. TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is high. RAM1 [A2h]: Volatile memory location. RAM2 [B2h]: Volatile memory location. RAM2 [B2h]: Notatile memory location. BIT 0 0 = Vcc is above POA.	BIT 4	0 = RSEL pin is logic-low.
BIT 2 0 = TXF1 pin is low. 1 = TXF1 pin is high. TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is low. 1 = TXF2 pin is low. 1 = TXF2 pin is high. BIT 1 RAM1 [A2h]: Volatile memory location. RAM2 [B2h]: Volatile memory location. BIT 0 0 = Vcc is above POA.	BIT 3	tical to the RSEL pin. Its value is wire-ORed with the logic value of the RSEL pin to create the RSELOUT pin's logic value (writable by all users). 0 = (default)
BIT 1 RAM2 [B2h]: Volatile memory location. RDYB [A2h or B2h]: Ready bar. BIT 0 0 = V _{CC} is above POA.	BIT 2	0 = TXF1 pin is low. 1 = TXF1 pin is high. TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only). 0 = TXF2 pin is low.
BIT 0 0 = VCC is above POA.	BIT 1	
	BIT 0	0 = VCC is above POA.

SFP Controller with Dual LDD Interface

Lower Memory, Register 6Fh: UPDATE

POWER-ON VALUE	00h
READ ACCESS	All
WRITE ACCESS	All and DS1876 hardware
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Volatile

6Fh	TEMP RDY	VCC RDY	BMON RDY	PMON RDY	RESERVED	RESERVED	RESERVED	RESERVED
	BIT 7							BIT 0

BITS 7:4	TEMP RDY, VCC RDY, BMON RDY, PMON RDY: Update of completed conversions. At power-on, these bits are cleared and are set as each conversion is completed. These bits can be cleared so that a completion of a new conversion is verified.
BITS 3:0	RESERVED

Lower Memory, Register 70h: ALARM3

BIT 7

POWER-ON VALUE	10h
READ ACCESS	All
WRITE ACCESS	N/A
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Volatile

VCC HI

VCC LO

BMON HI

BMON LO

PMON HI

PMON LO

BIT 0

TEMP LO

70h TEMP HI

BIT 7	 TEMP HI: High alarm status for temperature measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 6	 TEMP LO: Low alarm status for temperature measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.
BIT 5	 VCC HI: High alarm status for V_{CC} measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 4	 VCC LO: Low alarm status for V_{CC} measurement. This bit is set when the V_{CC} supply is below the POA trip point value. It clears itself when a V_{CC} measurement is completed and the value is above the low threshold. 0 = Last measurement was equal to or above threshold setting. 1 = (default) Last measurement was below threshold setting.
BIT 3	 BMON HI: High alarm status for BMON measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 2	 BMON LO: Low alarm status for BMON measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.
BIT 1	 PMON HI: High alarm status for PMON measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 0	 PMON LO: Low alarm status for PMON measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.
SFP Controller with Dual LDD Interface

Lower Memory, Register 71h: ALARM2

POWER-ON VALUE	00h
READ ACCESS	All
WRITE ACCESS	N/A
A2h AND B2h MEMORY	Mixed A2h and B2h memory locations
MEMORY TYPE	Volatile

71h	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	<c>TXFOUTS</c>	<d>FETG</d>	<d>TXFINT</d>
	BIT 7							BIT 0

BITS 7:3	RESERVED
BIT 2	 TXFOUTS: TXFOUT status. Indicates the state the open-drain output is attempting to achieve. 0 = TXFOUT is pulling low. 1 = TXFOUT is high impedance.
BIT 1	FETG: Status of internal signal FETG. The FETG signal is part of the internal shutdown logic. 0 = (default) FETG is low. 1 = FETG is high.
BIT 0	TXFINT: TXF interrupt. This bit is the wire-ORed logic of all alarms and warnings wire-ANDed with their corresponding enable bits, plus the wire-ORed logic of HBAL, TXP HI, and TXP LO. The enable bits are found in Table 01h/05h, Registers F8h–FFh.

Lower Memory, Register 72h: ALARM1

POWER-ON VALU	JE	00h
READ ACCESS		All
WRITE ACCESS		N/A
A2h AND B2h ME	MORY	Different A2h and B2h memory locations
MEMORY TYPE		Volatile

72h	RESERVED	RESERVED	RESERVED	RESERVED	HBAL	RESERVED	TXP HI	TXP LO
	BIT 7							BIT 0

BITS 7:4, 2	RESERVED
BIT 3	 HBAL: High bias alarm status; fast comparison. A TXD event clears this alarm. 0 = (default) Last comparison was below threshold setting. 1 = Last comparison was above threshold setting.
BIT 1	 TXP HI: High alarm status TXP; fast comparison. A TXD event clears this alarm. 0 = (default) Last comparison was below threshold setting. 1 = Last comparison was above threshold setting.
BIT 0	 TXP LO: Low alarm status TXP; fast comparison. A TXD event clears this alarm. 0 = (default) Last comparison was above threshold setting. 1 = Last comparison was below threshold setting.

Lower Memory, Register 73h: RESERVED

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

This register is reserved.

Lower Memory, Register 74h: WARN3

POWER-ON VALUE	10h
READ ACCESS	All
WRITE ACCESS	N/A
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Volatile

74h [TEMP HI	TEMP LO	VCC HI	VCC LO	BMON HI	BMON LO	PMON HI	PMON LO
-	BIT 7							BIT 0

BIT 7	 TEMP HI: High warning status for temperature measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 6	 TEMP LO: Low warning status for temperature measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.
BIT 5	 VCC HI: High warning status for V_{CC} measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 4	 VCC LO: Low warning status for V_{CC} measurement. This bit is set when the V_{CC} supply is below the POA trip-point value. It clears itself when a V_{CC} measurement is completed and the value is above the low threshold. 0 = Last measurement was equal to or above threshold setting. 1 = (default) Last measurement was below threshold setting.
BIT 3	 BMON HI: High warning status for BMON measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 2	 BMON LO: Low warning status for BMON measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.
BIT 1	 PMON HI: High warning status for PMON measurement. 0 = (default) Last measurement was equal to or below threshold setting. 1 = Last measurement was above threshold setting.
BIT 0	 PMON LO: Low warning status for PMON measurement. 0 = (default) Last measurement was equal to or above threshold setting. 1 = Last measurement was below threshold setting.

SFP Controller with Dual LDD Interface

Lower Memory, Registers 75h-7Ah: RESERVED MEMORY

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

These registers are reserved. The value when read is 00h.

Lower Memory, Registers 7Bh-7Eh: PASSWORD ENTRY (PWE)

POWER-ON VALUE	FFFF FFFFh
READ ACCESS	N/A
WRITE ACCESS	All
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

7Bh	231	230	229	228	227	226	225	224
7Ch	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
7Dh	2 ¹⁵	214	213	212	211	210	2 ⁹	2 ⁸
7Eh	27	26	25	24	23	22	21	20
-	BIT 7							BIT 0

There are two passwords for the DS1876. Each password is 4 bytes long. The lower level password (PW1) has all the access of a normal user plus those made available with PW1. The higher level password (PW2) has all the access of PW1 plus those made available with PW2. The values of the passwords reside in EEPROM inside PW2 memory. At power-up, all PWE bits are set to 1. All reads at this location are 0.

Lower Memory, Register 7Fh: TABLE SELECT (TBL SEL)

	POWER-ON V	/ALUE	TBLSELPON (Table 02h, Register C7h)						
	READ ACCES	SS	All						
	WRITE ACCE	SS	All						
	A2h AND B2h MEMORY MEMORY TYPE		Different A2h Volatile	and B2h memc	ory locations				
7Fh	27	26	25	24	23	22	21	20	
	BIT 7	·	· · · · · · · · · · · · · · · · · · ·					BIT 0	

The upper memory tables of the DS1876 are accessible by writing the desired table value in this register. The power-on value of this register is defined by the value written to TBLSELPON (Table 02h, Register C7h).

Table 01h Register Descriptions

Table 01h, Register 80h-F7h: EEPROM

POWER-ON VALUE	00h
READ ACCESS	PW2 or (PW1 and RWTBL1A) or (PW1 and RTBL1A)
WRITE ACCESS	PW2 or (PW1 and RWTBL1A)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (EE)

80h–F7h	EE	EE	EE	EE	EE	EE	EE	EE
	BIT 7							BIT 0

EEPROM for PW1 and/or PW2 level access.

SFP Controller with Dual LDD Interface

Table 01h, Register F8h: ALARM EN3

	POWER-ON \	-ON VALUE 00h							
	READ ACCES	SS	PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)						
	WRITE ACCE	SS	PW2 or (PW1 and RWTBL1C)						
	A2h AND B2h MEMORY		Mixture of common memory locations and different memory locations (see the descriptions below)						
	MEMORY TYP	PE	Nonvolatile (SEE)						
-									
F8h	<c>TEMP HI</c>	<c>TEMP LO</c>	<c>VCC HI</c>	<c>VCC LO</c>	<d>BMON HI</d>	<d>BMON LO</d>	<d>PMON HI</d>	<d>PMON LO</d>	
-	BIT 7							BIT 0	

Layout is identical to ALARM3 in Lower Memory, Register 70h. Enables alarms to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.

BIT 7	TEMP HI [A2h or B2h]: 0 = Disables interrupt from TEMP HI alarm. 1 = Enables interrupt from TEMP HI alarm.
BIT 6	TEMP LO [A2h or B2h]: 0 = Disables interrupt from TEMP LO alarm. 1 = Enables interrupt from TEMP LO alarm.
BIT 5	VCC HI [A2h or B2h]: 0 = Disables interrupt from VCC HI alarm. 1 = Enables interrupt from VCC HI alarm.
BIT 4	VCC LO [A2h or B2h]: 0 = Disables interrupt from VCC LO alarm. 1 = Enables interrupt from VCC LO alarm.
BIT 3	 BMON1 HI [A2h]: 0 = Disables interrupt from BMON1 HI alarm. 1 = Enables interrupt from BMON1 HI alarm. BMON2 HI [B2h]: 0 = Disables interrupt from BMON2 HI alarm. 1 = Enables interrupt from BMON2 HI alarm.
BIT 2	 BMON1 LO [A2h]: 0 = Disables interrupt from BMON1 LO alarm. 1 = Enables interrupt from BMON1 LO alarm. BMON2 LO [B2h]: 0 = Disables interrupt from BMON2 LO alarm. 1 = Enables interrupt from BMON2 LO alarm.
BIT 1	 PMON1 HI [A2h]: 0 = Disables interrupt from PMON1 HI alarm. 1 = Enables interrupt from PMON1 HI alarm. PMON2 HI [B2h]: 0 = Disables interrupt from PMON2 HI alarm. 1 = Enables interrupt from PMON2 HI alarm.
BIT 0	PMON1 LO [A2h]: 0 = Disables interrupt from PMON1 LO alarm. 1 = Enables interrupt from PMON1 LO alarm. PMON2 LO [B2h]: 0 = Disables interrupt from PMON2 LO alarm. 1 = Enables interrupt from PMON2 LO alarm. 1 = Enables interrupt from PMON2 LO alarm.

Table 01h, Register F9h: RESERVED

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

This register is reserved.

Table 01h, Register FAh: ALARM EN1

POWER-ON VALUE	00h
READ ACCESS	PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)
WRITE ACCESS	PW2 or (PW1 and RWTBL1C)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (SEE)

FAh	RESERVED	RESERVED	RESERVED	RESERVED	HBAL	RESERVED	TXP HI	TXP LO
	BIT 7							BIT 0

Layout is identical to ALARM₁ in Lower Memory, Register 72h. Enables alarms to create internal signal FETG (see Figure 9). The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.

BITS 7:4, 2	RESERVED
BIT 3	 HBAL: Enables alarm to create internal signal FETG. 0 = Disables interrupt from HBAL alarm. 1 = Enables interrupt from HBAL alarm.
BIT 1	 TXP HI: Enables alarm to create internal signal FETG. 0 = Disables interrupt from TXP HI alarm. 1 = Enables interrupt from TXP HI alarm.
BIT 0	 TXP LO: Enables alarm to create internal signal FETG. 0 = Disables interrupt from TXP LO alarm. 1 = Enables interrupt from TXP LO alarm.

Table 01h, Register FBh: RESERVED

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

This register is reserved.

BIT 0

SFP Controller with Dual LDD Interface

Table 01h, Register FCh: WARN EN3

	POWER-ON \	/ALUE	00h						
	READ ACCES	SS	PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)						
	WRITE ACCE	SS	PW2 or (PW1 and RWTBL1C)						
	A2h AND B2h MEMORY		Mixture of common memory locations and different memory locations (see the bit descriptions)						
	MEMORY TYPE		Nonvolatile (SEE)						
FCh	<c>TEMP HI</c>	<c>TEMP LO</c>	<c>VCC HI</c>	<c>VCC FO</c>	<d>BMON HI</d>	<d>BMON LO</d>	<d>PMON HI</d>	<d>PMON LO</d>	
-									

BIT 7

Layout is identical to WARN3 in Lower Memory, Register 74h. Enables warnings to create TXFINT (Lower Memory, Register 71h) logic. The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.

BIT 7	TEMP HI [A2h or B2h]: 0 = Disables interrupt from TEMP HI warning. 1 = Enables interrupt from TEMP HI warning.
BIT 6	TEMP LO [A2h or B2h]: 0 = Disables interrupt from TEMP LO warning. 1 = Enables interrupt from TEMP LO warning.
BIT 5	VCC HI [A2h or B2h]: 0 = Disables interrupt from VCC HI warning. 1 = Enables interrupt from VCC HI warning.
BIT 4	VCC LO [A2h or B2h]: 0 = Disables interrupt from VCC LO warning. 1 = Enables interrupt from VCC LO warning.
BIT 3	 BMON1 HI [A2h]: 0 = Disables interrupt from BMON1 HI warning. 1 = Enables interrupt from BMON1 HI warning. BMON1 HI [B2h]: 0 = Disables interrupt from BMON2 HI warning. 1 = Enables interrupt from BMON2 HI warning.
BIT 2	 BMON1 LO [A2h]: 0 = Disables interrupt from BMON1 LO warning. 1 = Enables interrupt from BMON1 LO warning. BMON2 LO [B2h]: 0 = Disables interrupt from BMON2 LO warning. 1 = Enables interrupt from BMON2 LO warning.
BIT 1	 PMON1 HI [A2h]: 0 = Disables interrupt from PMON1 HI warning. 1 = Enables interrupt from PMON1 HI warning. PMON2 HI [B2h]: 0 = Disables interrupt from PMON2 HI warning. 1 = Enables interrupt from PMON2 HI warning.
BIT 0	 PMON1 LO [A2h]: 0 = Disables interrupt from PMON1 LO warning. 1 = Enables interrupt from PMON1 LO warning. PMON2 LO [B2h]: 0 = Disables interrupt from PMON2 LO warning. 1 = Enables interrupt from PMON2 LO warning.

Table 01h, Register FDh-FFh: RESERVED

POWER-ON VALUE	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

These registers are reserved.

Table 02h Register Descriptions

Table 02h, Register 80h: MODE

POWER-ON VALUE	7Fh
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

80h	SEEB	MOD2EN	QT2EN	APC2EN	AEN	MOD1EN	QT1EN	APC1EN
	BIT 7							BIT 0

BIT 7	 SEEB: 0 = (default) Enables EEPROM writes to SEE bytes. 1 = Disables EEPROM writes to SEE bytes during configuration, so that the configuration of the part is not delayed by the EE cycle time. Once the values are known, write this bit to a 0 and write the SEE locations again for data to be written to the EEPROM.
BIT 6	 MOD2EN: 0 = MOD2 DAC is writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing the values for MOD2. The output is updated with the new value at the end of the write cycle. The I²C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT for MOD2 DAC.
BIT 5	QT2EN: 0 = QTs (HBIAS, TXP HI, TXP LO) for transmitter 2 are writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing to the QT thresholds. The thresholds are updated with the new values at the end of the write cycle. The I ² C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT QTs for transmitter 2.
BIT 4	APC2EN: 0 = APC2 DAC is writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing the values for APC2. The output is updated with the new value at the end of the write cycle. The I ² C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT for APC2 DAC.
BIT 3	 AEN: 0 = The temperature-calculated index value TINDEX is writable by the user and the updates of calculated indexes are disabled. This allows the user to interactively test their modules by controlling the indexing for the LUTs. The recalled values from the LUTs appear in the DAC registers after the next completion of a temperature conversion. 1 = (default) The temperature-calculated index value TINDEX is used to control the LUTs.

Table 02h, Register 80h: MODE (continued)

BIT 2	MOD1EN: 0 = MOD1 DAC is writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing the values for MOD1. The output is updated with the new value at the end of the write cycle. The I ² C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT for MOD1 DAC.
BIT 1	QT1EN: 0 = QTs (HBIAS, TXP HI, TXP LO) for transmitter 1 are writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing to the QT thresholds. The thresholds are updated with the new values at the end of the write cycle. The I ² C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT QTs for transmitter 1.
BIT 0	APC1EN: 0 = APC1 DAC is writable by the user and the LUT recalls are disabled. This allows the user to interactively test their modules by writing the values for APC1. The output is updated with the new value at the end of the write cycle. The I ² C STOP condition is the end of the write cycle. 1 = (default) Enables automatic control of the LUT for APC1 DAC.

Table 02h, Register 81h: TEMPERATURE INDEX (TINDEX)

 07	06	05	01	02	02	01	00	
MEMORY TYP	PE	Volatile						
A2h AND B2h	NEMORY	Commo	Common A2h and B2h memory location					
WRITE ACCE	SS	(PW2 ar	(PW2 and AEN = 0) or (PW1 and RWTBL2 and AEN = 0)					
READ ACCES	SS	PW2 or	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)					
FACTORY DE	FAULT	JLT 00h						

81h	27	26	2 ⁵	24	2 ³	22	21	2 ⁰
	BIT 7							BIT 0

Holds the calculated index based on the temperature measurement. This index is used for the address during lookup of Tables 04h and 06h. Temperature measurements below -40°C or above +102°C are clamped to 80h and C7h, respectively. The calculation of TINDEX is as follows:

$$TINDEX = \frac{Temp_Value + 40^{\circ}C}{2^{\circ}C} + 80h$$

For the temperature-indexed LUTs (2°C), the index used during the lookup function for each table is as follows:

Table 04h (MOD)	1	TINDEX6	TINDEX5	TINDEX4	TINDEX3	TINDEX2	TINDEX ₁	TINDEX0
Table 06h (APC)	1	TINDEX ₆	TINDEX5	TINDEX ₄	TINDEX3	TINDEX ₂	TINDEX ₁	TINDEX0

For the 8-position LUT tables, the following table shows the lookup function:

TINDEX	1000_0xxx	1001_0xxx	1001_1xxx	1010_0xxx	1010_1xxx	1011_0xxx	1011_1xxx	11xx_xxxx
BYTE	F8	F9	FA	FB	FC	FD	FE	FF
TEMP (°C)	< -8	-8 to +8	+8 to +24	+24 to +40	+40 to +56	+56 to +72	+72 to +88	≥ 88

Table 02h, Register 82h-85h: RESERVED

FACTORY DEFAULT	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

These registers are reserved.

Table 02h, Register 86h: DEVICE ID

	FACTORY DE	FAULT	76h						
	READ ACCES	SS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)						
	WRITE ACCE	SS	N/A						
	MEMORY TY	PE	ROM						
86h	0	1	1	1	0	1	1	0	

DEVICE VERSION

BIT 0

Hardwired connections to show the device ID.

Table 02h, Register 87h: DEVICE VER

BIT 7

BIT 7

FACTORY DEFAULT	DEVICE VERSION
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	N/A
MEMORY TYPE	ROM

87h

BIT 0

Hardwired connections to show the device version.

SFP Controller with Dual LDD Interface

Table 02h, Register 88h: CNFGA

FACTORY DEFAULT	C0h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

88h	QTHEXT2	QTHEXT1	RESERVED	ASEL	MASK	INVRSOUT	INVTXFOUT2	INVTXFOUT1
	BIT 7							BIT 0

BIT 7	QTHEXT2: QT high extension for transmitter 2. 0 = Disabled. TXP HI and HBIAS QT alarms of transmitter 2 immediately create FETG. 1 = (default) Enabled. TXP HI and HBIAS QT alarms of transmitter 2 do not create FETG until the timeout of the TXD _{EXT} time interval.
BIT 6	QTHEXT1: QT high extension for transmitter 1. 0 = Disabled. TXP HI and HBIAS QT alarms of transmitter 1 immediately create FETG. 1 = (default) Enabled. TXP HI and HBIAS QT alarms of transmitter 1 do not create FETG until the timeout of the TXD _{EXT} time interval.
BIT 5	RESERVED
BIT 4	 ASEL: Address select. 0 = (default) Device address is A2h for transmitter 1 and B2h for transmitter 2. 1 = The DEVICE ADDRESS register (Table 02h, Register 8Bh) is used to determine the main device address.
BIT 3	 MASK: 0 = (default) Alarm-enable row exists at Table 01h, Registers F8h–FFh. Table 05h, Registers F8h–FFh are empty. 1 = Alarm-enable row exists at Table 05h, Registers F8h–FFh. Table 01h, Registers F8h–FFh are empty.
BIT 2	INVRSOUT: Allow for inversion of the RSELOUT pin (see Figure 10). 0 = (default) RSELOUT is not inverted. 1 = RSELOUT is inverted.
BIT 1	INVTXFOUT2: Allow for inversion of signal driven by the TXF2 input pin. 0 = (default) TXF2 signal is not inverted. 1 = TXF2 signal is inverted.
BIT 0	INVTXFOUT1: Allow for inversion of signal driven by the TXF1 input pin. 0 = (default) TXF1 signal is not inverted. 1 = TXF1 signal is inverted.

Table 02h, Register 89h: CNFGB

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

89h	IN1C	INVOUT1	ALATCH2	QTLATCH2	WLATCH2	ALATCH1	QTLATCH1	WLATCH1
	BIT 7							BIT 0

-	
BIT 7	 IN1C: IN1 software control bit (see Figure 10). 0 = IN1 pin's logic controls OUT1 pin. 1 = OUT1 is active (bit 6 defines the polarity).
BIT 6	INVOUT1: Inverts the active state for OUT1 (see Figure 10). 0 = Noninverted. 1 = Inverted.
BIT 5	 ALATCH2: ADC alarm's comparison latch for transmitter 2. Latches alarms in Lower Memory, Registers 70h–71h. 0 = ADC alarm and flags reflect the status of the last comparison. 1 = ADC alarm flags remain set.
BIT 4	QTLATCH2: QT's comparison latch for transmitter 2. Latches QT alarms in Lower Memory, Registers 72h–73h and 76h. 0 = QT alarm and warning flags reflect the status of the last comparison. 1 = QT alarm and warning flags remain set.
BIT 3	 WLATCH2: ADC warning's comparison latch for transmitter 2. Latches warnings in Lower Memory, Registers 74h–75h. 0 = ADC warning flags reflect the status of the last comparison. 1 = ADC warning flags remain set.
BIT 2	 ALATCH1: ADC alarm's comparison latch for transmitter 1. Latches alarms in Lower Memory, Registers 70h-71h. 0 = ADC alarm and flags reflect the status of the last comparison. 1 = ADC alarm flags remain set.
BIT 1	QTLATCH1: QT's comparison latch for transmitter 1. Latches QT alarms in Lower Memory, Registers 72h–73h and 76h. 0 = QT alarm and warning flags reflect the status of the last comparison. 1 = QT alarm and warning flags remain set.
BIT 0	 WLATCH1: ADC warning's comparison latch for transmitter 1. Latches warnings in Lower Memory, Registers 74h–75h. 0 = ADC warning flags reflect the status of the last comparison. 1 = ADC warning flags remain set.

SFP Controller with Dual LDD Interface

Table 02h, Register 8Ah: CNFGC

	FACTORY DEFAULT		00h						
	READ ACCE	SS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)						
	WRITE ACCE	VRITE ACCESS		PW2 or (PW1 and RWTBL2)					
	A2h AND B2	h MEMORY	Common A2	h and B2h me	emory location				
	MEMORY TY	TYPE Nonvolatile (SEE)							
8Ah	TXDFG2	TXDFLT2	TXDIO2	TXDFG1	TXDFLT1	TXDIO1	RESERVED	RESERVED	
	BIT 7							BIT 0	
		TXDFG2: Se	e Figure 9.						
	BIT 7				ect on TXDOU				
		1 = FETG2 is	enabled and	ORed with oth	ner possible sig	gnals to creat	e TXDOUT2.		
		TXDFLT2: Se	ee Figure 9.						
	BIT 6		has no effect						
		1 = TXF2 pin	is enabled an	d ORed with	other possible	signals to cre	ate TXDOUT2.		
		TXDIO2: See	e Figure 9.						
	BIT 5					ther possible si	gnals to create T	XDOUT2.	
		1 = TXD2 inp	out signal has r	no effect on T	XDOUT2.				
		TXDFG1: Se	e Figure 9.						
	BIT 4		-		ect on TXDOU				
		1 = FETG1 is	enabled and	ORed with oth	ner possible sig	gnals to creat	e TXDOUT1.		
		TXDFLT1: Se							
	BIT 3		has no effect						
		1 = TXF1 pin is enabled and ORed with other possible signals to create TXDOUT1.							
		TXDIO1: See	•						
	BIT 2 0 = (default) TXD1 input signal is enabled and ORed with other possible signals to create TXDOUT1.						XDOUT1.		
		'	out signal has r	no ettect on T.	XDOUI1.				
	BITS 1:0 RESERVED								

Table 02h, Register 8Bh: DEVICE ADDRESS

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

8Bh	SEE	SEE	SEE	SEE	2 ³	22	21	SEE
	BIT 7							BIT 0

This value becomes the I²C slave address for the main memory when the ASEL bit (Table 02h, Register 88h) is set. If A0h is programmed to this register, the auxiliary memory is disabled. For example, writing xxxx_010x makes the main device addresses A4h and B4h.

Table 02h, Register 8Ch: RANGING2

	FACTORY DEF	00h						
	READ ACCESS		PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)					
	WRITE ACCES	S	PW2 or (PW1	and RWTBL2)				
	A2h AND B2h MEMORY		Common A2h and B2h memory location					
	MEMORY TYPE	Ē	Nonvolatile (S	SEE)				
8Ch	RESERVED	HBIAS22	HBIAS21	HBIAS20	RESERVED	TXP22		

BIT 7

BIT 0

The upper nibble of this byte controls the full-scale range of the QT monitoring for BMON2. The lower nibble of this byte controls the full-scale range for the QT monitoring for PMON2.

BITS 7, 3	RESERVED (default = 0)							
	HBIAS2 [2:0]: HBIAS2 full-scale ranging: 3-bit value to select the full-scale comparison voltage for BMON2. Default is 000b and creates a full scale of 1.25V.							
	HBIAS2[2:0]	% OF 1.25V	FS VOLTAGE (V)					
	000b	100.00	1.250					
	001b	80.03	1.000					
BITS 6:4	010b	66.71	0.834					
	011b	50.07	0.626					
	100b	40.08	0.501					
	101b	33.41	0.418					
	110b	28.65	0.358					
	111b	25.08	0.314					
	TXP2 [2:0]: TXP2 full-scale ranging: 3-bit value to select the full-scale comparison voltage for PMON2. Default is 000b and creates a full scale of 2.5V.							
	TXP2[2:0]	% OF 2.5V	FS VOLTAGE (V)					
	000b	100.00	2.507					
	001b	80.03	2.006					
BITS 2:0	010b	66.71	1.672					
	011b	50.07	1.255					
	100b	40.08	1.005					
	101b	33.41	0.838					
	110b	28.65	0.718					
	111b	25.08	0.629					

TXP21

TXP20

SFP Controller with Dual LDD Interface

Table 02h, Register 8Dh: RANGING1

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

8Dh	RESERVED	HBIAS12	HBIAS11	HBIAS10	RESERVED	TXP12	TXP11	TXP10
	BIT 7							BIT 0

The upper nibble of this byte controls the full-scale range of the QT monitoring for BMON1. The lower nibble of this byte controls the full-scale range for the QT monitoring for PMON1.

BITS 7, 3	RESERVED (default = 0)							
	HBIAS1 [2:0]: HBIAS1 full-scale ranging: 3-bit value to select the full-scale comparison voltage for BMON1. Default is 000b and creates a full scale of 1.25V.							
	HBIAS1[2:0]	% OF 1.25V	FS VOLTAGE (V)					
	000b	100.00	1.250					
	001b	80.03	1.000					
BITS 6:4	010b	66.71	0.834					
	011b	50.07	0.626					
	100b	40.08	0.501					
	101b	33.41	0.418					
	110b	28.65	0.358					
	111b	25.08	0.314					
	TXP1[2:0]: TXP1 full-scale ranging: 3-bit value to select the full-scale comparison voltage for PMON1. Default is 000b and creates a full scale of 2.5V.							
	TXP1[2:0]	% OF 2.5V	FS VOLTAGE (V)					
	000b	100.00	2.507					
	001b	80.03	2.006					
BITS 2:0	010b	66.71	1.672					
	011b	50.07	1.255					
	100b	40.08	1.005					
	101b	33.41	0.838					
	110b	28.65	0.718					
	111b	25.08	0.629					

Table 02h, Register 8Eh: RIGHT-SHIFT₂ (RSHIFT₂)

	FACTORY DEF	AULT	00h						
	READ ACCESS		PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)						
	WRITE ACCES	PW2 or (PW1	PW2 or (PW1 and RWTBL2)						
	A2h AND B2h MEMORY		Common A2h and B2h memory location						
	MEMORY TYPE		Nonvolatile (SEE)						
8Eh	RESERVED	BMON22	BMON21	BMON20	RESERVED	PMON22	PMON21	PMON ₂₀	

BIT 7

Allows for right-shifting the final answer of BMON2 and PMON2 voltage measurements. This allows for scaling the measurement to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB.

Table 02h, Register 8Fh: RIGHT-SHIFT1 (RSHIFT1)

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

8Fh	RESERVED	BMON1 ₂	BMON11	BMON10	RESERVED	PMON1 ₂	PMON11	PMON10
	BIT 7							BIT 0

Allows for right-shifting the final answer of BMON1 and PMON1 voltage measurements. This allows for scaling the measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB.

Table 02h, Register 90h-91h: RESERVED

FACTORY DEFAULT	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

These registers are reserved.

BIT 0

SFP Controller with Dual LDD Interface

Table 02h, Register 92h–93h: V_{CC} SCALE Table 02h, Register 94h–97h: RESERVED Table 02h, RegisteR 98h–99h: BMON2 SCALE Table 02h, Register 9Ah–9Bh: PMON2 SCALE Table 02h, Register 9Ch–9Dh: BMON1 SCALE Table 02h, Register 9Eh–9Fh: PMON1 SCALE

PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
PW2 or (PW1 and RWTBL2)
Common A2h and B2h memory location
Nonvolatile (SEE)

92h, 94h, 96h, 98h, 9Ah, 9Ch, 9Eh	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
93h, 95h, 97h, 99h, 9Bh, 9Dh, 9Fh	27	26	25	24	2 ³	2 ²	21	20
	BIT 7	*						BIT 0

Controls the scaling or gain of the full-scale voltage measurements. The factory-calibrated value produces an FS voltage of 6.5536V for V_{CC} and 2.5V for BMON2, PMON2, BMON1, and PMON1.

Table 02h, Register A0h–A1h: INTERNAL TEMP OFFSET

FACTORY CALIBRATED	
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

A0h	S	2 ⁸	27	26	2 ⁵	24	2 ³	2 ²
A1h	21	20	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2-6
	BIT 7							BIT 0

Allows for offset control of temperature measurement if desired. The final result must be XORed with BB40h before writing to this register. Factory calibration contains the desired value for a reading in degrees Celsius.

Table 02h, Register A2h–A3h: VCC OFFSETTable 02h, Register A4h–A7h: RESERVEDTable 02h, Register A8h–A9h: BMON2 OFFSETTable 02h, Register AAh–ABh: PMON2 OFFSETTable 02h, Register ACh–ADh: BMON1 OFFSETTable 02h, Register AEh–AFh: PMON1 OFFSET

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

A2h, A4h, A6h, A8h, AAh, ACh, AEh	S	S	2 ¹⁵	214	213	212	211	210
A3h, A5h, A7h, A9h, ABh, ADh, AFh	2 ⁹	2 ⁸	27	26	2 ⁵	24	2 ³	2 ²
	BIT 7							BIT 0

Allows for offset control of these voltage measurements if desired. This number is two's complement.

Table 02h, Register B0h-B3h: PW1

FACTORY DEFAULT	FFFF FFFFh
READ ACCESS	N/A
WRITE ACCESS	PW2 or (PW1 and WPW1)
MEMORY TYPE	Nonvolatile (SEE)

B0h	231	230	229	228	227	226	225	224
B1h	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
B2h	215	214	213	212	211	210	2 ⁹	2 ⁸
B3h	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
	BIT 7							BIT 0

The PWE value is compared against the value written to this location to enable PW1 access. At power-on, the PWE value is set to all ones. Thus, writing these bytes to all ones grants PW1 access on power-on without writing the password entry. All reads of this register are 00h.

Table 02h, Register B4h-B7h: PW2

FFFF FFFFh
N/A
PW2
Nonvolatile (SEE)

B4h	231	2 ³⁰	2 ²⁹	228	2 ²⁷	226	225	2 ²⁴
B5h	223	222	221	220	219	218	217	216
B6h	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸
B7h	27	26	25	24	23	22	21	20
-	BIT 7							BIT 0

The PWE value is compared against the value written to this location to enable PW2 access. At power-on, the PWE value is set to all ones. Thus, writing these bytes to all ones grants PW2 access on power-on without writing the password entry. All reads of this register are 00h.

Table 02h, Register B8h: RESERVED

FACTORY DEFAULT	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

This register is reserved.

Table 02h, Register B9h: HBIAS2 DAC

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and QT2EN = 0) or (PW1 and RWTBL2 and QT2EN = 0)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

B9h	27	26	2 ⁵	24	2 ³	2 ²	21	2 ⁰
-	BIT 7							BIT 0

The digital value used for the HBIAS2 reference and recalled from Table 06h (Registers E0h–E7h) (transmitter 2) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons greater than V_{HBIAS2} compared against V_{BMON2} create an HBAL alarm.

$$V_{\text{HBIAS2}} = \frac{\text{Full Scale}}{256} \times \text{HBIAS2 DAC}$$

DS1876

Table 02h, Register BAh: HTXP2 DAC

	FACTORY DE	FAULT	00h						
	READ ACCES	SS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)						
	WRITE ACCE	SS	(PW2 and QT2EN = 0) or (PW1 and RWTBL2 and QT2EN = 0)						
	A2h AND B2ł	n MEMORY	Common A2h and B2h memory location						
	MEMORY TYPE		Volatile						
BAh	27	26	2 ⁵	24	2 ³	2 ²	21	2	

BIT 7

The digital value used for the HTXP2 reference and recalled from Table 06h (Registers E8h–EFh) (transmitter 2) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons greater than VHTXP2 compared against VPMON2 create a TXP HI alarm.

$$V_{\text{HTXP2}} = \frac{\text{Full Scale}}{256} \times \text{HTXP2 DAC}$$

Table 02h, Register BBh: LTXP2 DAC

	FACTORY DE	EFAULT	00h						
	READ ACCESS		PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)						
	WRITE ACCESS		(PW2 and $QT2EN = 0$) or (PW1 and RWTBL2 and $QT2EN = 0$)						
	A2h AND B2h MEMORY		Common A2h and B2h memory location						
	MEMORY TYPE		Volatile						
BBh	27	26	2 ⁵	24	2 ³	2 ²	21	20	
	BIT 7							BIT 0	

The digital value used for the LTXP2 reference and recalled from Table 06h (Registers F0h–F7h) (transmitter 2) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons less than V_{LTXP2} compared against V_{PMON2} create a TXP LO alarm.

$$V_{LTXP2} = \frac{Full Scale}{256} \times LTXP2 DAC$$

Table 02h, Register BCh: RESERVED

FACTORY DEFAULT	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

This register is reserved.

20

BIT 0

SFP Controller with Dual LDD Interface

Table 02h, Register BDh: HBIAS1 DAC

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and $QT1EN = 0$) or (PW1 and RWTBL2 and $QT1EN = 0$)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

BDh	27	26	2 ⁵	24	23	22	21	20
	BIT 7							BIT 0

The digital value used for the HBIAS1 reference and recalled from Table 06h (Registers E0h–E7h) (transmitter 1) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons greater than VHBIAS1 compared against VBMON1 create an HBAL alarm.

$$V_{\text{HBIAS1}} = \frac{\text{Full Scale}}{256} \times \text{HBIAS1 DAC}$$

Table 02h, Register BEh: HTXP1 DAC

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and $QT1EN = 0$) or (PW1 and RWTBL2 and $QT1EN = 0$)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

BEh	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
	BIT 7							BIT 0

The digital value used for the HTXP1 reference and recalled from Table 06h (Registers E8h–EFh) (transmitter 1) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons great than V_{HTXP1} compared against V_{PMON1} create a TXP HI alarm.

$$V_{\text{HTXP1}} = \frac{\text{Full Scale}}{256} \times \text{HTXP1 DAC}$$

Table 02h, Register BFh: LTXP1 DAC

ORY DEFAULT	00h
ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
E ACCESS	(PW2 and QT1EN = 0) or (PW1 and RWTBL2 and QT1EN = 0)
ND B2h MEMORY	Common A2h and B2h memory location
ORY TYPE	Volatile
	ORY DEFAULT ACCESS E ACCESS ND B2h MEMORY DRY TYPE

BFh	27	26	25	24	23	2 ²	21	20
	BIT 7							BIT 0

The digital value used for the LTXP1 reference and recalled from Table 06h (Registers F0h–F7h) (transmitter 1) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion. Comparisons less than V_{LTXP1} compared against V_{PMON1} create a TXP LO alarm.

$$V_{LTXP1} = \frac{Full Scale}{256} \times LTXP1 DAC$$

Table 02h, Register C0h: PW_ENA

FACTORY DEFAULT	10h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

C0h	RESERVED	RWTBL1C	RWTBL2	RWTBL1A	RWTBL1B	WLOWER	WAUXA	WAUXB
	BIT 7							BIT 0

BIT 7	RESERVED
BIT 6	 RWTBL1C: Table 01h or 05h bytes F8–FFh. Table address is dependent on MASK bit (Table 02h, Register 88h). 0 = (default) Read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2.
BIT 5	 RWTBL2: Table 02h. Writing a nonvolatile value to this bit requires PW2 access. 0 = (default) Read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2.
BIT 4	RWTBL1A: Table 01h, Registers 80h–BFh. 0 = Read and write access for PW2 only. 1 = (default) Read and write access for both PW1 and PW2.
BIT 3	RWTBL1B: Table 01h, Registers C0h–F7h. 0 = (default) Read and write access for PW2 only. 1 = Read and write access for both PW1 and PW2.
BIT 2	 WLOWER: Bytes 00h–5Fh in main memory. All users can read this area. 0 = (default) Write access for PW2 only. 1 = Write access for both PW1 and PW2.
BIT 1	 WAUXA: Auxiliary memory, Registers 00h–7Fh. All users can read this area. 0 = (default) Write access for PW2 only. 1 = Write access for both PW1 and PW2.
BIT 0	 WAUXB: Auxiliary memory, Registers 80h–FFh. All users can read this area. 0 = (default) Write access for PW2 only. 1 = Write access for both PW1 and PW2.

SFP Controller with Dual LDD Interface

Table 02h, Register C1h: PW_ENB

FACTORY DEFAULT	03h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

C1h	RWTBL46	RTBL1C	RTBL2	RTBL1A	RTBL1B	WPW1	WAUXAU	WAUXBU
	BIT 7							BIT 0

BIT 7	RWTBL46: Tables 04h and 06h. 0 = (default) Read and write access for PW2 only. 1 = Read and write access for PW1 and PW2.
BIT 6	 RTBL1C: Table 01h or Table 05h, Registers F8h–FFh. Table address is dependent on MASK bit (Table 02h, Register 88h). 0 = (default) Read and write access for PW2 only. 1 = Read access for PW1 and PW2.
BIT 5	RTBL2: Table 02h.0 = (default) Read and write access for PW2 only.1 = Read access for PW1 and PW2.
BIT 4	RTBL1A: Table 01h, Registers 80h–BFh. 0 = (default) Read and write access for PW2 only. 1 = Read access for PW1 and PW2.
BIT 3	RTBL1B: Table 01h, Registers C0h–F7h. 0 = (default) Read and write access for PW2 only. 1 = Read access for PW1 and PW2.
BIT 2	 WPW1: Register PW1 (Table 02h, Registers B0h–B3h). For security purposes these registers are not readable. 0 = (default) Write access for PW2 only. 1 = Write access for PW1 and PW2.
BIT 1	 WAUXAU: Auxiliary memory, Registers 00h–7Fh. All users can read this area. 0 = Write access for PW2 only. 1 = (default) Write access for user, PW1, and PW2.
BIT 0	 WAUXBU: Auxiliary memory, Registers 80h–FFh. All users can read this area. 0 = Write access for PW2 only. 1 = (default) Write access for user, PW1, and PW2.

Table 02h, Register C2h-C5h: RESERVED

FACTORY DEFAULT	
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	N/A

These registers are reserved.

Table 02h, Register C6h: POLARITY

FACTORY DEFAULT	0Fh
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	PW2 or (PW1 and RWTBL2)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Nonvolatile (SEE)

C6h	RESERVED	RESERVED	RESERVED	RESERVED	MOD2P
BIT 7					

BITS 7:4	RESERVED
BIT 3	 MOD2P: MOD2 DAC polarity. The MOD2 DAC (Table 02h, Registers C8h–C9h) range is 000h–3FFh. A setting of 000h creates a pulse-density of zero and 3FFh creates a pulse-density of 1023/1024. This polarity bit allows the user to use GND or V_{REFIN} as the reference. The power-on of MOD2 DAC is 000h; thus an application that needs V_{REFIN} to be the off state should use the inverted polarity. 0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}. 1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V_{REFIN}, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}.
BIT 2	APC2P: APC2 DAC polarity. The APC2 DAC (Table 02h, Registers CAh–CBh) range is 000h–3FFh. A setting of 000h creates a pulse-density of zero, and 3FFh creates a pulse-density of 1023/1024. This polarity bit allows the user to use GND or VREFIN as the reference. The power-on of APC DAC is 000h; thus an application that needs VREFIN to be the off state should use the inverted polarity. 0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at VREFIN. 1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at VREFIN, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at GND.
BIT 1	 MOD1P: MOD1 DAC polarity. The MOD1 DAC (Table 02h, Registers CCh–CDh) range is 000h–3FFh. A setting of 000h creates a pulse-density of zero and 3FFh creates a pulse-density of 1023/1024. This polarity bit allows the user to use GND or V_{REFIN} as the reference. The power-on of MOD1 DAC is 000h; thus an application that needs V_{REFIN} to be the off state should use the inverted polarity. 0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}. 1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V_{REFIN}, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}, and
BIT 0	 APC1P: APC1 DAC polarity. The APC1 DAC (Table 02h, Registers CEh–CFh) range is 000h–3FFh. A setting of 000h creates a pulse-density of zero, and 3FFh creates a pulse-density of 1023/1024. This polarity bit allows the user to use GND or V_{REFIN} as the reference. The power-on of APC1 DAC is 000h; thus an application that needs V_{REFIN} to be the off state should use the inverted polarity. 0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}. 1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V_{REFIN}, and a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V_{REFIN}.

APC2P

MOD1P

APC1P BIT 0

SFP Controller with Dual LDD Interface

Table 02h, Register C7h: TBLSELPON

	FACTORY DE	EFAULT	00h	00h						
READ ACCESS			PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)							
WRITE ACCESS			PW2 or (PW1 and RWTBL2)							
A2h AND B2h MEMORY			Common A2h and B2h memory location							
	MEMORY TY	PE	Nonvolatile (SEE)							
C7h	27	26	2 ⁵	24	2 ³	22	21	2 ⁰		
-	BIT 7							BIT 0		

Chooses the initial value for the TBL SEL byte (Lower Memory, Register 7Fh) at power-on.

Table 02h, Register C8h–C9h: MOD2 DAC

FACTORY DEFAULT	0000h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and MOD2EN = 0) or (PW1 and RWTBL2 and MOD2EN = 0)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

C8h	0	0	0	0	0	0	2 ⁹	2 ⁸
C9h	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
	BIT 7							BIT 0

The digital value used for MOD2 DAC. It is the result of LUT4 plus MOD2 OFFSET times 4 recalled from Table 04h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.

MOD2 DAC = LUT4 + MOD2 OFFSET x 4

 $V_{MOD2} = \frac{V_{REFIN}}{1024} \times MOD2 \text{ DAC}$

Table 02h, Register CAh–CBh: APC2 DAC

FACTORY DEFAULT	0000h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and APC2EN = 0) or (PW1 and RWTBL2 and APC2EN = 0)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

CAh	0	0	0	0	0	0	2 ⁹	2 ⁸
CBh	27	26	25	24	2 ³	22	21	20
	BIT 7							BIT 0

The digital value used for APC2 DAC. It is the result of LUT6 plus APC2 OFFSET times 4 recalled from Table 06h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.

APC2 DAC = LUT6 + APC2 OFFSET x 4

 $V_{APC2} = \frac{V_{REFIN}}{1024} \times APC2 DAC$

Table 02h, Register CCh–CDh: MOD1 DAC

FACTORY DEFAULT	0000h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and MOD1EN = 0) or (PW1 and RWTBL2 and MOD1EN = 0)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

CCh	0	0	0	0	0	0	2 ⁹	2 ⁸
CDh	27	26	2 ⁵	24	23	22	21	2 ⁰
	BIT 7							BIT 0

The digital value used for MOD1 DAC. It is the result of LUT4 plus MOD1 OFFSET times 4 recalled from Table 04h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.

MOD1 DAC = LUT4 + MOD1 OFFSET x 4

 $V_{MOD1} = \frac{V_{REFIN}}{1024} \times MOD1 DAC$

SFP Controller with Dual LDD Interface

Table 02h, Register CEh-CFh: APC1 DAC

FACTORY DEFAULT	0000h
READ ACCESS	PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)
WRITE ACCESS	(PW2 and APC1EN = 0) or (PW1 and RWTBL2 and APC1EN = 0)
A2h AND B2h MEMORY	Common A2h and B2h memory location
MEMORY TYPE	Volatile

CEh	0	0	0	0	0	0	2 ⁹	2 ⁸
CFh	27	26	25	24	23	2 ²	21	20
	BIT 7	· · · · · · · · · · · · · · · · · · ·						BIT 0

The digital value used for APC1 DAC. It is the result of LUT6 plus APC1 OFFSET times 4 recalled from Table 06h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.

APC1 DAC = LUT6 + APC1 OFFSET x 4

 $V_{APC1} = \frac{V_{REFIN}}{1024} \times APC1 DAC$

Table 02h, Register D0h-FFh: EMPTY

FACTORY DEFAULT	00h
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	None

These registers do not exist.

Table 04h Register Descriptions

Table 04h, Register 80h–C7h: MODULATION LUT (MOD)

	FACTORY DE	FAULT	00h					
	READ ACCES	SS	PW2 or (PW1 and RWTBL46)					
	WRITE ACCESS		PW2 or (PW1 and RWTBL46)					
	A2h AND B2h	n MEMORY	Different A2h and B2h memory locations					
	MEMORY TY	PE	Nonvolatile (EE)					
80h–C7h	27	26	2 ⁵	24	2 ³	22	21	20
	BIT 7							BIT 0

Digital value for the MOD1 DAC (A2h address) and MOD2 DAC (B2h address) outputs. The MODULATION LUT is a set of registers assigned to hold the temperature profile for the MOD1 and MOD2 DACs. The temperature measurement is used to index the LUT (TINDEX, Table 02h, Register 81h) in 2°C increments from -40°C to +102°C, starting at 80h in Table 04h. Register 80h defines the -40°C to -38°C MOD output, Register 81h defines -38°C to -36°C MOD output, and so on. Values recalled from this EEPROM memory table are written into the MOD1 and MOD2 DACs (Table 02h, Registers C8h–C9h, CCh–CDh) locations that hold the values until the next temperature conversion. The part can be placed into a manual mode (MOD1EN and MOD2EN bits, Table 02h, Register 80h), where MOD1 and MOD2 DACs are directly controlled for calibration. If the temperature compensation functionality is not required, program the entire Table 04h to the desired modulation setting.

Table 02h, Register C8h–F7h: EMPTY

FACTORY DEFAULT	00h
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	None

These registers do not exist.

SFP Controller with Dual LDD Interface

Table 04h, Register F8h-FFh: MOD OFFSET LUT

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL46)
WRITE ACCESS	PW2 or (PW1 and RWTBL46)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (EE)

F8h–FFh	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	22
	BIT 7							BIT 0

The digital value for the temperature offset of the MOD1 and MOD2 DAC outputs.

F8h	Less than or equal to -8°C
F9h	Greater than -8°C up to +8°C
FAh	Greater than +8°C up to +24°C
FBh	Greater than +24°C up to +40°C
FCh	Greater than +40°C up to +56°C
FDh	Greater than +56°C up to +72°C
FEh	Greater than +72°C up to +88°C
FFh	Greater than +88°C

The MOD DAC is a 10-bit value. The MODULATION LUT is an 8-bit LUT. The MOD OFFSET LUT times 4 plus the MODULATION LUT makes use of the entire 10-bit range.

Table 06h Register Descriptions

Table 06h, Register 80h–C7h: APC LUT

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL46)
WRITE ACCESS	PW2 or (PW1 and RWTBL46)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (EE)

80h–C7h	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
	BIT 7							BIT 0

The digital value for the APC1 DAC (A2h address) and APC2 DAC (B2h address) outputs. The APC LUT is a set of registers assigned to hold the temperature profile for the APC1 and APC2 DACs. The temperature measurement is used to index the LUT (TINDEX, Table 02h, Register 81h) in 2°C increments from -40°C to +102°C, starting at 80h. Register 80h defines the -40°C to -38°C APC output, Register 81h defines -38°C to -36°C APC output, and so on. Values recalled from this EEPROM memory table are written into the APC1 and APC2 DACs (Table 02h, Registers CAh–CBh, CEh–CFh) locations that hold the values until the next temperature conversion. The part can be placed into a manual mode (APC1EN and APC2EN bits, Table 02h, Register 80h), where APC1 and APC2 DACs are directly controlled for calibration. If the temperature compensation functionality is not required, program the entire Table 06h to the desired APC setting.

Table 06h, Register C8h–DFh: EMPTY

FACTORY DEFAULT	00h
READ ACCESS	N/A
WRITE ACCESS	N/A
A2h AND B2h MEMORY	N/A
MEMORY TYPE	None

These registers do not exist.

Table 06h, Register E0h-E7h: HBATH LUT

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL46)
WRITE ACCESS	PW2 or (PW1 and RWTBL46)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (EE)

E0h–E7h	27	26	25	24	2 ³	22	21	20
	BIT 7							BIT 0

The high bias alarm threshold (HBATH) LUT is used to temperature compensate the bias QT threshold (HBIAS). The table below shows the range of temperature for each byte's location. The table shows a rising temperature; for a falling temperature there is 1°C of hysteresis.

E0h	Less than or equal to -8°C
E1h	Greater than -8°C up to +8°C
E2h	Greater than +8°C up to +24°C
E3h	Greater than +24°C up to +40°C
E4h	Greater than +40°C up to +56°C
E5h	Greater than +56°C up to +72°C
E6h	Greater than +72°C up to +88°C
E7h	Greater than +88°C

SFP Controller with Dual LDD Interface

Table 06h, Register E8h-EFh: HTXP LUT

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL46)
WRITE ACCESS	PW2 or (PW1 and RWTBL46)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (EE)

E8h–EFh	27	26	25	24	2 ³	22	21	20
	BIT 7							BIT 0

The HTXP LUT is used to temperature compensate the transmit power-high QT threshold (TXP HI). The table below shows the range of temperature for each byte's location. The table shows a rising temperature; for a fall-ing temperature there is 1°C of hysteresis.

E8h	Less than or equal to -8°C
E9h	Greater than -8°C up to +8°C
EAh	Greater than +8°C up to +24°C
EBh	Greater than +24°C up to +40°C
ECh	Greater than +40°C up to +56°C
EDh	Greater than +56°C up to +72°C
EEh	Greater than +72°C up to +88°C
EFh	Greater than +88°C

Table 06h, Register F0h-F7h: LTXP LUT

27

BIT 7

FACTORY DEFAULT	00h
READ ACCESS	PW2 or (PW1 and RWTBL46)
WRITE ACCESS	PW2 or (PW1 and RWTBL46)
A2h AND B2h MEMORY	Different A2h and B2h memory locations
MEMORY TYPE	Nonvolatile (EE)

25

26

F0h–F7h

21	20
	BIT 0

The LTXP LUT is used to temperature compensate the transmit power-low QT threshold (TXP LO). The table below shows the range of temperature for each byte's location. The table shows a rising temperature; for a falling temperature there is 1°C of hysteresis.

23

22

24

F0h	Less than or equal to -8°C
F1h	Greater than -8°C up to +8°C
F2h	Greater than +8°C up to +24°C
F3h	Greater than +24°C up to +40°C
F4h	Greater than +40°C up to +56°C
F5h	Greater than +56°C up to +72°C
F6h	Greater than +72°C up to +88°C
F7h	Greater than +88°C

Table 06h, Register F8h-FFh: APC OFFSET LUT

	FACTORY DEF	AULT	00h					
	READ ACCESS	6	PW2 or (PW1	and RWTBL4	5)			
	WRITE ACCES	S	PW2 or (PW1	and RWTBL4	6)			
	A2h AND B2h	MEMORY	Different A2h	and B2h mem	ory locations			
	MEMORY TYPE	Ξ	Nonvolatile (EE)				
F8h–FFh	2 ⁹	2 ⁸	27	26	2 ⁵	24	2 ³	2 ²
			•	~			·	

29 BIT 7

The digital value for the temperature offset of the APC1 and APC2 DAC outputs.

F8h	Less than or equal to -8°C
F9h	Greater than -8°C up to +8°C
FAh	Greater than +8°C up to +24°C
FBh	Greater than +24°C up to +40°C
FCh	Greater than +40°C up to +56°C
FDh	Greater than +56°C up to +72°C
FEh	Greater than +72°C up to +88°C
FFh	Greater than +88°C

The APC DAC is a 10-bit value. The APC LUT is an 8-bit LUT. The APC OFFSET LUT times 4 plus the APC LUT makes use of the entire 10-bit range.

Auxiliary Memory A0h, Register 00h–7Fh: EEPROM

Auxiliary Memory A0h Register Descriptions

FACTORY DEFAULT 00h READ ACCESS All WRITE ACCESS PW2 or (PW1 and WAUXA) or (WAUXAU)

MEMORY TYPE Nonvolatile (EE)

00h–7Fh	27	26	25	24	23	2 ²	21	20
	BIT 7							BIT 0

Accessible with the slave address A0h.

BIT 0

SFP Controller with Dual LDD Interface

Auxiliary Memory A0h, Register 80h-FFh: EEPROM

FACTORY DEFAULT
READ ACCESS
WRITE ACCESS
MEMORY TYPE

00h All PW2 or (PW1 and WAUXB) or (WAUXBU) Nonvolatile (EE)

80h–FFh	27	26	2 ⁵	24	2 ³	2 ²	21	20
	BIT 7							BIT 0

Accessible with the slave address A0h.

Applications Information

Power-Supply Decoupling

To achieve best results, it is recommended that the power supply is decoupled with a 0.01μ F or a 0.1μ F capacitor. Use high-quality, ceramic, surface-mount capacitors, and mount the capacitors as close as possible to the V_{CC} and GND pins to minimize lead inductance.

SDA and SCL Pullup Resistors

SDA is an open-collector output on the DS1876 that requires a pullup resistor to realize high logic levels. A master using either an open-collector output with a pullup resistor or a push-pull output driver can be used for SCL. Pullup resistor values should be chosen to ensure that the rise and fall times listed in the *I*²*C* AC Electrical Characteristics table are within specification.

___Package Information

69

For the latest package outline information and land patterns, go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	
28 TQFN-EP	T2855+6	<u>21-0140</u>	

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2010 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.