

Preliminary Technical Data

FEATURES

Low input offset voltage: $\leq 0.2 \text{ mV}$ typical High output current drive: 20mA, 50 mA Wide range of operating voltage: $\pm 5 \text{ V}$ to $\pm 50 \text{ V}$ Specified at $\pm 5 \text{ V}$, $\pm 24 \text{ V}$, and $\pm 50 \text{ V}$ High slew rate: 20 V/µs typical High gain bandwidth product: $\geq 3 \text{ MHz}$ typical On-board thermal shutdown at 165°C Ambient temperature range of -40° C to $+85^{\circ}$ C Low input bias current: I_{BIAS} $\leq 15 \text{ nA}$ typical

APPLICATIONS

Automated and bench top test equipment High voltage regulators and power amplifiers Data acquisition and signal conditioning Piezo drivers and predrivers General-purpose current sensing

GENERAL DESCRIPTION

The ADA4700-1 is a high voltage precision operational amplifier with a wide operating voltage (\pm 5 V to \pm 50 V) and relatively high output current drive available as a single op amp in an SOIC package. It combines low power consumption, high bandwidth, and a slew rate with unity-gain stability and phase inversion free performance. The ability to swing near rail-to-rail at the output enables designers to maximize signal-to-noise ratios (SNRs).

The ADA4700-1 is designed for applications requiring both ac and precision dc performance, making the ADA4700-1 useful in a wide variety of applications, including high voltage test equipment and instrumentation, high voltage regulators and power amplifiers, power supply control and protection, and as an amplifier or buffer for transducers with wide output ranges. It is particularly well suited for high intensity LED testing applications where it provides highly accurate voltage and current feedback as well as a predriver to provide accurate voltage and/or current sourcing stimulus to the LED string under test.

High Voltage, Precision Operational Amplifier

ADA4700-1

PIN CONFIGURATION

The ADA4700-1 is specified over the industrial temperature range of -40°C to +85°C and includes an on-board thermal shutdown at 165°C internal junction temperature as well as an internal current limit for safety. The ADA4700-1 is available in a thermally enhanced, 8-lead SOIC package that uses a small exposed metal pad on the bottom of the package to allow the customer to heat sink the part to the printed circuit board (PCB). For proper operation, the exposed pad must be connected to V–.

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Pin Configuration	1
General Description	1
Revision History Error! Bookmark not def	ined.
Specifications	3
$V_{SY} = \pm 50 \text{ V}$ Electrical Characteristics	3
$V_{SY} = \pm 24 \text{ V}$ Electrical Characteristics	5

Absolute Maximum Ratings	8
Maximum Power Dissipation	8
Thermal Resistance	8
ESD Caution	8
Pin Configuration and Function Description	9
Outline Dimensions	10
Ordering Guide	10

SPECIFICATIONS

$V_{sy} = \pm 50 V ELECTRICAL CHARACTERISTICS$

 V_{SY} = ±50 V, V_{CM} = $V_{\text{SY}}/2,$ T_{A} = 25°C, unless otherwise specified.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.2	2	mV
		-40°C < T _A < +85°C			2.5	mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	-40°C < T _A < +85°C		2	13	μV/°C
Input Bias Current	IB			15	30	nA
		-40°C < T _A < +85°C			50	nA
Input Offset Current	los			2	25	nA
		-40°C < T _A < +85°C			30	nA
Input Voltage Range	IVR	-40°C < T _A < +85°C	(V–) + 3		(V+) − 3	V
Common-Mode Rejection Ratio	CMRR	$(V-) + 3 V < V_{CM} < (V+) - 3 V$	103	108		dB
		$-40^{\circ}C < T_{A} < +85^{\circ}C$	103			dB
Large Signal Voltage Gain	Avo	$-47 \text{ V} < V_{OUT} < +47 \text{ V}, R_L = 2k\Omega$	103	106		dB
		$-40^{\circ}C < T_{A} < +85^{\circ}C$	100			dB
Input Capacitance						
Common-Mode	CINCM			TBD		рF
Differential	CINDM			TBD		рF
Input Resistance	RIN	Common mode and differential mode		TBD		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High		$R_L = 10 \text{ k}\Omega \text{ to GND}$	48	48.5		V
		-40°C < T _A < +85°C	47.8			V
		$R_L = 2 k\Omega$ to GND	47.5	48		V
		-40°C < T _A < +85°C	47.3			V
Output Voltage Low		$R_L = 10 \ k\Omega$ to GND		-48.5	-48	V
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			-47.8	V
		$R_L = 2 k\Omega$ to GND		-48	-47.5	V
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			-47.3	V
Capacitive Load Drive	CL	$A_V = +1$		TBD		nF
		$A_{V} = +10$		TBD		nF
Short Circuit Limit	Isc	Sourcing and sinking	TBD	TBD		mA
Closed-Loop Impedance	ZOUT	$f = 10 \text{ MHz}, A_V = +1$		TBD		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 4.5 V \text{ to } \pm 55 V$	110	130		dB
		-40°C to +85°C	110			dB
Supply Current per Amplifier	Isy	$V_0 = V_s/2$		1.7	2.2	mA
		-40°C < T _A < +85°C			2.4	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$V_0 = \pm 45$ V step, $R_L = 2 \text{ k}\Omega$, $C_L = 300 \text{ pF}$		20		V/µs
Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, A_V = +100$		2.5		MHz
Unity-Gain Crossover	UGC	$V_{IN} = 5 \text{ mV } p-p, A_V = +1$		TBD		MHz
–3 dB Bandwidth	-3 dB	$V_{IN} = 5 \text{ mV } p - p, A_V = -1$		TBD		MHz
Phase Margin	ФМ	$V_{IN} = 5 \text{ mV } p-p, R_L = 1M\Omega, C_L = 35 \text{ pF}; A_V = -1$		65		Degree
Settling Time to 0.1%	ts	$V_{IN} = 30 \text{ V p-p}, R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}, A_V = -1$		TBD		μs
Settling Time to 0.01%	ts	$V_{IN} = 30 \text{ V p-p}, R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}, A_V = -1$		TBD		μs

Preliminary Technical Data

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD + N	$G=+1$, $V_{IN} = 10 V_{p-p}$ at 1 kHz; $R_L = 10 k\Omega$				
Bandwidth = 80 kHz				TBD		%
Bandwidth = 500 kHz				TBD		%
Peak-to-Peak Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		TBD		μV р-р
Voltage Noise Density	en	f = 1 kHz		13		nV/√Hz
		f = 10 Hz		40		nV/√Hz
Current Noise Density	i n	f = 1 kHz		TBD		fA/√Hz

V_{SY} = ±24 V ELECTRICAL CHARACTERISTICS

 V_{SY} = ±24 V, V_{CM} = $V_{\text{SY}}/2,$ T_{A} = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.2	2	mV
		-40°C < T _A < +85°C			2.5	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C < T_{A} < +85^{\circ}C$		2.5	15	μV/°C
Input Bias Current	IB			5	30	nA
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			50	nA
Input Offset Current	los			2	25	nA
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			30	nA
Input Voltage Range	IVR	-40°C < T _A < +85°C	(V–) + 3		(V+) – 3	V
Common-Mode Rejection Ratio	CMRR	$(V-) + 3 V < V_{CM} < (V+) - 3 V$	100	103		dB
		-40°C < T _A < +85°C	100			dB
Large Signal Voltage Gain	Avo	-21 V< V _{OUT} < +21 V, RL=2kΩ	103	105		dB
		-40°C < T _A < +85°C	100			dB
Input Capacitance						
Common-Mode	CINCM			TBD		рF
Differential	CINDM			TBD		pF
Input Resistance	RIN	Common mode and differential mode		TBD		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	Voh	$R_L = 10 k\Omega$ to GND	22.2	22.5		v
1 5 5		$-40^{\circ}C < T_A < +85^{\circ}C$	22.0			v
		$R_L = 2 k\Omega$ to GND	22.0	22.4		v
		-40°C < T _A < +85°C	21.8			v
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega$ to GND		-22.5	-22.2	v
		-40°C < T _A < +85°C			-22.0	v
		$R_L = 2 k\Omega$ to GND		-22.4	-22.0	v
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			-21.8	V
Capacitive Load Drive	CL	$A_{\rm V} = +1$		TBD		nF
		$A_{\rm V} = +10$		TBD		nF
Short Circuit Limit	lsc	Sourcing and sinking	TBD	TBD		mA
Closed-Loop Impedance	Zout	$f = 10 \text{ MHz}, A_V = +1$		TBD		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 4.5 V \text{ to } \pm 55 V$	110	130		dB
		-40°C to +85°C	TBD			dB
Supply Current per Amplifier	I _{SY}	$V_0 = V_s/2$		1.65	2.1	mA
Supply callent per / inpinier	131	$-40^{\circ}C < T_{A} < +85^{\circ}C$		1.05	TBD	mA
DYNAMIC PERFORMANCE					100	
Slew Rate	SR	$V_0 = TBD V$ step, $R_L = 2 k\Omega$, $C_L = 100 pF$		20		V/µs
Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, A_V = +100$		2.5		MHz
Unity Gain Crossover	UGC	$V_{IN} = 5 \text{ mV } p \cdot p, A_V = +100$ $V_{IN} = 5 \text{ mV } p \cdot p, A_V = +1$		TBD		MHz
–3 dB Bandwidth	-3 dB	$V_{IN} = 5 \text{ mV } p \cdot p, Av = -1$		TBD		MHz
Phase Margin	ΦM	$V_{IN} = 5 \text{ mV } p \cdot p, R_L = 1M\Omega, C_L = 35 \text{ pF; } A_V = -1$		65		Degree
Settling Time to 0.1%	ts	$V_{IN} = 20 \text{ V p-p}, R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}, A_V = -1$		TBD		μs
-						•
Settling Time to 0.01%	ts	$V_{IN} = 20 \text{ V p-p}, R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}, A_V = -1$		TBD		μs

Preliminary Technical Data

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD + N	G= +1, V _{IN} = 10 V p-p at 1 kHz; R _L = 10kΩ				
Bandwidth = 80 kHz				TBD		%
Bandwidth = 500 kHz				TBD		%
Peak-to-Peak Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		TBD		μV p-p
Voltage Noise Density	en	f = 1 kHz		13		nV/√Hz
		f = 10 Hz		40		nV/√Hz
Current Noise Density	İn	f = 1 kHz		TBD		fA/√Hz

V_{SY} = ±5 V ELECTRICAL CHARATERISTICS

 $V_{\text{SY}}=\pm5$ V, $V_{\text{CM}}=V_{\text{SY}}/2,$ $T_{\text{A}}=25^{\circ}\text{C},$ unless otherwise specified.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.2	2	mV
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			2.5	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C < T_{A} < +85^{\circ}C$		3		μV/°C
Input Bias Current	IB			5	30	nA
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			50	nA
Input Offset Current	los			2	25	nA
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			30	nA
Input Voltage Range	IVR	$-40^{\circ}C < T_{A} < +85^{\circ}C$	-2		+2	V
Common-Mode Rejection Ratio	CMRR	$-2 V \leq V_{CM} \leq +2 V$	86	89		dB
		$-40^{\circ}C < T_{A} < +85^{\circ}C$	86			dB
Large Signal Voltage Gain	Avo	$-2 V < V_{OUT} < +2 V, R_L=2k\Omega$	97	99		dB
		$-40^{\circ}C < T_{A} < +85^{\circ}C$	95			dB
Input Capacitance						
Common-Mode	CINCM			TBD		рF
Differential	CINDM			TBD		рF
Input Resistance	R _{IN}	Common mode and differential mode		TBD		MΩ
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 2 k\Omega$ to GND	3.4	3.6		V
		$-40^{\circ}C < T_{A} < +85^{\circ}C$	3.2			V
Output Voltage Low	Vol	$R_L = 2 k\Omega$ to GND		-3.6	-3.4	V
		$-40^{\circ}C < T_{A} < +85^{\circ}C$			-3.2	V
Capacitive Load Drive	CL	$A_{V} = +1$		TBD		nF
-		$A_{V} = +10$		TBD		nF
Short Circuit Limit	lsc	Sourcing and sinking	TBD	±75		mA
Closed-Loop Impedance	Zout	$f = 10 \text{ MHz}, A_V = +1$		TBD		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 4.5 V \text{ to } \pm 55 V$	110	130		dB
		-40°C to +85°C	110			dB
Supply Current per Amplifier	lsy	$V_0 = V_s/2$		1.5	2	mA
		-40°C < T _A < +85°C			2.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$V_0 = TBD V$ step, $R_L = 2 k\Omega$, $C_L = 100 pF$		TBD		V/µs
Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, A_V = +100$		2.5		MHz
Unity Gain Crossover	UGC	$V_{IN} = 5 \text{ mV p-p}, A_V = +1$		TBD		MHz
–3 dB Bandwidth	-3 dB	$V_{IN} = 5 \text{ mV } p-p, A_V = -1$		TBD		MHz
Phase Margin	ФМ	$V_{IN} = 5 \text{ mV p-p}, R_L = 1M\Omega, C_L = 35 \text{ pF; } A_V = -1$		65		Degrees
Settling Time to 0.1%	ts	$V_{IN} = 6 V p - p, R_L = 10 k\Omega, C_L = 5 pF, A_V = -1$		TBD		μs
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD + N	$G=+1$, $V_{IN}=3V_{p-p}$ at 1 kHz; $R_L=10k\Omega$				
Bandwidth = 80 kHz		S = 11, V = 5Vpp at 1 M Z, M = 10KSZ		TBD		%
Bandwidth = 500 kHz				TBD		%
Peak-to-Peak Noise	A	f = 0.1 Hz to 10 Hz		TBD		[%] μV p-p
Voltage Noise Density	en p-p	f = 1 kHz		13		μν ρ-ρ nV/√Hz
Current Noise Density	en i	f = 1 kHz		TBD		fA/√Hz
Current Noise Delisity	İn			עסי		IAV VITZ

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	110 V
Input Voltage	$V-\leq V_{\rm IN} \leq V+$
Differential Input Voltage	$V-\leq V_{\rm IN}\leq V+$
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	–40°C to +85°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by a plastic encapsulated package is limited by the junction temperature. The maximum safe junction temperature for plastic encapsulated devices, as determined by the glass transition temperature of the plastic, is approximately 150°C. Exceeding this limit temporarily may cause a shift in the parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance

Package Type	θ」	ον	Unit
8-Lead SOIC_N_EP (RD-8-2)	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTION

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description	
1, 5, 8	NC	No Connect. Do not connect to this pin.	
2	-IN	Inverting Input.	
3	+IN	Noninverting Input.	
4	V–	Negative Supply Voltage.	
6	OUT	Output.	
7	V+	Positive Supply Voltage.	
	EPAD	Exposed Pad. Connect the exposed pad to V–.	

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADA4700-1ARDZ	-40°C to +85°C	8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP]	RD-8-2	<mark>??</mark>
ADA4700-1ARDZ-R7	-40°C to +85°C	8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP]	RD-8-2	
ADA4700-1ARDZ-RL	-40°C to +85°C	8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP]	RD-8-2	

 1 Z = RoHS Compliant Part.

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR11551-0-6/13(PrB)

www.analog.com