

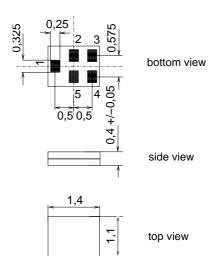
SAW Components

SAW Rx filter WCDMA Band II (PCS-Band)

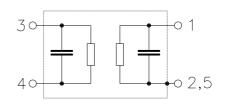
Series/type: Ordering code:

B9419 B39202B9419K610

Date: Version: January 22, 2007 2.0


© EPCOS AG 2007. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

SAW Components		B9419
SAW Rx filter		1960.0 MHz
Data sheet	SMD	
Application		
 Low-loss RF filter for mobile system (Band II, PCS band) Low insertion loss and very Usable passband 60 MHz Unbalanced to balanced op Impedance transformation f 	, receive path (RX) high Tx blocking eration	0 4 10 10 10 10 10 10 10 10 10 10 10 10 10


Features

- Package size 1.4 x1.1 x 0.4 mm³
- Package code QCS5F
- RoHS compatible
- Approximate weight 0.003 g
- Package for Surface Mount Technology (SMT)
- Ni, gold-plated terminals
- Electrostatic Sensitive Device (ESD)

Pin configuration

- 1 Input, unbalanced
- Output, balanced **3**,4
- 2,5 To be grounded

Please read cautions and warnings and important notes at the end of this document.

January 22, 2007

2

SAW Components					B9419
SAW Rx filter					1960.0 MHz
Data sheet	SM				
Characteristics					
Temperature range for specification:			to +85 °C		
Terminating source impedance:			(unbalance		
Terminating load impedance:	Z _L =	100 Ω	(balanced)	30 nH	
		min.	typ.	max.	7
			@ 25 °C		
Center frequency	f _C	—	1960.0		MHz
Maximum insertion attenuation	α_{max}				
1930.0 1990.0 N	ЛНz	—	2.5	3.5	dB
	ЛНz	—	2.5	3.0 ¹⁾	dB
Amplitude ripple (p-p)	Δα				
	ЛНz		1.2	2.2	dB
Input VSWR 1930.0 1990.0 N	ЛНz		1.8	2.2	
Output VSWR	/11 12		1.0	2.2	
-	ЛНz	_	1.8	2.2	
Output amplitude belence (IS /S)	`				
Output amplitude balance (S ₃₁ /S ₂₁ 1930.0 1990.0 M		-1.0		+1.0	dB
1950.0 1990.0 1	/11 12	-1.0		+1.0	UD I
Output phase balance $(\phi(S_{31}) - \phi(S_{21}))$	+180°)				
1930.0 1990.0 N	ЛНz	-10	—	+10	•
Attenuation	α				
	ЛНz	40	50	_	dB
	ЛНz	30	36		dB
	ЛНz	23 ²⁾	26	_	dB
	ЛНz	25	27	_	dB
	/Hz ∕Hz	30	39 46	_	dB
2800.0 6000.0 N	ЛНz	40	40		dB

1) 0 °C to +85 °C
 2) Attenuation of WCDMA signal determined by

$$\int_{\infty}^{\infty} \left| \mathbf{S}_{ds21}(f) \mathbf{H}_{RRC}(f - f_C) \right|^2 df$$

with f_c ranging from 1852.4 MHz (lowest Tx channel) to 1907.6 MHz (highest Tx channel). $H_{RRC}(f)$ is the transfer function of the root-raised cosine transmit pulse shaping filter according to 3GPP TS 25.101 with the following normalization:

$$\int_{\infty}^{\infty} \left| H_{RRC}(f) \right|^2 df = 1$$

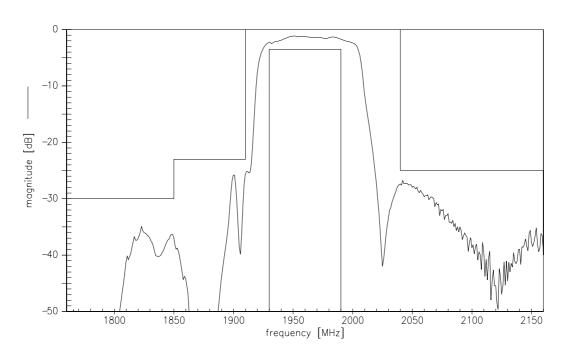
3

Please read cautions and warnings and important notes at the end of this document.

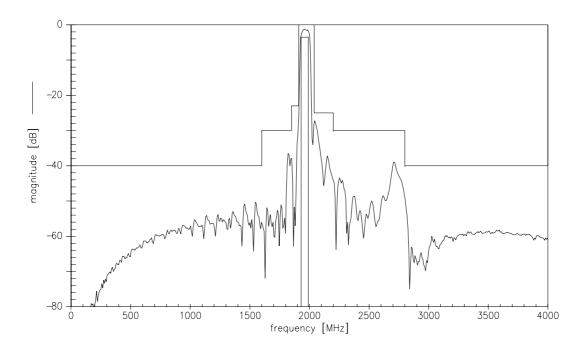
SAW Components						B9419
SAW Rx filter						1960.0 MHz
Data sheet	9	i Mile				
Characteristics						
1 0 1				to +85 °C		
Terminating source impedance: Terminating load impedance:				(unbalance (balanced)		
reminating load impedance.	~	-L -	100 32	(Daiai iccu)	11 00 11 1	
			min.	typ. @ 25 °C	max.]
Center frequency	f _C		_	1960.0	—	MHz
Maximum insertion attenuation	α_{m}					
	MHz ~m	ax	_	2.4	3.5	dB
	MHz		—	2.4	3.0 ¹⁾	dB
Amplitude ripple (p-p)	Δα					
	MHz		_	1.1	2.2	dB
Input VSWR 1930.6 1989.4	MHz			1.8	2.2	
Output VSWR	VII 12			1.0	2.2	
•	MHz		—	1.8	2.2	
Output amplitude balance (S ₃₁ /S ₂₁))					
1930.6 1989.4			-1.0	_	+1.0	dB
	100%					
Output phase balance $(\phi(S_{31}) - \phi(S_{21}) + \phi(S_{31}) - \phi(S_{31}) + \phi(S_{3$			-10		+10	0
1000.0 1000.4 1	VII 12		10		110	
•						
Attenuation 10.0 1600.0	α MHz		40	50		dB
	MHz		40 30	50 36	_	dB
	MHz		23	26	_	dB
	MHz		25	27	_	dB
	MHz		30	39	—	dB
	MHz		40	46	—	dB

¹⁾ 0 °C to +85 °C

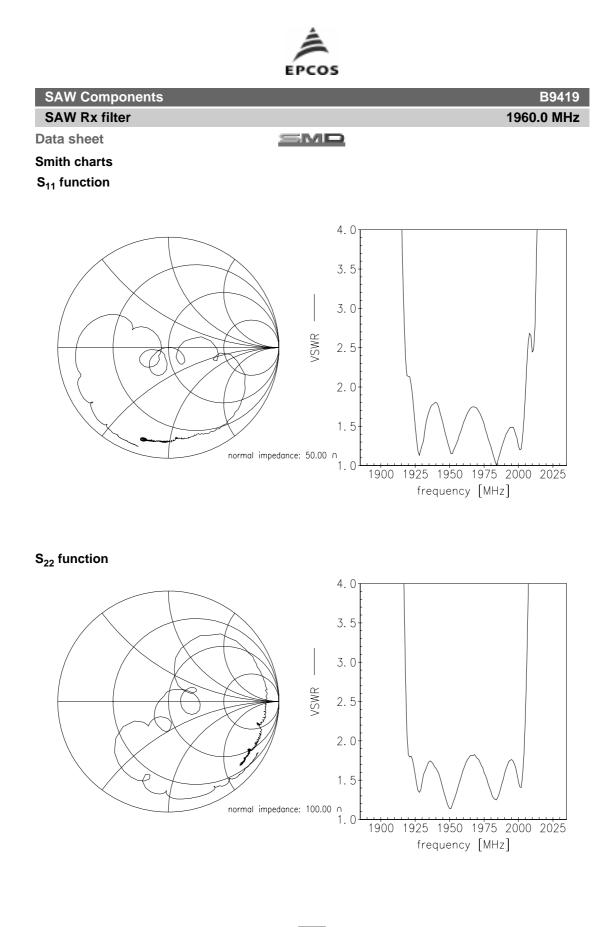
Please read *cautions and warnings and important notes* at the end of this document.


SAW Components				B9419
SAW Rx filter				1960.0 MHz
Data sheet		SMI		
Maximum ratings				
Operable temperature range	Т	-30/+85	°C	
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V_{ESD}	50 ¹⁾	V	machine model, 10 pulses
Input power	P _{IN}	10	dBm	CW signal

¹⁾ acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.



Transfer function



Transfer function (wideband)

6

Please read *cautions and warnings and important notes* at the end of this document.

Please read *cautions and warnings and important notes* at the end of this document.

SAW Rx filter

Data sheet

SMD

References

Туре	B9419
Ordering code	B39202B9419K610
Marking and package	C61157-A8-A1
Packaging	F61074-V8212-Z000
Date codes	L_1126
S-parameters	B9419_NB.s3p B9419_WB.s3p
Soldering profile	S_6001
RoHS compatible	defined as compatible with the following documents: "DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. 2005/618/EC from April 18th, 2005, amending Directive 2002/95/EC of the European Parliament and of the Council for the purposes of establishing the maxi- mum concentration values for certain hazardous substances in electrical and electronic equipment."
Moldability	Before using in overmolding environment, please contact your EPCOS sales office.

For further information please contact your local EPCOS sales office or visit our webpage at www.epcos.com .

Published by EPCOS AG Surface Acoustic Wave Components Division P.O. Box 80 17 09, 81617 Munich, GERMANY

 $\ensuremath{\mathbb{C}}$ EPCOS AG . This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

8

Please read *cautions and warnings and important notes* at the end of this document.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, CeraDiode, CSSP, PhaseCap, PhaseMod, SIFI, SIKOREL, Silver-Cap, SIMID, SIOV, SIP5D, SIP5K, TOPcap, UltraCap, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.