Version 1.3 2010

Features

- PEX 8604 General Features
 - 4-lane PCI Express switch
 Integrated 5.0 GT/s SerDes
 - Up to 4 configurable ports
 - \circ 15 x 15mm², 196-ball PBGA
 - o Typical Power: 1.29 Watts

PEX 8604 Key Features

- Standards Compliant
 - PCI Express Base Specification r2.0 (Backwards compatible with PCIe r1.0a/1.1)
 - PCI Power Management Spec r1.2
 - Microsoft Vista Compliant
 - Supports Access Control Services
 - Dynamic link-width control

• High Performance

- Non-blocking internal architecture
- Full line rate on all ports
- Cut-Thru latency: 190ns
- 2KB max payload size
- Read Pacing
- (intelligent bandwidth allocation) - Dual Cast

Dual-Host & Fail-Over Support

- Configurable Non-Transparent port (NTB)
- Moveable upstream port
- Crosslink port capability on all ports
- Flexible Configuration
 - 4 flexible & configurable ports (x1 or x2)
 - Configurable with strapping pins, EEPROM, I²C, or Host software
 - Lane and polarity reversal
- PCI Express Power Management
 - Link power management states: L0, L0s, L1, L2/L3 Ready, and L3
- Device states: D0 and D3_{hot}
 Spread Spectrum Clock Isolation
 Dual clock domain
- Dual clock domain
 Ouality of Service (OoS)
 - Two Virtual Channels (VC) per port
 - Two virtual Channels (VC) per p
 Eight Traffic Classes per port
 - Bight Hame Classes per port
 Weighted Round-Robin Port & VC
 - Arbitration
- Reliability, Availability, Serviceability
 - All ports Hot-Plug capable thru I^2C
 - (Hot-Plug Controller on every port) - ECRC & Poison bit support
 - Data path protection
 - Memory (RAM) error correction
 - Advanced Error Reporting support
 - Port Status bits and GPIO available
 - Per port error diagnostics
 - Performance monitoring
 - (per port payload & header counters)
 - JTAG AC/DC boundary scan
 - Fatal Error (FATAL_ERR#) output signal
 - INTA# output signal

PEX 8604

Flexible & Versatile 4-lane 4-port PCI Express[®] Switch

The *ExpressLane*[™] PEX 8604 device offers PCI Express switching capability enabling users to add scalable high bandwidth non-blocking interconnection to a wide variety of applications including **control plane applications, consumer applications and embedded systems**. The PEX 8604 is well suited for **fan-out, peer-to-peer,** and **intelligent I/O module** applications.

Low Packet Latency & High Performance

The PEX 8604 architecture supports packet **cut-thru with a maximum latency of 190ns in x1 to x1 configuration**. This, combined with low power consumption and non-blocking internal switch architecture, provides full line rate on all ports for low-power applications such as **consumer** and **embedded**. The low latency enables applications to achieve high throughput and performance. In addition to low latency, the device supports a **max payload size of 2048 bytes**, enabling the user to achieve even higher throughput.

Data Integrity

The PEX 8604 provides **end-to-end CRC** protection (ECRC) and **Poison** bit support to enable designs that require **guaranteed error-free packets**. PLX also supports data path parity and memory (RAM) error correction as packets pass through the switch.

Dual-Host and Fail-Over Support

The PEX 8604 supports full non-transparent bridging (NTB) functionality to allow implementation of **multi-host systems** and **intelligent I/O modules** in applications which require redundancy support such as select **embedded** applications.

Non-transparent bridges allow systems to isolate host memory domains by presenting the processor subsystem as an endpoint rather than another memory system. Base address registers are used to translate addresses, doorbell registers are used to send interrupts between the address domains, and scratchpad registers are accessible from both address domains to allow inter-processor communication.

Interoperability

The PEX 8604 is designed to be fully compliant with the PCI Express Base Specification r2.0 and is backwards compatible to PCI Express Base Specification r1.1 and r1.0a. Additionally each port supports **auto-negotiation** and **polarity reversal**. Furthermore, the PEX 8604 is designed for Microsoft Vista compliance. All PLX switches undergo thorough interoperability testing in PLX's **Interoperability Lab** and **compliance testing at the PCI-SIG plug-fest** to ensure compatibility with PCI Express devices in the market.

Device Operation Configuration Flexibility

The PEX 8604 provides several ways to configure its operations. The device can be configured through strapping pins, I^2C interface, CPU configuration cycles and/or an optional serial EEPROM. This allows for easy debug during the development phase and functional monitoring during the operation phase.

Flexible Port Configurations

The PEX 8604 flexible architecture supports a number of port configurations as required by the target applications as shown in figure 1 below.

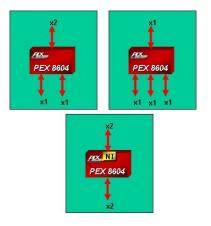


Figure 1. Port Configurations

Hot-Plug for High Availability

Hot-Plug capability allows users to replace hardware modules and perform maintenance without powering down the system. The PEX 8604 Hot-Plug capability feature makes it suitable for **High Availability (HA) applications**. If the PEX 8604 is used in an application where one or more of its downstream ports connect to PCI Express slots, each port's Hot-Plug Controller can be used to manage the Hot-Plug event of its associated slot. Every port on the PEX 8604 is equipped with a Hot-Plug control/status register to support Hot-Plug capability through external logic via the I²C interface.

Dual Cast

The PEX 8604 supports Dual Cast, a feature which allows for the copying of data (e.g. packets) from one ingress port to two egress ports allowing for higher performance in storage, security, and mirroring applications.

Read Pacing

The Read Pacing feature allows users to throttle the amount of read requests being made by downstream devices. In the case where a downstream device requests several long reads backto-back, the Root Complex gets tied up in serving this downstream port. If this port has a narrow link and is therefore slow in receiving these read packets from the Root Complex, then other downstream ports may become starved – thus, impacting performance. The Read Pacing feature enhances performances by allowing for the adequate servicing of all downstream devices by intelligent handling of read requests.

SerDes Power and Signal Management

The PEX 8604 provides low power capability that is fully compliant with the PCI Express power management specification. In addition, the SerDes physical links can be turned off when unused for even lower power. The PEX 8604 supports **software control** of the **SerDes outputs** to allow optimization of power and signal strength in a system. The PLX SerDes implementation supports four levels of power – off, low, typical, and high. The SerDes block also supports **loop-back modes** and **advanced reporting of error conditions**, which enables efficient debug and management of the entire system.

Port and Virtual Channel (VC) Arbitration

The PEX 8604 switch supports hardware fixed and Weighted Round-Robin Ingress Port Arbitration. This allows fine tuning of Quality of Service and efficient use of packet buffers for better system performance. The PEX 8604 also supports WRR VC arbitration scheme between the two virtual channels.

Applications

Suitable for **fan-out, control plane applications, embedded systems** as well as **intelligent I/O applications**, PEX 8604 can be configured for a wide variety of form factors and applications.

Fan-Out

The PEX 8604 switch, with its flexible configurations, allows user specific tuning to a variety of **host-centric as well as peer-to-peer applications**.

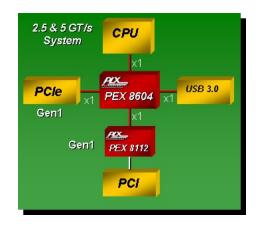


Figure 2. Fan-in/out Usage

Figure 2 shows a typical **fan-out** design, where the processor provides a PCI Express link that needs to be fanned into a larger number of smaller ports for a variety of I/O functions, each with different bandwidth requirements.

In this example, the PEX 8604 would typically have a 1-lane upstream port, and three downstream ports. The downstream ports provide x1 PCI Express connectivity to the endpoints. With its four ports, the PEX 8604 can provide fan-out connectivity to up to three PCI Express devices. The figure also shows how some of the ports can be bridged to provide **PCI slots** through the use of the **PEX 8112 PCIe** bridging devices.

Consumer Applications

With its small footprint, the PEX 8604 is ideal for consumer applications. Figure 3 shows an example for a set top box. The PEX8604 connects to legacy devices using a PEX85112

(PCIe to PCI bridge). The four ports in the PEX8604 provide connectivity between the processor to up to three peripherals each via an x1 connection. This usage model provides connectivity within a set top box between the control processor and the various endpoints.

USB 3.0 PEX 8604 PEX 8604 LAN Bus 100 PEX 1112	
TVTuner PCI Philips CVBS Conoxant Bus As- Hybrid 2/F CX2382 PER 8172	
IF Conexant TS Demod CX22702	

Figure 3. Set Top Box

Mobile Wireless Adaptor

PEX 8604 devices can be used in applications where low power consumption is of importance as is the case in mobile applications. An example of a mobile wireless adapter card is shown in Figure 4.

Figure 4. Mobile Wireless Adaptor

Embedded Mezzanine Module

The PEX 8604 is well suited for mezzanine module applications. Figure 5 shows that the mezzanine card has a local processor and a local PCIe hierarchy with the PEX8604 and multiple endpoints. Additionally, the **non-transparent** port in the PEX8604 allows the mezzanine to interface with the main CPU in the Baseboard as well as other mezzanine modules.

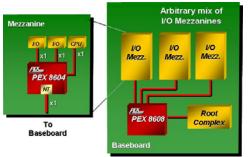


Figure 5. PCI Express Mezzanine Module

Intelligent Adapter Card

The PEX 8604 supports the **non-transparency** feature. Figure 6 illustrates a host system using an intelligent adapter card.

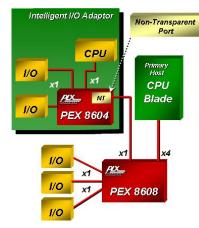


Figure 6. Intelligent Adapter Usage

In this figure, the CPU on the adapter card is isolated from the host CPU. The PEX 8604 non-transparent port allows the two CPUs to be isolated but communicate with each other through various registers that are designed in the PEX 8604 for that purpose. The host CPU **can dynamically re-assign both the upstream port and the non-transparent port** of PEX 8604 allowing the system to be reconfigured.

Active-Standby Failover Model

The PEX 8604 supports applications requiring **dual host**, **host failover** applications through the **non-transparency** (**NTB**) feature. Figure 7 illustrates a dual host system with an active and standby processor configuration.

The redundancy of the host and the fabric can be achieved through many possible configurations using NTB function of PEX 8604. In the configuration shown below Processor A is the primary active host of the PCI Express system. Processor B acts as the backup Host. In the case of a failure on Processor A, application software is instructed to migrate the PCI Express system to Processor B. Consequently, Processor B becomes the active host and Processor A can be replaced as the backup Host.

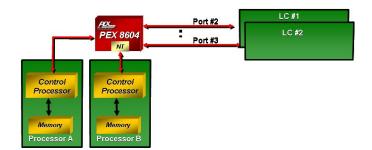


Figure 7. Active-Standby Control Plane

Software Usage Model

From a system model viewpoint, each PCI Express port is a virtual PCI to PCI bridge device and has its own set of PCI Express configuration registers. It is through the upstream port that the BIOS or host can configure the other ports using standard PCI enumeration. The virtual PCI-to-PCI bridges within the PEX 8604 are compliant to the PCI and PCI Express system models. The Configuration Space Registers (CSRs) in a virtual primary/secondary PCI-to-PCI bridge are accessible by type 0 configuration cycles through the virtual primary bus interface (matching bus number, device number, and function number).

Development Tools

PLX offers hardware and software tools to enable rapid customer design activity. These tools consist of a PEX 8604 Rapid Development Kit (RDK), hardware documentation, and a Software Development Kit (also available at www.plxtech.com/sdk).

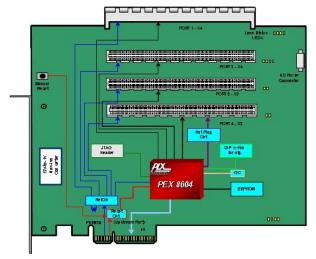
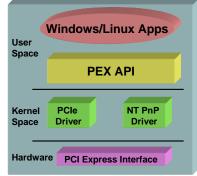


Figure 8. PEX 8604RDK

Interrupt Sources/Events

The PEX 8604 supports the INTx interrupt message type (compatible with PCI 2.3 Interrupt signals) or Message Signaled Interrupts (MSI) when enabled. Interrupts/messages are generated by PEX 8604 for Hot-Plug events, doorbell interrupts, baseline error reporting, and advanced error reporting.


RDK

The PEX 8604RDK is a hardware module containing the PEX 8604 which plugs right into your system (Figure 8). The PEX 8604RDK hardware module can be installed in a motherboard, used as a riser card, or configured as a bench-top board. The PEX 8604RDK can be used to test and validate customer software. Additionally, it can be used as an evaluation vehicle for PEX 8604 features and benefits.

SDK

The SDK tool set includes:

- Linux & Windows drivers
- C/C++ Source code, Objects, libraries
- User's Guides & Application examples

PLX Technology, Inc. 870 W. Maude Ave. Sunnyvale, CA 94085 USA www.plxtech.com

Product Ordering Information

Part Number	Description
PEX8604-BA50BC	4 Lane, 4 Port PCIe Switch, 196-ball PBGA 15x15mm ² pkg
PEX8604-BA50BC G	4 Lane, 4 Port PCIe Switch, 196-ball PBGA 15x15mm ² pkg, Pb-free
PEX8604-BA50BI G	4 Lane, 4 Port PCIe Switch, 196-ball PBGA 15x15mm ² pkg, Pb-free
PEX 8604BA-AIC1U1D RDK	
PEX8604-BA50BI G PEX 8604BA-AIC1U1D RDK	

Please visit the PLX Web site at <u>http://www.plxtech.com</u> for sampling.

© 2010 by PLX Technology, Inc. All rights reserved. PLX and the PLX logo are registered trademarks of PLX Technology, Inc. ExpressLane is a trademark of PLX Technology, Inc., which may be registered in some jurisdiction. All other product names that appear in this material are for identification purposes only and are acknowledged to be trademarks or registered trademarks of their respective companies. Information supplied by PLX is believed to be accurate and reliable, but PLX Technology, Inc. assumes no responsibility for any errors that may appear in this material. PLX Technology, Inc. reserves the right, without notice, to make changes in product design or specification.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Avago Technologies: PEX8604-BA50BIG PEX 8604-BA50BC G

Broadcom Limited: PEX8604BA-AIC1U1DRDK PEX 8604BA-AIC1U1D PEX8604-BA50BC PEX8604-BA50BC G