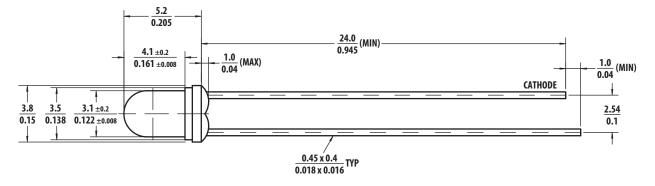


HLMP-Yxxx T-1 (3 mm) GaP/GaAsP LED Lamps

Description


This family of T-1 lamps is widely used in general-purpose indicator and back lighting applications. The optical design is balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Features

- Low power consumption
- High efficiency
- Versatile mounting on PCB or panel
- I.C. compatible/low current requirement
- Popular T-1 package
- RoHS compliant

Applications

- Status indicator
- Backlighting front panels
- Light pipe sources
- Lighted switches

Figure 1: Package Dimension

NOTE:

- 1. All dimensions are in millimeter (inches).
- 2. Tolerance is ±0.25 mm (.010 in.) unless otherwise stated.
- 3. Lead spacing is measured where the leads emerge from the package.

Selection Guide

		Package	Luminous	Viewing Angle,		
Part Number	Color	Description	Min.	Тур.	Max.	2θ ¹ / ₂ (°)
HLMP-Y301-F00xx	GaAsP HER	Tinted,	6.1	19		45
HLMP-Y402-G00xx	GaAsP Orange	Non-diffused	9.7	29		45
HLMP-Y502-F00xx	GaP Green		12	40	—	55

Absolute Maximum Ratings at T_A = 25°C

Parameter	HLMP-Y301	HLMP-Y402	HLMP-Y502	Units
DC Forward Current ^a	20	20	20	mA
Peak Forward Current (1/10 Duty Cycle, 0.1 ms Pulse Width)	90	60	120	mA
Reverse Voltage (I _R = 100 µA)	5	5	5	V
Junction Temperature	110	110	110	°C
Power Dissipation	52	52	52	mW
Storage Temperature Range	-40 to +100			°C
Operating Temperature Range	-40 to +100			°C

a. Derate linearly as shown in Figure 4.

Electrical/Optical Characteristics at T_A = 25°C

Parameter	Symbol	Part Number	Min.	Тур.	Max.	Units	Test Conditions
Peak Wavelength	λ _{PEAK}	HLMP-Y301	_	635		nm	Peak of wavelength of
		HLMP-Y402	—	610	—		spectral distribution at
		HLMP-Y502		565	—		I _F = 10 mA
Dominant Wavelength ^a	λ_d	HLMP-Y301	615	626	632	nm	I _F = 10 mA
		HLMP-Y402	599.5	605	613.5		
		HLMP-Y502	561.5	573	576.5		
Spectrum Half Width	Δλ	HLMP-Y301	_	40	_	nm	
		HLMP-Y402	—	35	—		
		HLMP-Y502	_	30	—		
Forward Voltage	V _F	HLMP-Y301	_	2.1	2.6	V	I _F = 10 mA (Figure 2)
		HLMP-Y402	—	2.1	2.6		
		HLMP-Y502		2.2	2.6		
Reverse Voltage	V _R	HLMP-Y301	5		_	V	I _R = 100 μA
		HLMP-Y402	5	—	—		
		HLMP-Y502	5	—	—		
Thermal Resistance	$R_{\theta J ext{-}PIN}$	HLMP-Y301	—	310	_	°C/W	Junction to Cathode Lead
		HLMP-Y402	—	310	—		
		HLMP-Y502		310	—		

a. The dominant wavelength, $\lambda_{\text{d}},$ is derived from the Chromaticity Diagram and represents the color of the lamp.

Part Numbering System

н	L	м	Р
	_		

. x₁ x₂

x₄

x3

. x₅ x₆ x₇ x₈ x₉

Code	Description	Option	Option		
x ₁	Package type	Y	T-1 (3mm)		
x ₂ x ₃ x ₄	Color	301	GaAsP HER		
		402	GaAsP Orange		
		502	GaP Green		
х ₅	Minimum intensity bin	Refer to Inte	Refer to Intensity Bin Limits Table		
x ₆	Maximum intensity bin				
х ₇	Color bin selection	0	Full range		
x ₈ x ₉	Packaging option	00	Bulk packaging		

Bin Information

Intensity Bin Limits

		Intensity Range (mcd)	
Color	Bin	Min.	Max.
HER/Orange	F	6.1	9.7
	G	9.7	15.5
	Н	15.5	24.8
	I	24.8	39.6
	J	39.6	63.4
	К	63.4	101.5
	L	101.5	162.4
	М	162.4	234.6
	Ν	234.6	340.0
	0	340.0	540.0
	Р	540.0	850.0
Green	F	12.0	19.1
	G	19.1	30.7
	Н	30.7	49.1
	I	49.1	78.5
	J	78.5	125.7
	К	125.7	201.1
	L	201.1	289.0
	М	289.0	417.0
	0	417.0	680.0

Color Bin Limits Table

		Lambda (nm)	
Color	Cat.	Min.	Max.
Orange	2	599.5	602.0
	3	602.0	604.5
	4	604.5	607.5
	5	607.5	610.5
	6	610.5	613.5
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5

Tolerance for each bin limit is ±1.0 nm.

Tolerance for each bin limit is $\pm 15\%$.

Figure 2: Forward Current vs. Forward Voltage

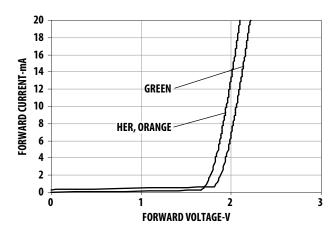


Figure 4: Ambient Temperature vs. Maximum DC Forward Current

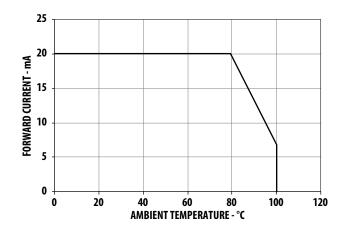


Figure 6: Representative Radiation Pattern for HLMP-Y301 and HLMP-Y402

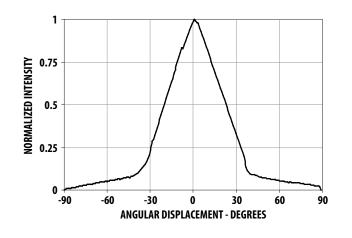


Figure 3: Relative Luminous Intensity vs. Forward Current

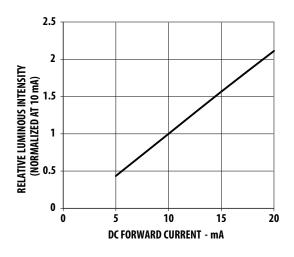


Figure 5: Representative Radiation Pattern for HLMP-Y502

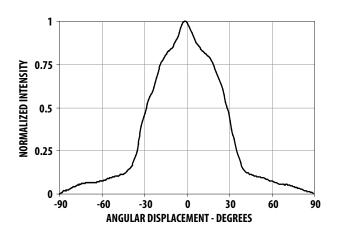
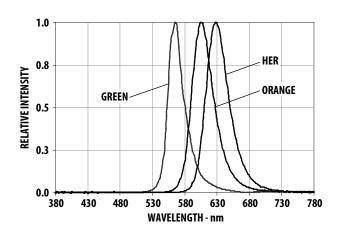



Figure 7: Relative Luminous Intensity vs. Wavelength

Precautions

Assembly Method

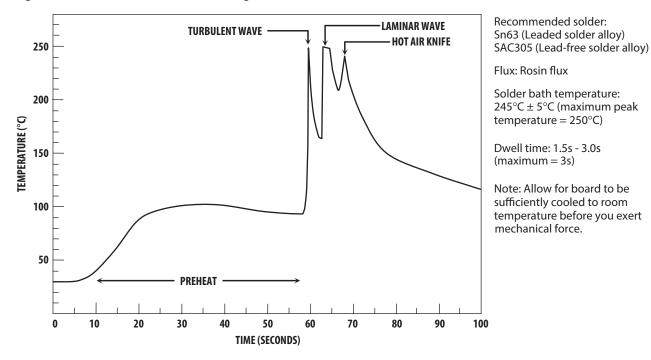
This product is not meant for auto-insertion.

Lead Forming

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- If lead forming is required before soldering, take care to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- During lead forming, the leads should be bent at a point at least 3 mm from the base of the lens. Do not use the base of the lead frame as a fulcrum during forming. Do lead forming before soldering at normal temperature.
- Make tooling to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Conditions

- Take care during the PCB assembly and soldering process to prevent damage to the LED component.
- The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- The recommended soldering conditions follow.


	Wave Soldering	Manual Solder Dipping
Pre-heat Temperature	105°C max.	—
Preheat Time	60s max	—
Peak Temperature	250°C max.	260°C max.
Dwell Time	3s max.	5s max

- Set and maintain the wave soldering parameter according to the recommended temperature and dwell time in the solder wave. Periodically check on the soldering profile to ensure the soldering profile used always conforms to the recommended soldering condition.
- If necessary, use a fixture to hold the LED component in the proper orientation with respect to the PCB during the soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C, before handling.
- Pay special attention to board fabrication, solder masking, surface plating and lead holes size, and component orientation to assure solderability.
- Recommended PC board plated through-hole sizes for LED component leads follow.

Led Component Lead Size	Diagonal	Plated Through Hole Diameter
0.457 mm × 0.457 mm	0.646 mm	0.976 mm to 1.078 mm
(0.018 in. × 0.018 in.)	(0.025 in.)	(0.038 in. to 0.042 in.)
0.508 mm × 0.508 mm	0.718 mm	1.049 mm to 1.150 mm
(0.020 in. × 0.020 in.)	(0.028 in.)	(0.041 in. to 0.045 in.)

NOTE: Refer to application note AN1027 for more information on soldering LED component.

Figure 8: Recommended Wave Soldering Profile

Disclaimer

Broadcom's products and software are not specifically designed, manufactured, or authorized for sale as parts, components or assemblies for the planning, construction, maintenenace, or direct operation of a nuclear facility or for use in medical devices or applications. The customer is solely responsible, and waives all rights to make claims against Broadcom or its suppliers, for all loss, damage, expense, or liability in connection with such use.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2011–2018 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

