
September 2010
IPUG59_01.7

Soft SPI4 IP Core User’s Guide

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG59_01.7, September 2010 2 Soft SPI4 IP Core User’s Guide

Chapter 1. Introduction .. 4
Quick Facts ... 4
Features .. 4

Chapter 2. Functional Description .. 6
Overview ... 6
Operational Description... 6

SPI4 Transmitter - S4TX.. 7
SPI4 Transmit Data Protocol - S4TXDP .. 7
SPI4 Transmit I/O - S4TXIO (TXGB) ... 9
SPI4 Transmit Status - S4TXSP .. 11
SPI4 Receiver - S4RX.. 14
SPI4 Receive Data Protocol - S4RXDP... 15
SPI4 Receive Status Protocol - S4RXSP... 18
SPI4 Receiver I/O - S4RXIO (RXGB) .. 21

Calendar and Status RAM Access.. 22
Start-Up Procedures ... 23

Receive Direction Start-Up... 23
Dynamic Mode Start-up and Recovery (SMSR) FSM.. 23
Static Mode Start-up and Recovery (SMSR) FSM... 23
Transmit Direction Start-Up.. 24

Signal Descriptions ... 24
Chapter 3. Parameter Settings .. 33

Global Tab... 36
User Data Interface .. 36
Generation Options .. 36

Transmit Tab ... 37
Transmit Data Path Options... 37
Transmit Line Side FIFO Thresholds ... 37
Transmit User Side FIFO Thresholds .. 37
Transmit Packing Enable ... 38

Receive Tab – LatticeECP .. 38
Receive Data Path Options.. 38

Receive Tab – Lattice SC/SCM .. 39
Receive Data Path Options.. 39

Status Tab... 40
Status Channel Options ... 40
Transmit Status Path Options .. 40
Receive Status Path Options ... 40

Calendars Tab... 41
Transmit Calendar Options .. 41
Receive Calendar Options ... 41

Chapter 4. IP Core Generation... 42
Licensing the IP Core.. 42
Getting Started .. 42
IPexpress-Created Files and Top Level Directory Structure... 44
Instantiating the Core .. 46
Running Functional Simulation ... 46
Synthesizing and Implementing the Core in a Top-Level Design ... 47
Hardware Evaluation... 48

Table of Contents

Lattice Semiconductor Table of Contents

IPUG59_01.7, September 2010 3 Soft SPI4 IP Core User’s Guide

Enabling Hardware Evaluation in Diamond.. 48
Enabling Hardware Evaluation in ispLEVER.. 48

Updating/Regenerating the IP Core .. 48
Regenerating an IP Core in Diamond .. 49
Regenerating an IP Core in ispLEVER .. 49

Chapter 5. Application Support... 51
Hard-Core Physical Placement ... 51
SPI4 Line-Side I/O .. 51
Clocking and Synchronization... 51

Clock List.. 51
Clock Usage Diagram ... 52
System-Level Synchronization.. 55

Selecting a System Data Clock Frequency ('SDCK') - Receiver.. 56
Selecting a System Data Clock Frequency ('SDCK') - Transmitter.. 58

Chapter 6. Core Verification .. 59
Chapter 7. Support Resources .. 60

Lattice Technical Support.. 60
Online Forums.. 60
Telephone Support Hotline .. 60
E-mail Support ... 60
Local Support ... 60
Internet ... 60

References.. 60
LatticeECP3 ... 60
LatticeSCM... 60
Revision History ... 61

Appendix A. Resource Utilization ... 62
LatticeECP3 FPGAs.. 62

Supplied Netlist Configurations .. 62
LatticeSC/M FPGAs .. 62

Supplied Netlist Configurations .. 62

IPUG59_01.7, September 2010 4 Soft SPI4 IP Core User’s Guide

The Soft System Packet Interface 4 (SPI4) Intellectual Property (IP) core enables user instantiation of OIF-compli-
ant System Packet Interface Level 4 Phase 2 Revision 1 (SPI4.2.1) cores in Lattice Field Programmable Gate
Arrays (FPGAs).

The Soft SPI4 IP core supports up to 256 data channels with aggregate throughputs of between 3 and 12.8Gbps
and can be used to connect network processors with OC192 framers, mappers, and fabrics, as well as Gigabit and
10-Gigabit Ethernet MACs. This user's guide explains the functionality of the SPI4 core and how it can be applied
to interconnect physical and link layer devices in 10Gbps POS, Ethernet, and ATM applications.

Quick Facts

Table 1-1 gives quick facts about the Soft SPI4 IP core.

Features
• The Soft SPI4 IP core is fully compliant with the OIF System Packet Interface Level 4 Phase 2 Revision 1

(SPI4.2.1) interface standard

• Supported through Diamond or ispLEVER IPexpress™ tool for easy user configuration and parameterization

• Supports up to 256 independent channels

• 400 to 500MHz DDR Dynamic mode operation in LatticeSC and LatticeSCM devices

• 156 to 350MHz DDR Static timing mode operations for LatticeECP3 devices. Supports non-standard “SPI4 Lite”
line rates.

• Supports both 64b and 128b internal architectures for optimization of either speed or size

• Requires only ~2000 slices (64b mode) for a full 256-channel Static mode core

• Supports full bandwidth utilization of the SPI4 line in both directions - requires no idle cycles in the receive direc-
tion or insertion of idles in the transmit direction between bursts (as long as there is data available)

Table 1-1. Soft SPI4 IP Core Quick Facts

Soft SPI4 IP Core Configuration

Core Requirements
FPGA Families Supported LatticeECP3™ LatticeSC/SCM™

Minimal Device Needed LFE3-35EA-
8FN484CES

LFE3-35EA-
8FN484CES

LFSC3GA15
E-6F900C

LFSC3GA15
E-6F900C

Resources Utilization

Target Device LFE3-17EA-
7FN484CES

LFE3-17EA-
7FN484CES

LFSC3GA15
E-6F900C

LFSC3GA15
E-6F900C

Status Mode Transparent RAM Transparent RAM

Data Path Width 100 200 100 200

LUTs 2500 4100 3200 5300

sysMEM EBRs 12 18 12 18

Registers 3000 4800 3000 4900

Design Tool Support

Lattice Implementation Diamond® 1.0 or ispLEVER® 8.1

Synthesis Synopsys® Synplify™ Pro for Lattice D-2009.12L-1

Simulation
Aldec® Active-HDL™ 8.2 Lattice Edition

Mentor Graphics ModelSim™ SE 6.3F (

Chapter 1:

Introduction

at: www.latticesemi.com/software.

Lattice Semiconductor Introduction

IPUG59_01.7, September 2010 5 Soft SPI4 IP Core User’s Guide

• Parity error checking/generation on all receive and transmit control and data words (DIP4) and status (DIP2)
interfaces

• Parity error force capabilities on data (independent controls: control word and data) and status interfaces

• Various run-time user controls
– Force idles (transmitter)
– Enable/disable packing (transmitter)
– Training pattern (CAL_M, MAX_T)

• Complete run-time programmability of all internal FIFO thresholds for efficient management of SPI4 line in terms
of Lmax and packing

• Provides a direct interface to primary device I/O at the SPI4 interface and an internal FIFO interface to user logic

• Supports minimum transmit burst sizes in increments of 16 bytes from 16 bytes up to 1008 bytes for optimized
network processor applications

• Support for packet sizes down to 4 bytes in length

• Fully configurable 512-location calendar RAM for Rx and Tx directions and associated 256-location status RAMs

• Two independently configurable methods of status reporting in the receive and transmit directions - RAM
addressable and Transparent

• Rising or falling edge selectable Status Channel I/O independently configurable in the receive and transmit direc-
tions

IPUG59_01.7, September 2010 6 Soft SPI4 IP Core User’s Guide

Figure 2-1 shows a system-level diagram of a typical Link layer application where the Soft SPI4 IP core is imple-
mented in a Lattice FPGA. At the top level, the core is broken into two sub-blocks referred to as the SPI4 Transmit-
ter (S4TX) and SPI4 Receiver (S4RX). The S4RX and S4TX blocks provide both status and data path functionality
for the direction they serve. They provide a direct interface to the primary I/O of the device on one side (SPI4) and
a device-internal FIFO interface to user logic on the other.

Also included is a user-side SPI4 “loop-around module” and a SPI4 test-bench for optional use. The loop-around
module loops receive SPI4 data back to the SPI4 transmitter and transmit status back to the SPI4 receiver. An
FPGA top-level RTL template design is provided that includes the IP core and loop-around module which can be
used without modification for simulation verification and can also be synthesized, placed, and routed “as is” for ini-
tial debugging on physical hardware. With this capability, the user can connect their system to a Lattice FPGA via a
SPI4 interconnect and easily verify the speed and functionality of the core.

Figure 2-1. Soft SPI4 IP Core, System-Level Context

Overview
The Soft SPI4 IP core is used with additional user-side application logic that interfaces with the IP core via separate
receive and transmit FIFO interfaces for SPI4 data information and separate receive and transmit interfaces for
SPI4 flow control information. The data FIFOs (4KB 64b mode, 8KB 128b mode) are implemented using Embed-
ded Block RAM (EBR) and provide shared channel buffering on a SPI4 line basis; there is no per-channel buffering
within the core for the base design. User-side application logic is responsible for scheduling the maximum allow-
able SPI4 burst size and the overall amount of data (through credit accounting) that may be written into the S4TX
FIFO and transmitted on a per-channel basis. The information needed by the user to manage the credit accounting
procedure is received and transmitted on a per-channel basis via the status channel. Both the S4RX and S4TX
modules support RAM mode and Transparent mode interfaces that are user selectable for transmitting and receiv-
ing status information as well as individual Calendar RAMs that contain configuration data defining the channel
order and duration for which status information is transmitted and received for each channel.

Operational Description
For the following descriptions, designations enclosed in single quotes (e.g. 'SDCK') refer to specific Soft SPI4 IP
core I/O port names or synthesis parameters. Refer to “Signal Descriptions” on page 24 and “Parameter Settings”
on page 33t for detailed descriptions of the functionality of these items.

Soft SPI4 IP Core

Lattice FPGA

User Logic
(Link Layer
Function or
SPI4 Loop)

Tx DataSPI4 Tx Data & Ctl

SPI4 Rx Data & Ctl

SPI4 Tx Status *1

SPI4 Rx Status

Data Path

Data Path

PHY Layer
Device

Status Path

Status Path

Tx Status

S4TX

S4TX

Rx Data

Internal
User

Interface

External
SPI4

Interface

Rx Status

Chapter 2:

Functional Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 7 Soft SPI4 IP Core User’s Guide

With regard to timing diagram examples, there are a number of other simulation scenarios that are not captured
here but are available for user simulation and viewing through evaluation simulation (see “Running Functional Sim-
ulation” on page 46 for a list of simulation scenarios available).

SPI4 Transmitter - S4TX
The transmit path, shown in Figure 2-2, is the path of data flow from the internal user application function towards
the SPI4 line interface and the direction of status flow from the SPI4 line towards the application function. Figure 2-
2 indicates through shading some of the hierarchical boundaries and identifies three distinct sub-sections of the
S4TX block as described in the following sections.

Figure 2-2. S4TX - SPI4 Transmit Path (64b Mode)

SPI4 Transmit Data Protocol - S4TXDP
In this direction, the S4TXDP block automatically multiplexes data bursts received from the user-side transmit FIFO
on a per-channel basis onto the SPI4 line using standard SPI4 port switching “control words”. It uses the sop, eop,
abt, and port ID fields received from the user to know when to start, stop, abort, or switch the channel on the SPI4
line. Both read and write sides of the user-side FIFO are operated at a frequency that is typically 10% greater than
the equivalent line-side FIFO rate at 64 bits wide in order to carry out a “packing” operation (20% for 128b mode).
Packing is required for all cases where the end-of-packet byte does not result in a fully valid 64-bit FIFO entry. In

TxDATA[64]

TxFWR

TxSOP,TxEOP
TxPA[8]

TxREM[3]
TxFAF,TxFAE,TxFFE

TxERR

TxDATA[64]

TxSOP
TxEOP

TxPA[8]

TxREMERR

TxFRD

TF2AF,TF2AE,TF2F

TxERR

TxBLEN[6]

TxFFE*2

TDAT_[P:N][15:0]

TCTL[P:N]

TDCLK[P:N]

TxSTADD[5]1

TxSTPA[8]
TxSTPA_VAL

TxCALWR
TxCALADD[9]
TxCALDAI[8]
TxCALDAO[8]

TxCALM[8]
TxCAL_LEN[9]

TxSDP2ERR

Tx_STATUS[1:0]

Tx_STATUS_CK

TxSTAERR

TxSTEN

S4TXDP

1. In Transparent mode,TxSTADD[5] andTxSTAT_R[16] do not exist and do not have an I/O appearance.

Application
Side

TxREM[3]

TxMAXT[16]

TxREP[8]

TxNumDip2[e][2:0]

TxA[E/F]THRSH[9]

S4TX

TxCALCK
TxSTCK

TxEN

SPI4 Side

TxSTAT_T[2]
TxSTAT_R[16]1

TxINTSTC

TxBMODE

T
xF

IF
O

1
51

2x
80

A
lig

n
er

, T
ra

in
in

g
, D

ip
4

T
X

G
B

(P
IC

 G
ea

r
B

o
x

2:
1

M
u

x
an

d
 D

D
R

)

T
xF

IF
O

2
64

x7
2

TxDATA[64]

TxCTL[4]

TxEN

TLDAT[64]

TLCTL[4]

TxS4LS2_CK

S
4T

X
S

P
 (

S
ta

tu
s

an
d

 C
al

en
d

ar
 R

A
M

)

GRST_N

TxFIDLE,TxFDP4E

SDCK

TxF2A[E/F]THRSH[6]

SATISFIED

TxS4HSCK

TxS4LS2_CK

TXRST

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 8 Soft SPI4 IP Core User’s Guide

this case, there is SPI4 line bandwidth available that can only be taken advantage of through over-speed at the
user-side FIFO and in the aligner. The amount of instantaneous over-speed required is reduced by averaging the
demand for over-speed over time through the smaller line-side FIFO.

User data is written into TxFIFO1 based on the availability of user data to transmit, availability of near-end FIFO
space, and availability of FIFO space at the far end of the SPI4 link. The user-side transmit FIFO is either 4K or 8K
bytes depending upon mode and is organized as 512 locations x 80 (64b) or 144 (128b) bits. User logic should
monitor the Transmit FIFO Almost Full ('TxF1AF') signal as it writes data and control information into the FIFO.
When 'TxF1AF' is asserted, writing should be suspended until the Transmit FIFO Almost Empty ('TxF1AE) signal is
asserted. Thresholds associated with the almost empty and full flags are real-time controllable via top-level signal
array connections to the core and can be set to optimize a minimum or maximum data transfer amount into the
FIFO. These thresholds also allow the user to configure the rather large user-side FIFO for “shallow” mode opera-
tion that may be needed in some applications to ensure that there is not a large amount of data committed to the
line when flow controlled.

The Aligner formats data read from the user-side FIFO into SPI4 control word encapsulated data segments and/or
whole packets and writes the data into the line-side FIFO. The Aligner monitors the user-side Transmit FIFO Empty
('TxF1E') signal, reading data and control information when TxF1E is deactivated, and generates the appropriate
SPI4 control word containing a DIP-4 parity calculation and control directives (sop, eop, cnt, abt, port ID, etc.) for
each packet segment. Data is continually read and transmitted from the user-side FIFO until the 'TxF1E' asserts. If
the FIFO empties in the middle of a packet, the segment is terminated with an Idle control word and the SPI4 line
goes idle. Transmission resumes when the user-side FIFO is again loaded with data, which can be associated with
the same or different channel. Once the user-side begins loading a segment of data into the FIFO, the Aligner block
will not be able to over-run the segment as long as the user writes the segment into the FIFO on consecutive clock
cycles. This FIFO is operated in a synchronous mode given user loading and Aligner functions both require the
over-speed System Data Clock ('SDCK'). This synchronous operation minimizes the response time for flag genera-
tion through the FIFO. Before the Aligner block is allowed to transmit data toward the SPI4 line, the associated
input direction status channel must be properly framed ('TxSTAERR' inactive). The Aligner will continually send
training control and data sequences until this condition has been met.

The timing domains between the user-side System Data Clock ('SDCK') and the SPI4 line-side transmit clock
('TxS4LS_CK') are crossed at the line-side FIFO - TxFIFO2. The line-side FIFO is 4352 or 8704 bytes organized as
64 locations x 68 or 136 bits. A detailed description of SPI4 core clocking and synchronization is given in a subse-
quent section of this document. The line-side FIFO can be optionally protected with four bits of parity generation
and checking (see signal description for 'TxF2PERR' in “Signal Descriptions” on page 24) in order to ensure data
integrity.

Transmit Data Timing Diagram Example
Figure 2-3 shows the transmission of three 67-byte full packets for channels 0, 1, and 2 over the S4TX transmit
user FIFO interface for 128b mode. The interface operates in a synchronous fashion based on the user-supplied
'txsdck' clock input signal. This clock has over-speed relative to the equivalent SPI4 line-side as mentioned above,
which is the case for this analysis. The first packet (channel 0) starts at time 52834ns in response to available data
to send and an inactive Transmit FIFO Almost Full signal ('txfaf') from the IP core and is marked by the assertion of
signals 'txfwr', 'txsop', 'txpa', and txdata[127:0]' from user. In the sixth clock cycle, 'txeop' and 'txrem' are asserted
indicating the end of the packet and the amount of remaining bytes (0x2 = 3 bytes) in the last slice (128 bits) of
data. It is in this clock cycle that signal 'txabt' (not shown) would be active if the user wants to abort the transfer. An
active 'txabt' signal is acted upon by the core only when both 'dval' and 'txeop' signals are also active, otherwise it is
ignored.

Although not reflected in this example, the effects of the over-speed will be noticed by the assertion of the 'txfaf' sig-
nal, mentioned above, at a regular interval assuming there is constant data to send. When asserted, the user-side
must suspend writing to the user FIFO for some period of time. The simplest method is to fill the FIFO until 'txfaf' is
asserted and then suspend until 'txfae' (almost empty) is asserted. This arrangement affords the smoothest and
most efficient use of the SPI4 line in terms of its maximum bandwidth potential. Allowing the FIFO to run com-
pletely dry causes the pipelines, and partially the line-side FIFO, to fill with Idle control words increasing the latency

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 9 Soft SPI4 IP Core User’s Guide

of the next burst and decreasing the overall bandwidth utilization by reducing opportunities for packing the SPI4 line
(no idle control word insertion - back-to-back, single control word separated packets and packet segments).

Figure 2-3. S4TX User Data Interface Example

SPI4 Transmit I/O - S4TXIO (TXGB)
The S4TXIO block provides 2-1 gearing/multiplexing and SDR-to-DDR conversion for the transmit data direction
(LVDS buffer insertion is done outside the core). In the LatticeSC device, this block can support 4-1 multiplexing
conversion for 128b mode in the SPI4 line output direction. All of these functions are performed at the Programma-
ble Interconnect Cell (PIC) level and therefore do not require any PLC logic resources. In 64b mode, data (64 bits)
and control (4 bits) are received from the S4TXDP block through TxFIFO2. Data are received at the lower by 2
clock speed rate and then multiplexed up to a 2x rate, reflecting a 32-bit data bus and 2-bit control bus. A second
stage of multiplexing occurs in the PIC where the data and control signals are moved from single-edged format to
double-data rate format at the same frequency before being sent off-chip through LVDS output buffers. Data and
clock leave the transmitting device in phase. The receiving end is responsible for shifting the clock with respect to
the data before using the clock to sample data. All of these signals operate over differential pairs at LVDS levels.

The low and high-speed line clocks are provided by the user and can be generated from an internal PLL or
received via the primary I/O (see “Clocking and Synchronization” on page 51 for further information).

Minimum Burst Size - Burst Mode
Burst Mode is essentially always enabled given that the SPI4 protocol is a natural burst interface that requires a
minimum burst size of 16 bytes without an EOP as defined in the OIF specification. The burst size is controlled by
IP core port array 'TxBLEN[5:0]', where a value of one results in standard SPI4.2 behavior (16 byte minimum
burst), a value of 2 results in 32 bytes, and so on up to a value of 63*16bytes=1008 bytes.

When operating with burst sizes greater than one, the TxFIFO2 Almost Empty Burst Threshold
('TXF1AEBTHRSH[]') must be set to a value of at least 2 greater than the burst size in 128b mode and 4 greater in
64b mode. For example, a fixed burst size of 64 bytes would require an Almost Empty Burst Threshold of at least 6.
The transmitter waits until the associated almost empty burst flag is de-asserted indicating that there is at least
enough data in the FIFO to send the programmed burst size or there is at least one EOP in the FIFO before begin-
ning a SPI4 burst. Once a burst has begun, the transmitter will not allow it to be interrupted/segmented until it is
completely transmitted. Parameters 'TxBLEN[]' and 'TXF1AEBTHRSH[]' are set during the user GUI capture
phase.

Training Pattern Generation
Training Control and Data Pattern generation is enabled by setting 'TxMAXT[15:0]' to a value other than 0x00. The
Training Pattern Generator will maintain a schedule based on the value of 'TxMAXT[]' and request the transmission
of the training pattern, 'TxREP[7:0]' times, at the appropriate intervals and boundaries as specified in the SPI4
standard. The system data clock 'TxSDCK' is used to time the interval on a one-for-one count based on the value
of 'TxMAXT[]'. The default value is set through an RTL parameter obtained during GUI capture and can also be
programmed by an IP core port array.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 10 Soft SPI4 IP Core User’s Guide

Transmit FIFO2 Threshold Optimizations
There are four user-programmable thresholds associated with the transmit line-side FIFO of which three can be
used to optimize the behavior of the transmitter for optimal SPI4 line packing, minimal L(max), or a compromise of
the two. All thresholds are captured in the GUI phase but can be reprogrammed in real time using port-level array
connections to the core. The default values found during GUI capture set up the compromise selection.

The transmit FIFO almost empty threshold ('TXF2AETHRSH') and the transmit FIFO almost empty idle threshold
('TXF2AEITHRSH') controls the point at which the Aligner must respond with data or control (i.e. idles) before the
FIFO under-runs; an error condition that should never be allowed to occur through proper settings of the thresh-
olds. There are two cases to consider when crossing either of these thresholds high-to-low:

• When there is no data flowing in the system. In this case, the Aligner responds by simply writing Idles into the
FIFO when crossed to keep the SPI4 line active. During this condition, the 'TXF2AETHRSH' threshold/flag is
ignored.

• When data is flowing in the system. This is the more critical case in terms of recovery in the FIFO because the
empty signal arrives during a time when there has been opportunities for packing where multiple write side clock
cycles are required to perform a single packed write. When data is flowing, the only way to cross this threshold is
if extensive packing has occurred eroding write side bandwidth to below line-side levels. Once the almost empty
signal is received, further packing is inhibited, but pipelines leading towards the FIFO have already been loaded
with partially valid data slices that will be packed and therefore written into the FIFO at reduced bandwidth
increasing the chances for an under-run condition. Because of this, the 'TXF2AETHRSH' will typically need to be
set a little higher than the 'TXF2AEITHRSH'. Having a separate threshold just for the almost empty during idles
condition allows the transmit line-side FIFO to be run very shallow when no data is flowing, which results in low
latency when data flow again resumes.

The absolute minimum value of 'TXF2AETHRSH' before under-run occurs is dependent upon the mode (64/128b),
number of channels, amount of over-speed, packet size, and the value of the Transmit Almost Full Threshold
('TXF2AETHRSH'). Applications with low channel count and reasonable over-speed can typically run with values
as low as 8. Worst-case conditions may require a value as high as 14. One factor contributing to the magnitude of
the threshold is the large round-trip delay between almost empty flag activation and data being written into the
FIFO. Note that the almost empty flag is generated from the read clock domain and must be passed back to the
write clock domain. If latency is critical, the user should simulate their design using worst-case channel count, clock
frequency etc. to establish the lowest possible value. Error signal 'TxF2FERR' can be used in both simulation and
in-circuit to determine if the threshold has been set too low. The absolute minimum value of 'TXF2AETHRSH'
before under-run is around 5.

The transmit FIFO almost full threshold ('TXF2AFTHRSH') controls the point at which the Aligner must stop writing
data into TxFIFO2 before an over-flow condition occurs. The almost full flag asserts on 'TXF2AFTHRSH' +
'TXF2AFOTHRSH' (offset threshold) crossing low-to-high, and de-asserts on crossing of only 'TXF2AFTHRSH'
high-to-low. The user can alter the almost full threshold in order to set the desired depth of the line in terms of data
storage. The offset threshold is not adjusted by the user but is a simple fixed addition (+2) to the almost full thresh-
old done in the GUI phase. The higher the value of almost full threshold the greater the degree of packing that will
occur. This is because the FIFO will have stored up a greater amount of data to sustain the SPI4 line during a
period when FIFO write side bandwidth is lower than the read side. The higher the fill-level in the FIFO the longer
the period of potential packing will be. Valid tested ranges are between 20 and 54 and depend upon the degree of
packing desired.

For this condition to occur (almost full), data must be flowing in the system since the Aligner maintains a fill level
near the Almost Empty level when there is no data to send. When there is no data flowing in the system, the aligner
uses only the almost empty idle flag to maintain the FIFO as shallow as possible without under-run so that the next
piece of data has the lowest possible latency.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 11 Soft SPI4 IP Core User’s Guide

SPI4 Transmit Status - S4TXSP
The SPI4 Transmit Status Protocol (S4TXSP) block provides the entire SPI4 status function for the transmit direc-
tion. Note that though this is a transmit data function, status information is received and is therefore an input to the
core and to the user logic. It provides a stand-alone status reporting function between the SPI4 line and the user.
The only connections between the S4TXSP block and the data path is a Transmit Status Alignment Error ('TxS-
TAERR') signal which forces the data path to send constant training control and data words until the S4TXSP is
properly framed to the incoming status and some composite status signals for internal status mode.

The S4TXSP block frames on the incoming status channel, extracts per channel status information, and then for-
wards the information to user-side logic. This status/flow control information provides the user with an indication of
how “full”/“empty” the FIFOs are at the far-end of the SPI4 link. User-side logic will use this information to deter-
mine the appropriate amount of data (SPI4 MaxBurst1, MaxBurst2, or no data) that can be written into transmit
user-side FIFO on a per-channel basis without causing an overflow at the far end.

User input 'TXSTEN' provides enable/disable control over operation of the transmit Status interface and may be
used to ensure that the S4TXSP block does not incorrectly interpret status information from the far end during ini-
tialization and/or re-initialization (i.e. adding/subtracting a channel). When 'TXSTEN' is inactive, the transmit Status
framer section is forced into the Out-of-Alignment state. This action inhibits user status updates and no data is
transmitted on the data interface. The user is able to program the Calendar RAM during this period. When
'TXSTEN' is returned to the active state, the S4TXSP framer must go through the re-frame procedure in order to
return to alignment. Additional details are given in the Status and Calendar RAM Layout section of this document.

Two different synthesis-selectable configurations for reporting user status are supported: “RAM” mode and “Trans-
parent” mode. In either mode, status information and all user side status related signals are provided to the user
synchronously via the user supplied 'txstck' clock signal, which can be asynchronous relative to the SPI4 transmit
status clock ('x_tstatus_ck'). Because logic costs are very minimal and some of the transparent mode functionality
may be used in RAM mode, the Transparent Mode Status interface in the transmit direction is always available (I/O
and logic is not optioned out) either by itself, or in addition to the RAM mode interface.

Transparent Mode
Transparent mode is provided for applications in which a user-specific Status access style is preferred. With this
mode, the internal RAM storage and associated logic are eliminated and Status is presented to the user in a trans-
parent manner as it is received from the external SPI4 status lines. The core provides the user with an 8-bit chan-
nel address, the 2-bit status indication, and a valid signal qualified by proper alignment. The Calendar RAM still
exists inside the core for this mode and provides the channel address identification.

Figure 2-4 shows an example of the S4TX Status Interface operating in Transparent Mode with 32 channels single
entry per channel. In this mode, status is not stored in RAM inside the core but rather is passed from the SPI4 input
status channel directly to the user interface transparently via a 2b user side status bus ('txstat_t'). The core does
retain the Calendar RAM and status channel framing and DIP2 parity error checking function and is therefore the
controller in terms of determining which channel and at what time it's status is delivered to the user interface. The
core provides the user with an 8b address ('txstpa') informing which channels status is currently available via the
'txstat_t[]' bus and a valid signal ('txstpa_val') to qualify the status. These signal are in phase meaning that in a
given clock cycle, the status and address correspond to one another.

In the example below, the input status channel from the SPI4 interface ('tx_status[]') changes from a value of 0 to 2
coincident with channel 0xc. The affected input channel can be identified by counting status clock cycle slots from
the framing marker of “3” using 'tx_status_ck'. Several cycles later, the status appears on the internal user side bus
('txstat_t') along with a corresponding port address ('txstpa' = 0xc). In this example, the SPI4 line status clock
('tx_status_ck') and the user side status clock signal ('txstck') are asynchronous to one another. 'txstck' is driven
with the system data clock ('SDCK'). Because of the user side over-speed, there are a number of 'txstck' clock
cycles that are invalidated via signal 'txstpa_val'. When 'txstck' and 'tx_status_ck' are operated using the same
clock, only two cycles per status frame (DIP2 and Framing) will be invalidated.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 12 Soft SPI4 IP Core User’s Guide

Figure 2-4. S4TXSP - Transparent Status Mode

RAM Mode
In RAM mode, an internal Status RAM is used to store the status received from the far end of the SPI4 link. Status
information is written into the memory using the user supplied 'txstck' clock signal. The specific location written
each clock cycle is specified by the contents of the Calendar RAM. In this mode, user logic reads the Status RAM
using a clock and address that it supplies (clock may be asynchronous to external status line clock).

Referring to Figure 2-5, the S4TX Status RAM interface is a user side “read only” interface that operates in a syn-
chronous fashion based on the user supplied 'txstck' clock input signal. This clock signal is only used for user read
access of the RAM through the user interface and does not have any phase relationship requirement with respect
to the status channel input clock 'tx_status_ck'. It must however, be equal to the frequency of 'tx_status_ck' or
greater but not less than 'tx_status_ck'.

The top half of the diagram shows continual reads of 1/8 of the Status RAM based on the 'txstadd[4:0]' input
address bus. Only a single clock cycle is required for read operations but as shown, four cycles of the same
address are read. Eight channels worth of status are available per RAM access. The user can sample status for a
new address on the following clock edge. Address location 0 corresponds to channels 0 - 7, address location 1 to
channels 7 - 15 and so on.

In the example below, prior to time 455,160ns the external input status channel ('tx_status[1:0]') reflects a constant
Starved (0x0) indication for all channels and hence 'txstat_r' reflected a constant value of 0x0000. After this time,
tx_status[1:0] transitions to the Satisfied state (0x2). Counting 'tx_status_ck' clock cycles back from the DIP2 and
Framing bits (0x3) on this bus, the transition is shown to occur on channel 26. Looking now at the user side
'txstat_r[]' bus, channel 26 is the first channel to reflect the new Satisfied status. Note that 'txstadd[]' is equal to 3 (8
channels/address) meaning that the channels reported for this address are channels 24-31. Some of the delay that
is incurred between the external and internal user side interfaces is due synchronization that must take place
between 'tx_status_ck' and 'txstck' clock domains.

Signals 'txstpa' and 'txstpa_val' are provided in RAM mode for optional use to indicate where the transmit status
processor is it any given time.

Calendar RAM
A Calendar RAM of up to 512 locations (user accessible read/write) is used to identify the port/channel address of
the incoming status information as it is received and to notify the user that updated status information has been
received for the given port and needs to be read. The reading of locations in the Calendar

RAM is linear and synchronized to the framing contained within the status channel. For systems where the chan-
nels are not symmetrical in terms of bandwidth, the same channel can be programmed into multiple locations in the
Calendar RAM resulting in multiple and more frequent status updates per status frame for a given channel. The
corresponding Calendar RAM used to source status information at the other end of the link must be programmed to
the same length and channel order.

This design of the Calendar RAM interface is based on an EBR True Dual Port RAM providing the underlying mem-
ory function in which the user utilizes one port and the internals of the core utilize the other. The S4TX Calendar
RAM interface is a user side “read/write” interface that operates in a synchronous fashion based on a rising edge

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 13 Soft SPI4 IP Core User’s Guide

active user supplied 'txcalck' clock input signal. This clock signal is used for write access as well as for read access
of the RAM through the user interface in which the address (and data for write cycles) is sampled before being
applied to the RAM core (data is not clocked out of the RAM however). Input signal 'txcalwr' (act high) controls
which operation is to be performed on a per cycle basis (reading does not take place when 'txcalwr' is active).
Reading or writing is allowed to take place on consecutive clock edges.

The example shown in Figure 2-5 shows small piece of what could be an initialization of the 512 location Calendar
RAM if signal 'txcalwr' were to be asserted. For this example, the RAM is used to support only 32 channels
('txcal_len' = 0x20) where each channel has the same amount (1) of Calendar entries and therefore status band-
width. Addresses beyond the calendar length are simply written similarly as though all 256 channels were being
used. Location 0 is programmed to a value of 0 (ch-0), location 1 is programmed to a value of 1 (ch-1), and so on
ending with location 0x1f programmed to a value of 0x1f. A single cycle can be used to perform the write cycle and
as shown the locations above the calendar length are simply written in a like fashion even though they are not used
(i.e. 0x028 with 0x28). Once the calendar RAM is initialized, there is no need to continue writing.

Note that as the address input address changes so does the corresponding output data ('txcaldao') based on
'txcalck' and corresponding to the value that was written. Reading can also be done in a single cycle even though in
the example, the address is held for several cycles.

Figure 2-5. S4TXSP - RAM Mode Status and Calendar RAM Interface

Internal Status Control
This design provides an option ('TXINTSTC'=1) to eliminate the need for user interrogation of received status.
When this option is selected, transmission of data towards the SPI4 line is controlled internally through analysis of
the hungry, starved, and satisfied states received on the input status path. If the satisfied state is received for any
channel, data transmission is stopped until one full iteration of the calendar sequence has been observed again
where all channels are reporting the hungry or starved states. One iteration is defined to be the length of the calen-
dar sequence only, not the full calendar cycle that may include multiple repetitions of the calendar through CAL_M.
In this mode, the user can simply load the user-side transmit FIFO taking into consideration only the state of the
FIFO Almost Full flag and stopping when it is active. If the core is flow-controlled and data transmission stops, the
fill level of this FIFO would naturally build causing this flag to assert assuming user logic continues to load data into
the FIFO.

This mode can be used for single channel/single pipe applications or other applications where blocking is not a
consideration since any one channel can stop transmission of the other channels. When this option is selected, the
user should also select transparent status mode to eliminate the unused Status RAMs, resulting in the smallest
design possible.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 14 Soft SPI4 IP Core User’s Guide

SPI4 Receiver - S4RX
The receive path, shown in Figure 2-6, is the path of data flow from the SPI4 line towards the internal user applica-
tion function and the direction of status flow from the application function towards the SPI4 line. Figure 2-6 indi-
cates through shading some of the hierarchical boundaries and identifies three distinct sub-sections of the S4RX
block as described in the following sections. Figure 2-6 shows the static mode that is implemented in the
LatticeECP3 devices. Similarly, Figure 2-7 shows the dynamic mode that is implemented in LatticeSC/M devices in
128-bit mode.

Figure 2-6. S4RX - SPI4 Receive Path

RxDATA[64]

RxABT

RxSOP,RxEOP

RxPA[8]

RxREM[3]

RxF2AE, RxF2AF, RxF2FE,RxF2FFE

RxFRD

SDCK

RxDAT[64]

RxSOP

RxEOP

RxPA[8]

RxREM[4]

RxFWR

RxABT

RxFF1_FE

RX_STATUS[1:0]

RX_STATUS_CK

SPI4 Side
Application
Side

RxDVAL

RxS4ERR[5]

RxD4ERR

RxAERR

RxNumDip4[2:0]

RxF2A[F/E]THRSH[8:0]

RxDPE

RxSTAT_R[16], or_T [2]

RxSTADDI[5]*

RxSTMSK[8]*

RxCALWR

RxCALADD[5]

RxCALDAI[8]

RxCALDAO[8]

RxCAL_M[8]

RxCAL_LEN[5]

RxSTEN

RxSTWR*

RxSTCK
RxCALCK

S4RX

RxNumDip4e[2:0]

RxSTADDO[8]**

** In RAM Status mode,RxSTADDO[] does not have an I/O appearance in the wrapper.
* In Transparent Status mode,RxSTWR, RXSTADDI[], andRxSTMSK[] do not have I/O appearance in the wrapper.

RxINTSTC

RxSTAT_FF_BEHAV

R
xF

IF
O

2
51

2x
80

R
P

A
R

S
E

, D
IP

4

RCTL[P:N]

RDAT[P:N][16]

R
X

G
B

(P
IC

 G
ea

r
B

o
x/

1-
2

D
eM

u
x,

 D
D

R
/S

D
R

)

S4RXDP

S
4R

X
S

P
(S

ta
tu

s
an

d
 C

al
en

d
ar

 R
A

M
s)

DAT[64]

CTL[4]

RLDAT[64]

RLCTL[4]

R
xF

IF
O

1
51

2x
72

RXS4LS2_CK

RxRST

RxFDP2E

RxFDIP2E

RxF1AE, RxF1AF, RxF1FE,RxF1FFE

RDCLK[P:N]

DELAYC

DLL
part of

rxgb

RXDLL_LOCK

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 15 Soft SPI4 IP Core User’s Guide

Figure 2-7. S4RX - SPI4 Dynamic Mode Receive Path

SPI4 Receive Data Protocol - S4RXDP
The SPI4 Receive Data Protocol (S4RXDP) block performs the reverse operations of the transmitter using SPI4
control words received from the SPI4 line to delineate packet starts, stops, and port switches. Similar to the trans-
mit direction, sop, eop, abt, and port id fields are passed to the user via a user-side FIFO (RxFIFO2). Over speed
as well as another line-side FIFO (RxFIFO1) are also used in order to successfully reverse the effects of potential
“packing” operations by the transmitter. Unpacking is required for cases where there are multiple channel opera-
tions (end-of-packet) per 128-bit data slice received from the SPI4 line. For these cases, multiple writes to the user-
side FIFO are required per line-side clock cycle in order to maintain packet separation through a period of time
where the line-side FIFO reading is temporarily inhibited. The line-side FIFO is operated in an asynchronous mode
bridging the user and line-side clock domains while the user-side FIFO is operated synchronously within the user
clock domain.

The Parser receives a de-multiplexed SPI4 bit-stream (4 or 8 SPI4 words wide depending on mode) through “read”
operations of the line-side FIFO and continually parses the incoming data stream one word at a time looking for
proper SPI4 line protocol, format, and DIP4 parity. As control and data is received from the line, error status
(good/bad) is reported to the user interface through core I/O and used internal to the core in determining whether

RxDATA[128]

RxABT

RxSOP,RxEOP

RxPA[8]

RxREM[3]

RxF2AE, RxF2AF, RxF2FE,RxF2FFE

RxFRD

SDCK

RxDAT[128]

RxSOP

RxEOP

RxPA[8]

RxREM[4]

RxFWR

RxABT

RxFF1_FE

RX_STATUS[1:0]

RX_STATUS_CK

SPI4 Side
Application
Side

RxDVAL

RxS4ERR[5]

RxD4ERR
RxAERR

RxNumDip4[2:0]

RxF2A[F/E]THRSH[8:0]

RxDPE

RxSTAT_R[16], or_T [2]

RxSTADDI[5]*

RxSTMSK[8]*

RxCALWR
RxCALADD[5]

RxCALDAI[8]

RxCALDAO[8]
RxCAL_M[8]

RxCAL_LEN[5]

RxSTEN

RxSTWR*

RxSTCK

RxSTCK_LINE

RxCALCK

S4RX

RxNumDip4e[2:0]

RxSTADDO[8]**

** In RAM Status mode,RxSTADDO[] does not have an I/O appearance in the wrapper.
* In Transparent Status mode,RxSTWR, RXSTADDI[], andRxSTMSK[] do not have I/O appearance in the wrapper.

RxINTSTC

RxSTAT_FF_BEHAV

R
xF

IF
O

2
51

2x
14

4

R
P

A
R

S
E

, D
IP

4

RCTL[P:N]

RDAT[P:N][16]R
X

G
B

(P
IC

 G
ea

r
B

o
x/

1-
2

D
eM

u
x,

 D
D

R
/S

D
R

, A
IL

)

S4RXDP

S
4R

X
S

P
(S

ta
tu

s
&

 C
al

en
d

ar
R

A
M

s)

DAT[128]

CTL[8]

RLDAT[64]

RLCTL[4]

AIL_LK

R
xF

IF
O

1
51

2x
14

4

RxRSTAIL,RxRSTDSKW

RXS4LS4_CK

RxRST

RxFDP2E

RxFDIP2E

RxF1AE, RxF1AF, RxF1FE,RxF1FFE

D
es

ke
w

RDCLK[P:N]CLKDIV
EDGE CLK

part of rxgb

D[128]

C[8]

DSKWD, GT40_TRN

RUN_AIL, RST_AIL

RxALNMD

RxLT10_TRERR,RxLT40_TRERR,RxDSKWD

rxs4ls2_ck

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 16 Soft SPI4 IP Core User’s Guide

to declare the SPI4 line in-alignment or out of alignment based on user programmable error thresholds (see also
“Start-Up Procedures” on page 23). Once the SPI4 line is in alignment, and a valid data segment is detected, the
data and relevant control (sop, eop, abt, port address, etc.) are aligned, left justified, and written into the user-side
FIFO as long as it is not full (if full, the data is discarded). Assuming a functional Status channel, the user-side
FIFO will never over-flow. There is an output error signal that indicates the full condition should it occur due to a
faulty or unequipped status channel.

User logic monitors primarily the user-side receive FIFO Empty flag ('RxF2E') as it reads data and control informa-
tion. When the empty flag is asserted, reading should be suspended until it is again deasserted. Since both the
write and read side clocks are the same, once the user-side begins reading, it will not be able to overrun the current
burst segment. FIFO Almost Full ('RxF2AF'), FIFO Almost Empty ('RxF2AE'), and FIFO Full ('RxF2FE' - error con-
dition) output signals are also provided to the user, but may or may not be used. The FIFO almost Full and Full sig-
nals are used internally affecting the transmitted status under certain abnormal circumstances (see “SPI4 Receive
Status Protocol - S4RXSP” on page 18 for further information). Thresholds for almost empty and full flags are set
through the GUI capture phase but can also be set in real time via IP core port connections.

Receive Data Timing Diagram Example
Figure 2-8 shows the reception of three 75-byte full packets for channels 0, 1, and 2 (labeled a, b, and c) through
the receive user FIFO interface. The interface operates in a synchronous fashion based on the user-supplied 'sdck'
clock input signal. This clock, as mentioned earlier, should have some over-speed relative to the equivalent SPI4
line-side, which is the case for this analysis. The first packet (channel 0) starts at time 58900ns in response to an
active read input signal ('rxfrd') from the user and is marked by the assertion of signals 'rxsop', 'rxdval', 'rxpa', and
'rxdata[127:0]' by the IP core. The effects of the over-speed are apparent very early in the transfer since 'rxdval' is
used to invalidate one of the six clock cycles associated with this transfer (note also the assertion of 'rxfe' - FIFO
empty). In the sixth clock cycle, 'rxeop' and 'rxrem' are asserted, indicating the end of the packet and the amount of
remaining bytes (0xa = 11 bytes) in the last slice (128 bits) of data. It is in this clock cycle that signal 'rxdp4e' would
be active if the packet had been received with a DIP4 error or the assertion of 'rxabt' if the packet was sent with an
abort by the far end of the link. These two signals are valid only when both the 'dval' and 'rxeop' signals are also
active. The second and third packet transfers are similar to the first except different cycles are invalidated by 'rxd-
val'.

Note that a read of an empty FIFO is tolerated but the user must disqualify data based on 'rxdval' as mentioned
above. In this example, 'rxfrd' is held active constantly and data is taken only when validated. In terms of latency
delay through the core from the SPI4 line to the receive user interface, it takes 17 'sdck' clock cycles from the arrival
of the first SPI4 data word to de-assertion of 'txfe' (FIFO empty).

Figure 2-8. S4RX User Data Interface

Error Handling
The SPI4 receiver checks for a number of error conditions and raises individual error flags ('RS4ERR[4:0]') for
each, as described in this section. When considering the type and level of support for error checking, one consid-

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 17 Soft SPI4 IP Core User’s Guide

ers two distinctly different needs 1) the system/device debug effort where the user incorrectly loads two SOPs in a
row into the output FIFO at the far-end for example and is quickly lead to the problem by adequate error reporting
and 2) the final system where good error reporting can be used to support features like “packet drop” and improved
recovery speed.

Control Word Preceded by a Payload Control Word (RS4ERR[0])
Any control (rctl=1) word that is preceded by a payload control (rctl=1 and b15=1) word is treated as a SPI4 line
protocol violation since only “data” is allowed to immediately follow a payload control word. When this condition is
detected, the burst associated with the payload control word is terminated in the normal fashion (i.e. DIP4 parity
checking and passed to the output FIFO). The second and remaining control words, if present, are treated as data
starting the continuation burst of the payload control word (see Figure 2-9) and also written to the output FIFO. This
causes erroneous data in the second segment (the extra control word/s) and it will therefore fail DIP4 error check-
ing when concluded. In addition, an error flag (not FIFO aligned) is activated to notify the user of the condition.

One assumption for system level analysis is that the hardware at the transmitting end has been debugged and
operating correctly and will not send multiple control words in a row without the presence of a fault or a noisy SPI4
line. It is therefore believed that in most cases, for the examples shown in Figure 2-9 and Figure 2-10, that it is the
control signal (rctl) that is sampled incorrectly and what is actually present on the SPI4 bus is a data word and not
a control word. When considering the effects a situation like this, it is important that many packets or packet seg-
ments are not written to the output FIFO that would complicate and lengthen recovery. It would be better to either
add the consecutive control words to a single segment or to drop them altogether rather than to fill and possibly
over-flow the receive FIFO with many zero length entries. There are several cases to consider:

• Payload Control with one or multiple illegitimate Control Words following in the middle of a valid data segment.
When this condition occurs, the first segment will fail DIP4 parity, and N number of continuing control words will
be tacked on to the next segment and it too will fail parity.

Figure 2-9. Multiple Illegitimate Control Words In a Data Segment

• A valid payload control word is sampled correctly but due to signal integrity/noise problems, rctl is again sampled,
this time incorrectly, as control during a time when data is actually on the bus. For this case, the first segment will
pass parity and be passed on to the user. The second segment will fail parity.

Figure 2-10. Multiple Illegitimate Control Words At Burst Boundary

Cases similar to the above but for which no Payload Control words are received (multiple control words where
b15=0), are handled through other error checking mechanisms as follows:

• Reception of an Idle control word sequence (PURE, w/EOP, or ABT) will terminate any in-progress segment. If
this condition occurs in the middle of a valid segment, the first part will fail with DIP4 error and the second part

Originally Transmited Burst

*1 The Control Signal of the SPI4 Bus has been i ncorrectl y sampled as Control rather than Data

DATADATA P/CTLPCTL DATADATA IEOPDATA IDLEIDLEDATAPCTL

SOP*1 SOP*1

Segmented Burst Segmented Burst

DATADATA DATADATA DATADATA IEOPDATA IDLEIDLEDATAPCTL

PCTLDATA DATACTL*1 DATADATA DATADATA PCTLDATADATADATA

Valid Burst Received Invalid Burst r eceived

*1 The Control Signal of the SPI4 Bus has been i ncorrectl y sampled as Control rather than Data

PCTLDATA DATADATA DATADATA DATADATA PCTLDATADATADATA

Originally Transmi tted Burst Originally Transmi tted Burst

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 18 Soft SPI4 IP Core User’s Guide

will appear as a “data preceded by idle” error condition and all data up to the next valid control word will be
dropped inside the core (see "Reserved Control Word Detected (RS4ERR[2])” below).

• Reception of a Reserved Word sequence will also terminate any in progress segment. If this condition occurs in
the middle of a valid segment, the first part will fail with DIP4 error and the second part will appear as a “data pre-
ceded by idle” error condition.

EOP Preceded by Idle (RS4ERR[1])
All EOP bursts on the SPI4 line must contain at least one byte of data, which means that data must precede an
EOP control. This error will be activated when an EOP control word (idle or payload control) is observed preceded
by an Idle (B15=0). Nothing is written to the output FIFO when this occurs. This error can be used to indicate pos-
sible missing SOPs.

Data Preceded by Idle (RS4ERR[3])
All data bursts must be preceded by a valid payload control word (b15=1) specifying, among other things, the chan-
nel address of the data to come. Data that is observed preceded by an idle (PURE, w/EOP, ABT b15=0) is consid-
ered a SPI4 protocol violation. In this case, the data is dropped and the user notified of the error. This could be an
indication of a missing SOP. The user will need to either recover the entire link given that there is no valid address
identification with this error or ignore it and allow a higher-level application handle it.

Reserved Control Word Detected (RS4ERR[2])
All reserved control words are considered SPI4 protocol violations. When observed, any in-progress segment will
be terminated.

Invalid Burst (RS4ERR[4])
All non-EOP bursts on the SPI4 line are expected to conform to the credit (16 byte) boundary (a multiple of 16
bytes) rule. Any burst detected with out an EOP that is not a multiple of 16 bytes is flagged as an error. This could
be an indication of a missing EOP. This error signal is aligned and “or”ed into the DIP4 error lane allowing for the
support of a packet-drop capability.

SPI4 Receive Status Protocol - S4RXSP
The SPI4 Receive Status (S4RXSP) function receives status information (starved, hungry, and satisfied) from the
user in either RAM or Transparent mode selectable during the GUI capture phase and implemented via synthesis
parameter 'RxSTAT_MD' (modes discussed later in this section). Flow control information is sent to the far end
through the status channel providing an indication of the full/empty status of the receive user-side FIFO and any
user-supplied per-channels FIFOs at the near end. User logic at the far end uses this information to determine the
appropriate amount of data (MaxBurst1, MaxBurst2, or no data) that can be sent on a per-channel basis without
causing near-end buffer overflow.

The status path operates independently from the data path and has only minimal connection between the two for
presenting receive alignment status (in/out of frame) and both receive user and line-side FIFO fill level status. All of
these connections affect the status sent to the far end under abnormal circumstances. When the receive data path
is out-of-frame, for example, a constant “11” pattern is sent to the far end on the status channel over-riding user
status. The far end is expected to respond with Training Control and Data patterns on the data path to aid in resolv-
ing the alignment issue. Additionally, receive user-side FIFO fill levels can over-ride user status and force a Satis-
fied state for all channels while in the aligned state. The user can optionally select ('RxST_SEL_FF_FAF'= 0 or 1)
whether the Almost Full, or Full signal is used to cause the override condition. Regardless of the selection, the con-
dition persists until the Almost Empty signal is asserted upon which status reverts back to being sourced from the
Status RAM or transparent Status interface. The same behavior exists for the line-side FIFO except that there is no
option to use the Full signal. Almost Full is used to trigger the override and almost empty is used to clear it. These
features protects against cases where user logic is late in servicing the receive user FIFO for whatever reason and
for cases where there is not enough over-speed in the system clock domain to deal with a potential burst of small
segment EOPs from the line-side FIFO.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 19 Soft SPI4 IP Core User’s Guide

User input 'RXSTEN' provides enable/disable control over operation of the receive Status interface and may be
used to ensure that incorrect status information is not transmitted on the SPI4 link during initialization and/or re-ini-
tialization (i.e. adding/subtracting a channel). When 'RXSTEN' is inactive, the output Rx Status interface is forced to
send constant framing regardless of the state of the input data path. Although the Calendar RAM is always 'write'
accessible by the user; this is the best time to initialize the Calendar.

The following sections describe the two status modes, RAM and Transparent, which are provided for transferring
status information into the core. For both modes, a user-supplied clock ('rxstck') is used as the user side interface
clock to synchronously transfer status into the core. A second user-supplied clock ('rxstck_line'), which may be
asynchronous to 'rxstck', is used to drive status on the SPI4 interface. Only one of the following modes is provided
at any given time and is determined during synthesis based on parameter 'RXSTAT_MD'.

Transparent Mode
In transparent mode, the user supplies status in a 2-bit per channel bus format. This data passes through this mod-
ule and to the external SPI4 status interface with out being stored in RAM. The Calendar

RAM discussed below provides the user logic with an 8-bit channel address for which status is requested on a con-
tinual basis according to the calendar sequence. At the appropriate time, status transmission is suspended and
correct framing and dip2 parity are inserted. This mode does not contain RAM-based status storage and therefore
utilizes less device resources.

Figure 2-11 shows a timing diagram example of the Transparent Status Mode operating with 32 channels and a
single calendar entry per channel. In this mode, status is not stored in RAM but rather is passed from the user inter-
face to the external status SPI4 channel interface transparently via a 2b user side status bus ('rxstat_t'). The core
does retain the Calendar RAM and is therefore the controller in terms of determining which channel and at what
time its status is to be transmitted. The core provides the user with an 8b address ('rxstaddo') informing which
channels status is needed. A fixed relationship exists between a change in address by the core and when the
expected status (4 cycle delay) for that channel address must appear on the input bus.

In the example below, 'rxstck' and 'rxstck_line' are asynchronous. 'rxstck' is driven with the user system data clock
('SDCK') while 'rxstck_line' is driven by _ rate version of the transmit SPI4 line clock ('TxS4LS4_CK'). The input sta-
tus bus from the user changes from a value of 0 to 2 coincident with 'rxstaddo' address output 0x1a (note: a 4
'rxstck' clock cycle delay before sampling status for a given address). The affected output channel can be identified
by counting status slots using 'rxstck_line' clock from the framing marker of “3” equal to 0x1a or 6 clock cycles away
in the status sequence.

Figure 2-11. S4RX User Transparent Status Mode Interface

RAM Mode
In RAM mode, the user writes status to an internal RAM in 16-bit bus format carrying 2-bit status fields for 8 chan-
nels per write cycle. A write strobe, 8-bit write mask field, and associated clock are also used in the write pro-
cesses. The mask field allows the user to write the status for a single channel or any number of the other seven
channels within the 16-bit memory location without affecting the status of the other channels.

The RAM interface is a user side write-only interface that operates in a synchronous fashion based on a user sup-
plied 'rxstck' clock input signal. This clock signal is also used internal to the core for reading the Status RAM. Since
there is no synchronization between locations written to the RAM by the user and locations read from the RAM by

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 20 Soft SPI4 IP Core User’s Guide

internal logic, it is possible to both write and read the same location within the same clock cycle. This condition is
covered within the design and ensures that static timing is met should the condition arise.

The timing diagram shown in Figure 2-12 presents a 32-channel application with continual writes ('rxstwr' active) to

1/8 of the Status RAM made up of 4 address locations 0 to 3 via the five bit address bus 'rxstaddi[4:0]' and a 16b
status/(data) bus 'rxstat_r[15:0]'. Status for up to 8 channels is written into the RAM on each clock cycle that the
write signal is active and associated channel mask bits ('rxstmsk[7:0]') are clear. Address location 0 corresponds to
channels 0 to 7, address location 1 to channels 8 to 15, and so on. The least significant mask bit corresponds to
the least significant channel and the mask is active high. For this example, there are two writes performed per
memory location, one with the mask field set to zero's allowing the write and a second where the mask field is
active illustrating the mask capability.

Up until time 455,420ns, a status of Starved (“00”) is written using a value of 0x0000 as well as a status of Satisfied
(“10”) using a value of 0xaaaa for each location (two writes per location). The first write of the two is successful but
the second is not due to an alternating mask field value of 0x00 and 0xff as shown ('rxstmsk') for each channel
resulting in a Starved output status on 'rx_status' for all channel as shown.

After this time, the Satisfied state for all channels (0xaaaa) is written into the RAM during cycles where, this time,
the mask field is clear resulting in new status. The first RAM location written with the new status value is location
0x3 corresponding to channels 24-31 (8 channels per location). For this first write, only 6 of the channels have
changed and so a value of 0xaaa0 is actually written. This write takes place in time such that the new status for
channel 26 of the 8 channel group makes it out on the external 'rx_status' interface before the next full status cycle
starts. Using 'rxstck_line', a count of 6 clock cycles from the frame marker (value of 0x3) shows the first channel
with the new status.

Calendar RAM
Regardless of the status mode chosen by the user to deliver status to the core, status is transmitted according to a
local Calendar RAM of up to 512 locations (user accessible read/write) along with Framing and DIP2 parity infor-
mation. The contents of this RAM is used to specify which channel's status is to be transmitted on a per-clock cycle
basis. The internal reading of locations in the Calendar RAM is linear and the amount of memory read corresponds
to a user supplied length field ('rxcal_len[]'). The phase of the address counter is arbitrary and is not synchronized
to any other part of the system. For systems where the channels are not symmetrical in terms of bandwidth, the
same channel can be programmed into multiple locations in the Calendar RAM resulting in multiple and more fre-
quent status updates per status frame. The corresponding Calendar RAM used to receive status information at the
far-end of the SPI4 link must be programmed to the same length and channel order.

The Calendar RAM interface is based on a True Dual Port RAM in which the user utilizes one port and the internals
of the core utilize the other. The Calendar RAM interface is a user side “read/write” interface that operates in a syn-
chronous fashion based on a rising edge active user supplied 'rxcalck' clock input signal. This clock signal is used
for write access as well as for read access of the RAM through the user interface in which the address, and data for
write cycles, are sampled before being applied to the RAM core (data is not clocked out of the RAM). Input signal
'rxcalwr' (act high) controls which operation is to be performed on a per cycle basis and reading does not take place
when 'rxcalwr' is active. Reading or writing is allowed to take place on consecutive clock edges

The example shown in Figure 2-12 shows a small piece of what could be an initialization of the 512 location Calen-
dar RAM if 'rxcalwr' were to be asserted. For this example, the RAM is used to support only 32 channels ('rxcal_len'
= 0x20) where each channel has the same amount (1) of Calendar entries and therefore status bandwidth. Loca-
tion 0 is programmed to a value of 0 (ch-0), location 1 is programmed to a value of 1 (ch-1), and so on ending with
location 0x1f programmed to a value of 0x1f. Addresses beyond the calendar length are also written in the same
fashion although not used. A single cycle is used to perform the write cycle. Once the calendar RAM is initialized,
there is no need to continue writing as is shown in the figure.

Note that as the address input changes and 'rxcalwr' is de-asserted, so does the corresponding output data
('rxcaldao') based on 'rxcalck' and corresponds to the value written.

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 21 Soft SPI4 IP Core User’s Guide

Figure 2-12. S4RX User Calendar RAM Interface

Internal Status Control
This design provides an option ('RxINTSTC'=1) to eliminate the need for user-generated status for single chan-
nel/pipe applications and applications where blocking is not a concern. When this behavior is selected, the user-
side FIFO flags are used to automatically determine the appropriate three-state status to send on the receive sta-
tus channel as defined in the OIF specification and shown in Figure 2-13. The user application can ignore the sta-
tus channel and simply unload the user-side data FIFO in this mode since the far end will automatically be flow
controlled based on the FIFO fill levels when the user application gets behind.

Figure 2-13. Internal Status Mode Encoding

• AF active = Satisfied

• AF inactive and AE inactive = Hungry

• AF inactive and AE active = Starved

Both almost empty and almost full flags are user programmable. When this option is selected, the user should
select Transparent Mode to eliminate the unused Status RAMs from being implemented in the circuit.

SPI4 Receiver I/O - S4RXIO (RXGB)
The S4RXIO provides 1-2 gearing/de-multiplexing, DDR to SDR conversion, and clock/data alignment functions for
the receive data direction (LVDS buffer insertion is done outside the core). De-multiplexing and DDR to SDR con-
version functions are performed at the PIC level on an individual signal basis and therefore do not require any PLC
logic resources. The input SPI4 bus is comprised of a 16-bit data bus 'RDAT_[P:N][15:0]', a control signal
'RCTL_[P:N]' and a source synchronous clock signal 'RCLK_[P:N]', all which of operate over differential pairs using
LVDS levels. These 16 data signals plus one control signal are converted to “single-ended” mode by the LVDS buf-
fers and sampled within the PICs logic using both edges of the received data clock 'RCLK [P:N]' implementing a 1-
2 de-multiplexing function and thus doubling the number of signals from 17 to 34. The clock rate/frequency at this
point remains the same as that of the SPI4 line but data is now in a single-edged clock format. Another 1:2 stage of
de-multiplexing is performed at this point to reduce the 34-bit wide bus clock to a 1/2-rate clock frequency. This de-
multiplexing function is also performed in the individual per-I/O signal PICs and results in a 64-bit wide data bus
and 4-bit control bus leaving the PIC area of the FPGA.

Starving Hungry Satisfied

(Empty) (Full)

(Almost Empty) (Almost Full)

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 22 Soft SPI4 IP Core User’s Guide

Data and clock are transmitted by the sending device in-phase and therefore the receiver is responsible for adjust-
ing the clock/data phase relationship such that on a per-signal level, reliable sampling can be achieved. In static
mode, the function is performed using a common DLL and per-channel delay lines in order to achieve an exact 90
phase shift of clock relative to data at the sampling flip-flop inside the PICs for each signal of the SPI4 bus. In
dynamic mode, this function is performed using AIL in LatticeSC/M devices. See see IPUG44, LatticeSCM SPI4.2
MACO Core User’s Guide for further information.

Calendar and Status RAM Access
There are at most four RAMs within the core that are user accessible in terms of read/write. Each has their own
address and data buses as shown in Table 2-1. The calendar RAMs are always present in the design and must be
initialized through the bus provided. The status RAMs are optioned in or out depending upon the mode chosen for
sending and receiving status. In Transparent Mode, there are no Status RAMs and therefore no bus-associated
internal I/O. In RAM Mode, a read/write bus is provided.

Table 2-1. Signal Definitions

Figure 2-14. Status RAM Layout

Figure 2-15. Calendar RAM Layout

RAM Name
Access

Type
Number

Locations
Addr
Bus Data Bus Description

Rx CALENDAR R/W 512 9 bit 8 bit Each location holds a 8-bit channel ID of the incoming status

Rx STATUS W only 32 5 bit 16 bit Each location holds 8, 2-bit status fields for 8 received status
channels.

Tx CALENDAR R/W 512 9 bit 8 bit Each location holds a 8-bit channel ID of the outgoing status

Tx STATUS R only 32 5 bit 16 bit Each location holds 8, 2-bit status fields for 8 transmitted sta-
tus channels.

S0S1

b0b15

ch 0ch 1ch 2ch 3ch 4ch 5ch 6ch 7

S0S1S0S1S0S1S0S1S0S1S0S1S0S1Addr 0

S0S1

b0b15

ch 248ch 249ch 250ch 251ch 252ch 253ch 254ch 255

S0S1S0S1S0S1S0S1S0S1S0S1S0S1Addr 31

Status RAM

b0b7Addr 0

Addr 511

channel #

b0b7

channel #

Calendar RAM

http://www.latticesemi.com/documents/ipug44.pdf

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 23 Soft SPI4 IP Core User’s Guide

Start-Up Procedures
Receive Direction Start-Up
This section describes the SPI4 Link Start-Up and Recovery procedures for the receive direction. Only static mode
operation is supported in this offering.

Dynamic Mode Start-up and Recovery (SMSR) FSM
Dynamic mode is used in the LatticeSC device only. For more information about SPI4 dynamic mode, see IPUG44,
LatticeSCM SPI4.2 MACO Core User’s Guide.

Static Mode Start-up and Recovery (SMSR) FSM
Figure 2-16 shows the Static Mode Startup and Recovery (SMSR) Finite State Machine (FSM) illustrating the
receivers link start-up and recovery sequence. After a core reset, the SMSR FSM begins in the “reset” state and
waits there until 'RXDLL_LOCK' is asserted. While in the “reset” state, as well as all others, except “normal”, SMSR
output signal 'RXAERR' is forced active causing constant framing patterns (“11”) to be sent to the far end via the
receive status channel and an inhibit on movement of data into the receive user interface FIFO. Sending constant
Framing patterns to the far end causes it to respond with sending constant Training Control and Data words in
return on the data interface which is needed for start-up functions.

Once the Receive DLL has successfully locked onto the clock edges and is confidently measuring the exact period
of the receive clock ('RxDLL_LOCK'=1), state-flow will progress into state “train_det”'. If at this time the Training
Detect circuit has successfully observed the Training and Control pattern, state-flow will progresses to state “ft_adj”
(fine-tune adjust). Throughout this time, it is expected that the far-end is sending constant Training Control and
Data patterns as specified by the OIF.

After the receiver has locked onto the receive clock and observed training patterns, state “DIP4” is entered and the
receiver attempts to achieve synchronization with the data. Both the “good” and “bad” DIP4 parity error counters
are cleared and a continuous analysis of the input data stream in terms of DIP4 error checking begins. When a pro-
grammable number of consecutive correct DIP4 control words are received, the In-Sync state is declared
('RXAERR'=0) and state “normal” is entered. When this occurs, valid status is now allowed to be sent to the far-end
and data received from the SPI4 line is allowed to move into the user-side receive FIFO. At this point normal oper-
ation has begun. If at any time during normal operation a programmable number of consecutive DIP4 errors
occurs, 1) state flow returns to the “DIP4” state, 2) the out-of-synchronization state is declared, and 3) again the far
end is sent constant Status framing and the process begins all over again.

The above actions are taken autonomously by the DMSR-FSM as it continuously seeks to achieve a “normal” state
where the receiver is in synchronization with the data (in-sync) without user involvement. The user can, however,
force recovery actions from any state such as a full SMSR-FSM reset ('GRST_N').

http://www.latticesemi.com/documents/ipug44.pdf

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 24 Soft SPI4 IP Core User’s Guide

Figure 2-16. Static Mode Start-Up and Recovery FSM

Transmit Direction Start-Up
During and immediately after reset is released, the SPI4 Transmitter (S4TX) continuously sends the training pat-
tern on the output data interface and transmit status information is ignored. The duration of this condition is con-
trolled by the status block and is based upon the reception of correct Framing and DIP2 parity from the far end of
the link. Once the framing pattern is found and a programmable number of consecutive (based on 'TxNUMDip2')
correct DIP2 matches are detected, the link is considered to be “in alignment”. Until alignment is achieved, the user
should not read the status RAM since its content is unpredictable at this time. Upon entering the aligned state, data
from the user-side transmit FIFO is allowed to be sent out on the SPI4 line and valid transmit status for at least one
full status frame will have been written into the Tx Status RAM. In the Transparent Status mode, signal
'TXSTPA_VAL' is used to validate or invalidate 'TxSTPA[]' and 'TxSTAT_T' until alignment is achieved.

While aligned, a programmable number of consecutive (based on 'TxNUMDIP2E') DIP2 parity mismatches will
cause a transition back to the Out-Of-Alignment state.

Signal Descriptions
The Soft SPI4 IP core I/Os are specified in Table 2-2 and Table 2-3. Table 2-2 provides the I/O for the internal user
interface side and Table 2-3 provides the SPI4 line-side external I/O.

Table 2-2. User-Side Signal Descriptions

Signal Name Direction Description

S4RX/S4TX Common Signals

GRST_N Input Soft SPI4 IP Core Global core reset (active low).

RXRST Input Async input for SPI4 RX, it will be internally used to sync reset the FIFO
controllers, this signal is active high.

TXRST Input Async input for SPI4 TX, it will be internally used to sync reset the FIFO con-
trollers, this signal is active high.

FSM Inputs:
 rxdll_lock – Receive DLL Lock
 train_det – Training detected
 dp4err – Prog number of correct dip4 received
 !dp4err – Prog number of incorrect dip4 received
 grst_n – Global reset

FSM Outputs:
 rxaerr – Inactive only in “normal” state

reset

!rxdll_lock

rxdll_lock

train_det train_det

!train_det

!dp4err dp4err

dp4err
!dp4err

rst

rst

ft_adj

dip4

normal

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 25 Soft SPI4 IP Core User’s Guide

S4RX Internal Data Path Related Signals

RXSDCK Input
Receive System Data Clock – Should have over-speed relative to the SPI4
receive line clock /2 in 64b mode and /4 in 128b mode. Also used in user
domain logic to transfer data from the IP core.

RXDATA[127,64:0] Output Receive System Data – User-side system data outputs from RxFIFO2 (4 -
16 bit data words = 64b mode, or 8 - 16 bit data words = 128b mode).

RXSOP Output Receive Start Of Packet – The corresponding data slice contains the start of
a packet (a=1).

RXEOP Output Receive End Of Packet – The corresponding data slice contains the end of a
packet (a=1).

RXREM[3,2:0] Output

Receive Remainder – Indicates the byte lane position of the last valid data
byte. A value of 0 = 1 byte, left justified MSB = b63 - b56 in 64b mode, b127-
b120 in128b mode). A value of 7 (64b) or 15 (128b) = all bytes valid. During
normal data transmission, the value should be either 7 (64b) or 15 (128b).

RXABT Output Receive Abort – Packet error status indicating the corresponding packet
was received with an abort (a=1).

RXPA[7:0] Output Transmit Port Address (0 - 255).

RXDP4E Output
Receive Dip4 Parity Error – Dip4 Parity Error indication (a=1) FIFO aligned
to EOP. Error relevant for Packets and packet segments only - not active for
single control words. See also RxD4ERR

RXDVAL Output
Receive FIFO Data Valid – This signal when active (=1) qualifies RxFIFO2
data (RxDATA[]) as being valid. There is no fixed relationship to the RxFRD
input and this RxDVAL signal - RxDATA[] should be ignored when inactive.

RXF1AE Output

Receive FIFO1 Almost Empty – This signal when active (=1), indicates
RxFIFO1 is almost empty as determined using parameter
RXF1AETHRSH[8:0]below. This signal is used inside the core (S4RXSP)
during abnormal conditions and factors into status sent to the far-end. This
is a system level debug signal and does not require connection. See also
output signal RXF1AF below.

RXF1AF Output

Receive FIFO1 Almost Full – This signal when active (=1), indicates
RxFIFO1 is almost full as determined using parameter RXF1AFTHRSH[8:0]
below. When this signal is asserted (edge), the “Satisfied” condition will be
transmitted on the RXSTATUS[1:0] channel until the corresponding RxF1AE
signal is asserted (edge). This is a system level debug signal and does not
require connection.

RXF1E Output
Receive FIFO1 Empty – This status signal when active (=1), indicates
RxFIFO1 is empty. This is a system level debug signal and does not require
connection.

RXF1FE Output

Receive FIFO1 Full Error – This error signal when active (=1), indicates
RxFIFO1 is full and should be considered to have over-flowed. This error
condition should never happen assuming an operational status path and
may be monitored by user logic.

RXF2AE Output

Receive FIFO2 Almost Empty - This signal when active (=1), indicates
RxFIFO2 is almost empty as determined using synthesis parameter
RXF2AETHRSH[8:0] below. This signal is used inside the core (S4RXSP)
but may be used in the user-side interface. See also output signal RXF2AF
below.

RXF2AF Output

Receive FIFO2 Almost Full - This signal when active (=1), indicates
RxFIFO2 is almost full as determined using synthesis parameter
RXF2AFTHRSH[8:0] below. Also, when this signal is asserted (edge), the
“Satisfied” condition can optionally be transmitted on the RXSTATUS[1:0]
channel until the corresponding RxF2AE signal is asserted (edge).

RXF2E Output Receive FIFO2 Empty - This status signal when active (=1), indicates
RxFIFO2 is empty and the user-side should stop reading.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 26 Soft SPI4 IP Core User’s Guide

RXF2FE Output Receive FIFO2 Full Error - This error signal when active (=1), indicates
RxFIFO2 is full and should be considered to have over-flowed.

RXFRD Input Receive FIFO Read = This signal when active (=1), causes a read of
RxFIFO2.

RXF1AFTHRSH[8:0] Input RxFIFO1 Almost Full Threshold - Threshold value in 16 byte increments.
Affects Rx Flow Control.

RXF1AETHRSH[8:0] Input RxFIFO1 Almost Empty Threshold - Threshold value in 16 byte increments.
Affects Rx Flow Control.

RXF2AFTHRSH[8:0] Input RxFIFO2 Almost Full Threshold - Threshold value in 16 byte increments.

RXF2AETHRSH[8:0] Input RxFIFO2 Almost Empty Threshold - Threshold value in 16 byte increments.

RXNUMDIP4[2:0] Input
Receive Number Of DIP4 Words (2:0) - This parameter specifies the num-
ber of correct DIP4 words required before the S4RXDP receiver declares
alignment.

RXNUMDIP4E[2:0] Input
Number Of DIP4 Error Words (2:0) - This parameter specifies the number of
incorrect DIP4 words that are required before the S4RXDP receiver
declares an out-of-alignment error condition.

RXF1PARERR Output
Receive FIFO1 Parity Error - This signal when active (=1) indicates that a
parity error was detected on data read from RxFIFO1. This is a debug only
signal - no connection is required.

RXRPD4ERR Output
Receive Parser Data Parity Error - This signal when active (=1), indicates
that a DIP-4 parity error has been detected on single control words such as
Idles and SOP control words.

RXD4ERR Output
Receive Data Parity Error - This signal when active (=1), indicates that a
DIP-4 parity error has been detected. Includes packet/segment dip4 errors
as well as single control word dip4 errors.

RXAERR Output
Receive Alignment Error - This signal when active (=1), indicates the
S4RXDP block has not achieved alignment (consecutive number of correct
DIP4 words).

RS4ERR[4:0] Output

Receive SPI4 Line Protocol Violation Errors - These signals when active
(=1) indicate that the S4RXDP block has received a sequence of data and
control words that are in violation of the SPI4 protocol. All signals are syn-
chronous to the RxSDCK clock domain and will be active for at least 1 full
cycle.

RS4ERR[4] - A valid write to RxFIFO2 where less than 8 (64b) or 16 (128b)
bytes are marked valid without an EOP active. This is "or"ed with the aligned
DIP4 error lane through RxFIFO2 and is activated to mark the segment as
bad.

RS4ERR[3] - Data preceded by an idle. Error flag is raised.

RS4ERR[2] - Reserved Control Word. Error flag is raised.

RS4ERR[1] - Any EOP preceded by an idle.

RS4ERR[0] - Any control word preceded by a payload control word.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 27 Soft SPI4 IP Core User’s Guide

RX User-Side Signals Used Only in LatticeSC Devices

RXRST_AIL Input Receive Reset AIL - This signal when active causes a reset and re-acquisi-
tion of the SPI4 input signals on a per signal basis by the AIL circuits.

RXRSTDSKW Input Receive Reset De-Skew - This signal when active causes a reset of the de-
skew module forcing it to perform the de-skew operation.

RXLT10_TRERR Output
Receive Less Than 10 Training Patterns Error - This signal when active (=1)
indicates that less than 10 training patterns were received during an “de-
skewed” state. 10 repetitions are required to maintain de-skew once trained.

RXLT40_TRERR Output

Receive Less Than 40 Training Patterns Error - This signal when active indi-
cates that less than 40 training patterns were received during non de-
skewed un-aligned state. 40 repetitions are required initially de-skew the
line.

RXDSKWD Output Receive De-Skewed - This signal when active indicates that the de-skew
block has successfully de-skewed the input SPI4 line

RXLOOP Input Receive Loop - Unused in this version of the core.

RXALNMD Input Receive alignment mode - This signal when active (=1) indicates that the RX
AIL circuits are turned on for dynamic alignment operation.

RXTRAIN_EN Input

Receive Training Enable - This signal when active means that the receiver
must see Training and Control before declaring the receiver in-alignment.
When inactive, the receiver can declare in-alignment state with merely cor-
rect DIP4.

RXDESKW_EN Input Receive Deskew Enable - This signal when active means that the deskew
module is allowed to de-skew the input data stream.

S4RX Internal Status Path Related Signals

RXCALCK Input

Receive Calendar Clock - This clock signal is used to synchronously
read/write the CALENDAR RAM. The frequency of this clock is not critical
since once initialized, access is not expected (freq Max = 1/4 of data line
clock).

RXSTCK Input

Receive Status Clock - Receive Status Clock: This clock signal is used for
writing in status into the core from the user logic side. It can be the same
clock as the RXSTCK_LINE or the user application clock domain clock,
such as SDCK (in 128-bit mode), or 1/2 of the SDCK (in 64-bit mode). Used
in both Transparent and RAM modes.

RXSTCK_LINE Input
Receive Status Line Clock - This clock signal is used for clocking status off-
chip via the rx_status[1:0] channel (freq max = 1/4th of the data line clock).
Used in both Transparent and RAM modes.

RXFDIP2E Input Transmit Force DIP2 Error [1:0] - This signal (bit 1) when active (=1) causes
the S4RXSP to insert DIP2 parity errors. Framing remains valid.

RXINTSTC Input

Receive Internal Status Control - When this signal is active (=1), status is
generated internally (user status ignored) according to values of the
RxFIFO2 flags (AE - Hungry, AF - Satisfied, and FF - Satisfied). This mode
should be used only for single channel applications. See also static input
RxST_SEL_FF_FAF. When RxINTSTC is inactive, only the AF or FF flag is
used and will over-ride user status when active as a protective measure.

RxST_SEL_FF_FAF Static Input

Receive Status Select FIFO Full FIFO Almost Full Behavior - This control
signal selects whether the S4RXSP block reacts to the Almost Full (AF) = 0,
or Full (FF) = 1 RxFIFO2 flag signals for generation of the Satisfied state on
the Status interface.

RXSTEN Input
Receive Status Enable - When active status is sent according to the order of
the calendar RAM and Status RAM content. When inactive, constant fram-
ing pattern (‘11’) is sent.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 28 Soft SPI4 IP Core User’s Guide

RXSTWR Input (RxSTCK)

Receive Status Write - This signal when active (=1) causes the data on input
array RxSTAT[] to be written into the Status RAM location indexed by input
array RxSTADD[]. The update is synchronous to the RxSTCK input clock.
This input is used only in RAM status mode.

RXSTAT_R[15:0] or
RXSTAT_T[1:0] Input

Receive Status - When in RAM Status mode, this input status bus provides
the application side interface with a mechanism for writing the “status”
(starved, hungry, satisfied) of up to 8 channels at a time into the Status
RAM. The most significant channel appears in the upper portion of the
RxSTAT[] bus. RxSTADD[] location zero corresponds to channels 7 - 0.
When in Transparent Status mode, this 2 bit input array provides a mecha-
nism for writing status for a single channel per clock cycle (RxSTCK syn-
chronous). The application side presents status for the channel requested
by the core when in this mode via output array RxSTADDO[7:0].

RXSTADDI[4:0] Input

Receive Status Address Input - This status address bus coupled with the
TxSTAT[] bus provides the application side interface with a mechanism for
writing the “status” (starved, hungry, satisfied) of up to 4 channels at a time
into the Status RAM. Used only in the RAM Status mode.

RXSTADDO[7:0] Output

Receive Status Address Out - This output status address bus coupled with
the RxSTAT[] input bus provides the mechanism for implementing “Transpar-
ent” Status mode. In this mode, the core supplies, on a per clock cycle
basis, the channel address (based on internal Calendar) for which Status is
needed in order to supply the external SPI4 Rx_STATUS[] bus in real time -
status is not stored in a local RAM. This bus is only used in Transparent Sta-
tus mode.

RX_STATUS Output Receive Output Status - This is the final output receive status bound for the
SPI4 line. This bus along with RXSTCK make up the SPI4 status bus.

RXSTMSK[7:0] Input

Receive Status Mask - This field (a=1) provides a mask for the
RxSTAT[15:0] bus so that 1 or any combination of the 8 channels associated
with a single memory write location can be modified. Used only in the RAM
Status mode.

RXCALWR Input

Receive Calendar Write - This signal when active (=1) causes the data on
input array TxCALDAI[] to be written into the Calendar RAM location
indexed by input array TxCALADD[]. The update is synchronous to the
RXCALCK input clock.

RXCALADD[8:0] Input Receive Calendar Address - Address index into the 512x8 Calendar RAM
addressed as 512, 8-bit locations.

RXCALDAI[7:0] Input Receive Calendar Data Input - Calendar RAM data input bus.

RXCALDAO[7:0] Output Receive Calendar Data Output- Calendar RAM data output bus.

RXCAL_M[7:0] Static Input
Receive Calendar Repetition - This field specifies the number of times that
the calendar sequence is repeated before the DIP2 code word and framing
are inserted (Alpha).

RXCAL_LEN[8:0] Static Input
Receive Calendar Length - This field specifies the length of the calendar
sequence. Note this value does not have to be equal to the number of chan-
nels populated.

RXS4LS2_CK Output Receive SPI4 Low-Speed Divide By 2 Clock - This is the divide by 2 version
of the SPI4 receive line clock. General purpose use.

RXS4LS4_CK Output Receive SPI4 Low-Speed Divide By 4 Clock - This is the divide by 4 version
of the SPI4 receive line clock. General purpose use.

S4TX Internal Data Path Related Signals

TXSDCK Input
Transmit System Data Clock - Should have over-speed relative to the SPI4
receive line clock /2 in 64b mode and /4 in 128b mode. Also used in user
domain logic to transfer data to the IP core.

TXDATA Input Transmit System Data - User-side system data inputs (4 - 16 bit data words
= 64b mode, or 8 - 16 bit data words = 128b mode.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 29 Soft SPI4 IP Core User’s Guide

TXFWR Input Transmit FIFO1 Write - When active (=1), the corresponding 4 or 8-word
data slice is written into the TxFIFO1. If inactive, TXDATA is ignored.

TXSOP Input Transmit Start Of Packet - When active (=1), the corresponding data slice
contains the start of a packet.

TXEOP Input Transmit End Of Packet - When active (=1), the corresponding data slice
contains the end of a packet.

TXREM[3:0] Input

Transmit Remainder - Indicates the byte lane position of the last valid data
byte. A value of 0 = 1 byte, left justified MSB = b63 - b56 in 64b mode, b127-
b120 in128b mode). A value of 7 (64b) or 15 (128b) = all bytes valid. During
normal data transmission, the value should be either 7 (64b) or 15 (128b).

TXPA[7:0] Input Transmit Port Address (0 - 255).

TXERR Input Transmit Error - Control input (=1) that causes an EOP with Abort to be gen-
erated for the current packet.

TXF1FE Output Transmit FIFO1 Full Error - This error signal when active (=1), indicates
TxFIFO1 is full.

TXF1AE Output

Transmit FIFO1 Almost Empty - This signal when active (=1), indicates the
TxFIFO1 is almost empty as determined using parameter TxF1AETHRSH[]
below. This output can be used to determine when it is ok to begin writing
TxFIFO1 after it has hit the almost full state.

TXF1AF Output
Transmit FIFO1 Almost Full - This signal when active (=1), indicates
TxFIFO1 is almost full as determined using parameter TxF1AFTHRSH[]
below.

TXF2E Output Transmit FIFO2 Empty Error - This error signal when active (=1), indicates
TxFIFO2 is empty; a condition which should never occur.

TXF2FE Output
Transmit FIFO2 Full Error - This error signal when active (=1), indicates
TxFIFO2 is full; a condition which should never occur given proper settings
of TxFIFO2 thresholds.

TXF1AETHRSH[8:0] Input TxFIFO1 Almost Empty Threshold - Threshold value in 16 byte increments.

TXF1AEBTHRSH[6:0] Input
TxFIFO1 Almost Empty Burst Threshold - Threshold value in 16 byte incre-
ments. Must be set to at least 2 greater than TxBLEN[5:0] below in 128b
mode and 4 grater in 64b mode.

TXF1AFTHRSH[8:0] Input TxFIFO1 Almost Full Threshold - Threshold value in 16 byte increments.

TXF2AETHRSH[5:0] Input TxFIFO2 Almost Empty Threshold - Threshold value in 16 byte increments.
Provides performance and latency tuning.

TXF2AEITHRSH[5:0] Input TxFIFO2 Almost Empty Idle Threshold - Threshold value in 16 byte incre-
ments. Provides performance and latency tuning.

TXF2AFTHRSH[5:0] Input TxFIFO2 Almost Full Threshold - Threshold value in 16 byte increments.
Provides performance and latency tuning.

TXF2AFOTHRSH[1:0] Input TxFIFO2 Almost Full Offset Threshold - Threshold value in 16 byte incre-
ments. Provides performance and latency tuning.

TXBLEN[5:0] Input
Tx Max Bust Size - Maximum number of 16 byte blocks that are transmitted
for a given channel before segmentation is allowed (i.e. Training and Control
Insertion).

TXMAXT[15:0] Input
Tx Maximum Training Interval - This field indicates the maximum number of
cycles * 4 between scheduling of the training sequences on the data path. A
value of zero will disable training sequence generation.

TXREP[7:0] Input

Tx Training Pattern Repetitions - This field indicates the number of repeti-
tions of the training sequence (10 training control + 10 training data words).
If SPI4 core TX is connected with Lattice SPI4 dynamic mode RX, it can be
0 or at least 10.

TxFIDLE Input Transmit Force Idles- This signal when active causes the S4TX transmitter
to insert idle control words at the soonest available boundary.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 30 Soft SPI4 IP Core User’s Guide

TxENPACK Input

Transmit Enable Packing - This signal when active causes the S4TX trans-
mitter to pack the SPI4 line during cases where due to non-multiple of 16
byte EOPs there is bandwidth available. This control allows the user to turn
packing off for early devices that may not be able to handle a packed line.

 TxFDIP4E[1:0] Input

Transmit Force DIP4 Error [1:0] - This signal (bit 1) when active (=1) causes
the S4TX transmitter to insert DIP4 parity errors. Bit 0 determines whether
all control words are sent with bad parity or just control words ending data
segments are generated with bad DIP3 parity

TX_REM_ERR Output

Transmitter Remainder Error - This error signal when active (a=1) indicates
that TxFIFO1 was written with a remainder of other than 3’b111 (64b mode)
or 4’b1111 (128b mode) during a cycle when ‘TXEOP’ was not active; a
clear error situation.

TXBLEN_ERR Output

Transmitter Burst Error - This error signal when active (a=1) indicates that
transmitter has segmented a burst different than the burst size set through
TxBLEN[5:0]. Ensures correct programming of TxF1AEBTHRSH[], which
must be set to a value 2 greater than TxBLEN[5:0] in 64b mode and 4 grater
in 128b mode.

TXF2PERR Output
Transmit FIFO2 Parity Error - This signal when active (a=1) indicates that a
parity error has been detected on a read operation of TxFIFO2. This is a
debug only signal - no connection is required.

S4TX Internal Status Path Related Signals

TXCALCK Input
Transmit Calendar Clock - This clock signal is used to synchronously
read/write the CALENDAR RAM. The frequency of this clock is not critical
since once initialized, access is not expected (Freq Max 100Mhz).

TXSTCK Input

This clock signal is used in the transmit user side status interface. All signals
exchanged over this interface are synchronous to this clock. Can be a differ-
ent clock than TX_STATUS_CK but must be in the range of, on the low side,
TX_STATUS_CK and on the high side 150MHz. Can not be lower than
TX_STATUS_CK.

TXSTEN Input Transmit Status Enable - This signal when active (=1), status channel pro-
cessing is enabled. When inactive, signal TxSTAERR below is forced active.

TXSTEQP Input

Transmit Status Equipped - This signal when active (=1) causes the data
transmitter to factor in the state of the Status path (in/out of frame) before
sending data. Forcing this signal inactive allows the transmitter send data
without regard to the status path.

TXINTSTC Input
Transmit Internal Status Control - This signal when active (=1), forces inter-
nal control over reading of TxFIFO1 based on internal analysis of the
received status (can be used only in single channel applications).

TXSTAERR Output (TxSTCK) Transmit Status Alignment Error - This signal when active (=1) indicates the
S4TSP block has not framed properly on the incoming SPI4 status channel.

TXSTAT_T[1:0] Output (TxSTCK)

Transmit Status Transparent[1:0] - This status bus coupled with the
TxSTPA[] address bus and TxSTPA_VAL output signals provides the appli-
cation side interface with a transparent view of status as it is received on a
per-channel basis from the far-end. This output is valid in both Transparent
and RAM modes.

TXSTAT_R[15:0] Output (TxSTCK)

Transmit Status [15:0] - When in the “RAM” status mode, this status bus
coupled with the TxSTADD[] address bus provides the application side inter-
face with a mechanism for reading the “status” (starved, hungry, satisfied) of
up to 8 channels at a time. The most significant channel appears in the
upper portion of the TxSTAT_R[] bus. TxSTADD[] location zero corresponds
to channels 7 - 0. This I/O will not be present in Transparent mode.

TXSTADD[4:0] Input (TxSTCK)

Transmit Status Address - This status address bus coupled with the
TxSTAT_R[] data bus provides the application side interface with a mecha-
nism for reading the “status” (starved, hungry, satisfied) of up to 8 channels
at a time from the Status RAM when in RAM mode. This I/O will not be pres-
ent in Transparent mode.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 31 Soft SPI4 IP Core User’s Guide

The SPI4 line-side I/O signals in Table 2-3 reflect the of primary I/O of the device as well as the IP core itself. Since
the IP core does not contain I/O buffers, they are not exactly the same. For example, on the output status interface
(rx_status[]), the clock is driven from the top level netlist through a Primary clock tree rather than through the core.
As part of the overall IP offering, example top-level netlists and supporting I/O buffer modules are provided as part
of the evaluation package.

TXSTPA[7:0] Output (TxSTCK)

Transmit Status Port Address - This signal array provides the user with an
indication of which ports status is currently being received via the input
TXSTATUS[] bus and processed by the S4TXSP logic. Available in both
RAM and Transparent status modes.

TXSTPA_VAL Output (TxSTCK)

Transmit Status Port Address Valid - This signal when active (=1) indicates
that the value on TxSTPA[] and TxSTAT_T is valid. It will be inactive during
the framing and dip2 time periods. In RAM mode, this signal with TxSTPA[]
can be used to indicate which channels have recently received new status
and can be read. The user must also take into consideration the alignment
error signal when reading status (TxSTAERR).

TXCALWR Input

Transmit Calendar Write - This signal when active (=1) causes the data on
input array TxCALDAI[] to be written into the Calendar RAM location
indexed by input array TxCALADD[]. The update is synchronous to the
TxCALCK input clock.

TXCALADD[8:0] Input Transmit Calendar Address - Address index into the 512x8 location Calen-
dar RAM. Addresses 512 8 bit locations of this RAM.

TXCALDAI[7:0] Input Transmit Calendar Data Input - Calendar RAM data input bus.

TXCALDAO[7:0] Output Transmit Calendar Data Output- Calendar RAM data output bus.

TXCAL_M[7:0] Input Transmit Calendar Repetition - Alpha.

TXCAL_LEN[8:0] Input Transmit Calendar Length.

TXSDP2ERR Output Transmit Status Parity Error - This signal when active (=1), indicates that the
S4TSP block has detected a parity error on status received.

TXNUMDIP2[2:0] Input Transmit Number Of DIP 2 (0-7) - Specifies the number of correct DIP2 code
words that are required before declaring alignment.

TXNUMDIP2E[2:0] Input Transmit Number Of DIP 2 Error (0-7) - Specifies the number of Incorrect
DIP2 code words that are required before declaring out of alignment.

TXEN Input Transmit Enable - This signal when active (=1) shuts off the transmit data
path at TxFIFO2 by inhibiting reading.

TXS4HS_CK Input Transmit SPI4 High Speed Clock - Line rate clock supplied from user logic.

TXS4LS2_CK Input Transmit SPI4 Low Speed Divide By 2 Clock - This is the divide by 2 version
of S4TXHS_CK.

TXS4LS4_CK Input Transmit SPI4 Low Speed Divide By 4 Clock - This is the divide by 4 version
of S4TXHS_CK.

Table 2-3. SPI4 line-side I/O Signals

Primary I/O
Signal Name

Core I/O
Signal Name Direction Description

Receive Direction (Top Level)

RCLK_P rdclk Input Receive SPI4 Line Clock (P) – Used to sample the
RDAT_[P:N][15:0] data bus.

RCLK_N n/a Input Receive SPI4 Line Clock (N) – Used to sample the
RDAT_[P:N][15:0] data bus.

RDAT_P[15:0] rdat[15:0] Input Receive SPI4 Data (P) – SPI4 16 bit input DDR data bus.

RDAT_N[15:0] n/a Input Receive SPI4 Data (N) – SPI4 16 bit input DDR data bus.

RCTL_P rctl Input Receive SPI4 Control (P) – Control (=1) / Data (=0) indicator.

Table 2-2. User-Side Signal Descriptions (Continued)

Signal Name Direction Description

Lattice Semiconductor Functional Description

IPUG59_01.7, September 2010 32 Soft SPI4 IP Core User’s Guide

RCTL_N n/a Input Receive SPI4 Control (N) – Control (=0) / Data (=1) indicator

RX_STATUS[1:0] rx_status[1:0] Output Receive Status – Output status channel associated with
input/receive data path.

Receive Direction (Core Level)

RX_STATUS_CK n/a Output Receive Status Clock – Output status channel clock. Driven at the
top-level via Primary Clock network.

RLDAT[63/127:0] rldat[63/127:0] Input Receive SPI4 Data From RXGB – SPI4 64 or 128 bit input data bus.

RLCTL[3/7:0] rlctl[3/7:0] Input Receive SPI4 Control From RXGB – SPI4 4 or 8 bit input data bus.

RX_STATUS[1:0] rx_status[1:0] Output Receive Status – Output status channel associated with
input/receive data path. Synchronized to RX_STATUS_CK

Receive Line-Side Signals Used Only in LatticeECP3 Devices

RXDLL_LOCK rxdll_lock Input Receive DLL Lock Error – This signal when active (=1) indicates
that the DLL has lost lock with the incoming SPI4 line clock.

Receive Line-Side Signals Used Only in LatticeSC Devices

RXAIL_LOCK (from rxgb) rxail_lock Input Receive AIL Locked – This signal when active (=1) indicates that all
AIL circuits are locked.

RUN_AIL (to rxgb) run_ail Output

Receive Run AIL – This signal when active (=1) allows the AIL cir-
cuitry to continue to refine its selection for clock data phase. When
inactive, sampling continues but no further adjustments are made
to clock/data phase.

RST_AIL (to rxgb) rst_ail Output
Receive Reset AIL – This signal when active causes a reset and re-
acquisition of the SPI4 input signals on a per signal basis by the AIL
circuits.

Transmit Direction (Top Level)

TDCLK_P tdclk Output Transmit SPI4 Line Clock (P) – Forward clock associated with the
TDAT_[P:N][15:0] data bus.

TDCLK_N n/a Output Transmit SPI4 Line Clock (N) – Forward clock associated with the
TDAT_[P:N][15:0] data bus.

TDAT_P[15:0] tdat[15:0] Output Transmit SPI4 Data (P) – SPI4 16 bit output DDR data bus.

TDAT_N[15:0] n/a Output Transmit SPI4 Data (N) – SPI4 16 bit output DDR data bus.

TCTL_P tctl Output Transmit SPI4 Control (P) – Control (=1) / Data (=0) indicator.

TCTL_N n/a Output Transmit SPI4 Control (N) – Control (=0) / Data (=1) indicator

TX_STATUS[1:0] tx_status[1:0] Input Transmit Status – Input status channel associated with
output/transmit data path.

TX_STATUS_CK tx_status_ck Input Transmit Status Clock – Input status channel clock.

Receive Direction (Core Level)

TLDAT[63/127:0] tldat[63/127:0] Output Transmit SPI4 Data To TXGB – SPI4 64 or 128 bit output data bus.

TLCTL[3/7:0] tlctl[3/7:0] Output Transmit SPI4 Control To TXGB – SPI4 4 or 8 bit output data bus.

TX_STATUS[1:0] tx_status[1:0] Input Transmit Status – Input status channel associated with
input/receive data path.

TX_STATUS_CK tx_status_ck Input Transmit Status Clock – Input status channel clock.

Table 2-3. SPI4 line-side I/O Signals (Continued)

Primary I/O
Signal Name

Core I/O
Signal Name Direction Description

IPUG59_01.7, September 2010 33 Soft SPI4 IP Core User’s Guide

The IPexpress tool is used to create IP and architectural modules in the Diamond and ispLEVER software. Refer to
“IP Core Generation” on page 42 for a description on how to generate the IP.

Table 3-1 provides the list of user configurable parameters for the FIR Filter IP core The parameter settings are
specified using the Soft SPI4 IP core Configuration GUI in IPexpress. The numerous Soft SPI4 IP core parameter
options are partitioned across multiple GUI tabs as shown in this chapter.

Table 3-1. Parameter Specifications for the FIR Filter IP Core

Parameter Range/Options Default

User Data Interface 64-Bit, 128-Bit 64-Bit

Generation Options

Behavioral Model Enabled, Disabled Enabled

Netlist [.ngo] Enabled, Disabled Enabled

Evaluation Directory Enabled, Disabled Enabled

Synthesis Tool for Top Synplify, Precision Synplify

Transmit Data Path Options

Maximum Training Interval [MAX_T] 0-65535] 32768

Training Patter Repetitions [ALPHA] 0-255 10

Minimum Burst Length 1-63 4

Transmit Line Side FIFO Thresholds

Almost Empty 1-62 8

Almost Full 2-63 16

Transmit User Side FIFO Thresholds

Almost Empty 1-510 80

Almost Full 2-511 384

Almost Full Offset Threshold 0, 1, 2, 3 2

Receive Data Path Options

Receive Input Alignment Mode (LatticeSC/SCM Only) Static, Dynamic Dynamic

Receive Deskew Enable (LatticeSC/SCM Only) Off, On On

Receive Training Enable (LatticeSC/SCM Only) Off, On On

Receive Line Side FIFO Thresholds

Almost Empty 1-510 40

Almost Full 2-511 400

Receive User Side FIFO Thresholds

Almost Empty 1-510 40

Almost Full 2-511 384

Number of Correct DIP4 for In-Sync 1-7 7

Number of Incorrect DIP4 for Out-Sync 1-7 2

Status Channel Options

Status Path Mode RAM, Transparent Transparent

Status Control Internal (Automatic), External External

Transmit Status Path Options

Number of Correct DIP2 for In-Sync 1-7 7

Number of Incorrect DIP2 for Out-Sync 1-7 7

Chapter 3:

Parameter Settings

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 34 Soft SPI4 IP Core User’s Guide

Table 3-2 provides a list of the parameters generated from the GUI configuration process necessary to tailor a SPI4
core for specific user requirements. Some of the parameters are used in the IP core generation process to shape
the IP in terms of the number of I/O or number and types of components used in the design. These parameters are
synthesis-affecting and are labeled as “Core Synthesis” in the table.

Most of the parameters listed in Table 3-2 specify static `define values used to define the values of the various port
arrays on the core when it is instantiated. The specific values selected in the GUI are used for both simulation and
implementation (map, place and route) evaluation of the top-level FPGA evaluation design included in the IP core
package (see \src\rtl\top\ecp3\spi4_referencetop.v or spi4_core_only_top.v). Users may also
statically specify these parameter settings in their applications (see \src\params\params.v). For all of these
types of parameters, users also have the option of making signal connections to these ports in their designs
instead to provide real-time control. Parameters of this type are labeled as “Port Connection” since this is the point
at which the parameter would be used.

See “IP Core Generation” on page 42 for more information regarding parameters and the “params.v” file.

Transmit Status Input Active Clock Edge Rising, Falling Falling

Receive Status Path Options

Receive Status Input Active Clock Edge Rising, Falling Rising

Receive Status FIFO Fill Level Flag Select Almost Full, Full Almost Full

Transmit Calendar Options

Transmit Calendar Length 1-512 4

Transmit Calendar Repetition 1-255 4

Receive Calendar Options

Receive Calendar Length 1-512 4

Receive Calendar Repetition 1-255 4

Table 3-2. Parameters

Parameter Description Range Default Type

S4RX Parameters

RXF1AETHRSH Receive FIFO1 Almost Empty Thresh-
old (16-byte units) 1-510 40 Port Connection

RXF1AFTHRSH Receive FIFO1 Almost Full Threshold
(16-byte units) 2-511 400 Port Connection

RXF2AETHRSH Receive FIFO2 Almost Empty Thresh-
old (16-byte units) 1-510 40 Port Connection

RXF2AFTHRSH Receive FIFO2 Almost Full Threshold
(16-byte units) 2-511 384 Port Connection

RXNUMDIP4 Receive Number of Correct DIP4
Before In-Sync 1-7 7 Port Connection

RXNUMDIP4E Receive Number of Incorrect DIP4
Before Out-Sync 1-7 2 Port Connection

RXCAL_M Receive Calendar Repetition 1-255 4 Port Connection

RXCAL_LEN Receive Calendar Length 1-512 4 Port Connection

RXINTSTC Receive Internal Status Control1 Internal/External External Port Connection

RXST_SEL_FF_FAF Receive Status FIFO Flag (Full/Almost
Full) Behavior2 Full/Almost Full Almost_Full Port Connection

RXSTREDGE Receive Status Output Active Clock
Edge Used Rising/Falling Rising if defined FPGA Top Synthesis

Table 3-1. Parameter Specifications for the FIR Filter IP Core (Continued)

Parameter Range/Options Default

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 35 Soft SPI4 IP Core User’s Guide

RXSTAT_MD Receive Status Mode (RAM / Trans-
parent)3 RAM/Trans Transparent if

defined Core Synthesis

Parameters for RX Dynamic Mode (LatticeSC/M devices only)

RXALNMD Receive Alignment Mode Dynamic/Static Dynamic Port Connection

RXTRAIN_EN Receive Training Enable Enabled/
Disabled Enabled Port Connection

RXDESKEW_EN Receive Deskew Enable Enabled/
Disabled Enabled Port Connection

S4TX Parameters

TXNUMDIP2 Transmit Number of Correct DIP2
Before In-Sync 1-7 7 Port Connection

TXNUMDIP2E Transmit Number of In-Correct DIP2
Before Out-Sync 1-7 7 Port Connection

TXCAL_M Transmit Calendar Repetition 1-255 4 Port Connection

TXCAL_LEN Transmit Calendar Length 1-512 4 Port Connection

TXINTSTC Transmit Internal Status Control1 Internal/External External Port Connection

TXSTREDGE Transmit Status Input Active Edge
Used Rising/Falling Falling if not

defined FPGA Top Synthesis

TXBLEN Transmit Burst Length (16 byte units) 1-63 4 Port Connection

TXPACK_EN Transmit Packing Enable Enabled/
Disabled Enabled Port Connection

TXMAXT Transmit Maximum Training Interval4 0-65536 32768 Port Connection

TXREP Transmit Training Pattern Repetitions5 0-255 10 Port Connection

TXF1AEBTHRSH Transmit FIFO1 Almost Empty Burst
Threshold (16-byte units) 1-63 6 Port Connection

TXF1AETHRSH Transmit FIFO1 Almost Empty Thresh-
old (16-byte units) 1-510 80 Port Connection

TXF1AFTHRSH Transmit FIFO1 Almost Full Threshold
(16-byte units) 2-511 384 Port Connection

TXF2AETHRSH Transmit FIFO2 Almost Empty Thresh-
old (16-byte units) 1-63 8 Port Connection

TXF2AEITHRSH Transmit FIFO2 Almost Empty Idle
Threshold (16-byte units) 1-63 7 Port Connection

TXF2AFTHRSH Transmit FIFO2 Almost Full Threshold
(16-byte units) 2-63 16 Port Connection

TXF2AFOTHRSH Transmit FIFO2 Almost Empty Offset
Threshold (16 byte units) 0-3 2 Port Connection

TXSTAT_MD Transmit Status Mode (RAM / Trans-
parent)

RAM/
Transparent

Transparent if
defined Core Synthesis

Table 3-2. Parameters (Continued)

Parameter Description Range Default Type

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 36 Soft SPI4 IP Core User’s Guide

Global Tab
Figure 3-1 shows the contents of the Global tab.

Figure 3-1. Global Tab

User Data Interface
This option selects whether a 64-bit or 128-bit user-side interface is generated. The option also corresponds to the
data pipe-line width internal to the core.

Generation Options
These options are general in nature having to do with optional content created during generation.

Behavioral Model
This option selects whether a behavioral simulation model is generated. For this version of the core, a behavioral
simulation model is always generated.

Netlist [.ngo]
This option selects whether an .ngo netlist is created during IP generation. For this version of the core, an .ngo file
is always generated.

Global Parameters

SPI4_128 IP Core Internal Architecture 64/128b
mode 64b,128b 64b if not defined Core Synthesis

1. This parameter ('RxINTSTC') when set to “True” forces the contents of the receive output status channel to be determined completely from
within the core. Three status conditions are sourced (Starved/Hungry/Satisfied) based on the fill level of RxFIFO2. In this mode, the user
does not supply channel status.

2. This parameter selects between RxFIFO2 Almost Full and Full flags as to which one will force a Satisfied” condition on the output status
channel (forced Almost Full when 'RxINTSTC' = True).

3. This parameter selects between two methods of supplying status to the core for the output status interface. In transparent mode, the user
supplies status for each channel in real-time via a two-bit bus based on a pre-scribed order controlled by the core via the Calendar RAM.

4. This parameter (TXMAXT) needs to be even number, odd value is not supported.
5. This parameter (TXREP) can be 0-255 for static mode (in LatticeECP3), for dynamic mode (in LatticeSC/M). If the SPI4 core TX is con-

nected with the Lattice SPI4 RX, 1-9 is not acceptable.

Table 3-2. Parameters (Continued)

Parameter Description Range Default Type

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 37 Soft SPI4 IP Core User’s Guide

Evaluation Directory
This option selects whether an evaluation simulation and implementation capability is created during IP generation.

Synthesis Tool for Top
This option selects which synthesis tool will be used or the evaluation implementation capability created during IP
generation.

Transmit Tab
Figure 3-2 shows the contents of the Transmit tab.

Figure 3-2. Transmit Tab

Transmit Data Path Options
This option specifies the maximum interval between scheduling of Training Sequences on the data path.Maximum
Training Interval (MAX_T).

Training Pattern Repetitions (ALPHA)
This option specifies the number of repetitions of the training data sequence that must be scheduled every MAX_T
interval.

Minimum Burst Length
This option selects the minimum Burst Length. See “Minimum Burst Size - Burst Mode” on page 9 for details.

Transmit Line Side FIFO Thresholds
These options select the transmit line side FIFO (TxFIFO2) Almost Empty and Almost Full thresholds. See “Trans-
mit FIFO2 Threshold Optimizations” on page 10 for details.

Transmit User Side FIFO Thresholds
These options select the transmit user side FIFO (TxFIFO1) Almost Empty and Almost Full thresholds. See section
“SPI4 Transmit Data Protocol - S4TXDP” on page 7 for details.

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 38 Soft SPI4 IP Core User’s Guide

Transmit Packing Enable
This option selects whether or not the S4TX transmitter is allowed to pack the SPI4 line during cases where, due to
non-multiple of 16 byte EOPs, there is bandwidth available. This selection allows the user to turn packing off for
early devices that may not be able to handle a packed line.

Receive Tab – LatticeECP
Figure 3-3 shows the contents of the Receive tab for LatticeECP.

Figure 3-3. Receive Tab - LatticeECP

Receive Data Path Options
Receive Line Side FIFO Thresholds
These options set the Almost Empty and Almost Full thresholds for the receive line side FIFO (RxFIFO1). The flags
that results from these thresholds are used inside the core (S4RXSP) during abnormal conditions and factors into
status sent to the far-end.

Receive User Side FIFO Thresholds
These options selects the Almost Empty and Almost Full thresholds for the user side FIFO (RxFIFO2). The flags
that result from these thresholds are used to drive receive status during normal operation when internal Status
mode is selected.

Number of Correct DIP4 In-Sync
This option specifies the number of consecutive dip4 errors that must be seen before declaring the data link out of
alignment/synchronization.

Number of Incorrect DIP4 In-Sync
This option specifies the number of consecutive correct dip4 code words that must be seen before declaring the
data link in alignment/synchronization.

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 39 Soft SPI4 IP Core User’s Guide

Receive Tab – Lattice SC/SCM
Figure 3-4 shows the contents of the Receive tab for LatticeSC/SCM.

Figure 3-4. Receive Tab - LatticeSC/SCM

Receive Data Path Options
Receive Input Alignment Mode
This option selects whether Static Or Dynamic mode operation is used. In this version of the SC/SCM core, only
Dynamic mode is support.

Receive Deskew Enable
This option selects whether the Deskew function is enabled or not. This is a debug feature and should be set to
enabled for normal operation.

Receive Training Enable
This option selects whether or not the requirement that Training and Control words be observed before declaring
in-sync is to be honored. This is a debug option for possible non-compliant devices and should be set to enabled
for normal operation.

Receive Line Side FIFO Thresholds
These options set the low and high water thresholds for the receive line side FIFO (RxFIFO1). The flags that results
from these thresholds are used inside the core (S4RXSP) during abnormal conditions and factors into status sent
to the far-end.

Receive User Side FIFO Thresholds
These options select the thresholds for the user side FIFO (RxFIFO2). The flags that result from these thresholds
are used to drive receive status during normal operation when internal Status mode is selected.

Number of Correct DIP4 In-Sync
This option specifies the number of consecutive correct dip4 code words that must be seen before declaring the
data link in alignment/synchronization.

Number of Incorrect DIP4 In-Sync
This option specifies the number of consecutive dip4 errors that must be seen before declaring the data link out of
alignment/synchronization.

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 40 Soft SPI4 IP Core User’s Guide

Status Tab
Figure 3-5 shows the contents of the Status tab.

Figure 3-5. Status Tab

Status Channel Options
Status Path Mode
This option selects the Status mode used to report status to user logic. See “SPI4 Receive Status Protocol -
S4RXSP” on page 18 for details.

Status Control
This option selects wether external user logic functions mange the content of the SPI4 status channel or the IP
core manages the content of status channel. See section “SPI4 Receive Status Protocol - S4RXSP” on page 18 for
details.

Transmit Status Path Options
Number of Correct DIP2 for In-Synch
This option specifies the number of consecutive correct dip2 code words that must be seen before declaring the
status channel in alignment/synchronization.

Number of Incorrect DIP2 for Out-Synch
This option specifies the number of consecutive dip2 errors that must be seen before declaring the status channel
out of alignment/synchronization.

Transmit Status Input Active Clock Edge
This options selects which clock edge (rising/falling) is used to sample input status of chip on the status interface.

Receive Status Path Options
Receive Status Input Active Clock Edge
This options selects which clock edge (rising/falling) is used to clock status of chip on the output receive status
interface.Receive Status FIFO Fill Level Flag Select

Receive Status FIFO Fill Level Flag Select
This option selects whether the RxFIFO2 Almost Full or Full flag forces/over-rides user status when activated.

Lattice Semiconductor Parameter Settings

IPUG59_01.7, September 2010 41 Soft SPI4 IP Core User’s Guide

Calendars Tab
Figure 3-6 shows the contents of the Calendars tab.

Figure 3-6. Calendars Tab

Transmit Calendar Options
Transmit Calendar Length
This option selects the transmit calendar length (CAL_LEN). See “SPI4 Transmit Status - S4TXSP” on page 11 for
details.

Transmit Calendar Repetition
This option selects the transmit calendar repetition value (CAL_M). See “SPI4 Transmit Status - S4TXSP” on
page 11 for details.

Receive Calendar Options
Receive Calendar Length
This option selects the receive calendar length (CAL_LEN). See “SPI4 Receive Status Protocol - S4RXSP” on
page 18 for details.

Receive Calendar Repetition
This option selects the receive calendar repetition value (CAL_M). See section “SPI4 Receive Status Protocol -
S4RXSP” on page 18 for details.

IPUG59_01.7, September 2010 42 Soft SPI4 IP Core User’s Guide

This chapter provides information on licensing the Soft SPI4 IP core, generating the core using the Diamond or isp-
LEVER software IPexpress tool, running functional simulation, and including the core in a top-level design. The
Soft SPI4 IP core can be used in LatticeECP3 and LatticeSC/M device families.

Licensing the IP Core
An IP license is required to enable full, unrestricted use of the Soft SPI4 IP core in a complete, top-level design. An
IP license that specifies the IP core and device family (ECP3 or SC/M) is required to enable full use of the Soft
SPI4 IP core. Instructions on how to obtain licenses for Lattice IP cores are given at:

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the IP core and fully evaluate the core through functional simulation and imple-
mentation (synthesis, map, place and route) without an IP license. The Soft SPI4 IP core also supports Lattice’s IP
hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware
for a limited time (approximately four hours) without requiring an IP license (see “Hardware Evaluation” on page 48
for further details). However, a license is required to enable timing simulation, to open the design in the Diamond or
ispLEVER EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation.

Getting Started
The Soft SPI4 IP core is available for download from the Lattice IP Server using the IPexpress tool in Diamond or
ispLEVER. The IP files are automatically installed using ispUPDATE technology in any customer-specified direc-
tory. After the IP core has been installed, it will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The IPexpress tool GUI dialog box for the Soft SPI4 IP core is shown in Figure 4-1. To generate a specific IP core
configuration the user specifies:

• Project Path – Path to the directory where the generated IP files will be loaded.

• File Name – “username” designation given to the generated IP core and corresponding folders and files.

• (Diamond) Module Output – Verilog or VHDL.

• (ispLEVER) Design Entry Type – Verilog HDL or VHDL

• Device Family – Device family to which IP is to be targeted (e.g. Lattice ECP2M, LatticeECP3, etc.). Only fami-
lies that support the particular IP core are listed.

• Part Name – Specific targeted part within the selected device family.

Chapter 4:

IP Core Generation

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 43 Soft SPI4 IP Core User’s Guide

Figure 4-1. IPexpress Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in
ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool
online help for further information.

To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display
the DA-FIR Filter IP Configuration GUI, as shown in Figure 4-2. From this dialog box, the user can select the IP
parameter options specific to their application. Refer to “Parameter Settings” on page 33 for more information on
the DA-FIR Filter IP parameter settings.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 44 Soft SPI4 IP Core User’s Guide

Figure 4-2. Configuration GUI (Diamond Version)

IPexpress-Created Files and Top Level Directory Structure
When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are
generated in the specified “Project Path” directory. The directory structure of the generated files is shown in
Figure 4-3.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 45 Soft SPI4 IP Core User’s Guide

Figure 4-3. LatticeECP3 Core Directory Structure

Figure 4-3 provides a list of key files and directories created by the IPexpress tool and how they are used. The
IPexpress tool creates several files that are used throughout the design cycle. The names of most of the created
files are customized to the user’s module name specified in the IPexpress tool.

Table 4-1. File List

File Description

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress
tool.

<username>.ipx

The IPX file holds references to all of the elements of an IP or Module after it is generated from
the IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during
the design implementation and analysis. It is also used to re-load parameter settings into the
IP/Module generation GUI when an IP/Module is being re-generated.

<username>.ngo This file provides the synthesized IP core.

<username>_bb.v/.vhd This file provides the synthesis black box for the user’s synthesis.

<username>_inst.v/.vhd This file provides an instance template for the PCI IP core.

<username>_beh.v/.vhd This file provides the front-end simulation library for the PCI IP core.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 46 Soft SPI4 IP Core User’s Guide

Table 4-2 provides a list of key additional files providing IP core generation status information and command line
generation capability are generated in the user's project directory.

As mentioned previously, the \<soft_spi4_eval> directory is only generated if the Generation Option “Evalua-
tion Directory” has been selected in the GUI. The \<soft_spi4_eval> and subtending directories provide files
supporting SPI4 core evaluation. The \<soft_spi4_eval> directory shown in Figure 4-3 contains files/folders
with content that is constant for all configurations of the SPI4. The \<username> subfolder (\soft_spi4_core0 in
this example) contains files/folders with content specific to the username configuration.

The \soft_spi4_eval directory is created by IPexpress the first time the core is generated and updated each
time the core is regenerated. A \<username> directory is created by IPexpress each time the core is generated
and regenerated each time the core with the same file name is regenerated. A separate \<username> directory is
generated for cores with different names, e.g. \<soft_spi4_core0>, \<soft_spi4_core1>, etc.

Instantiating the Core
The generated Soft SPI4 IP core package includes black-box (<username>_bb.v) and an instance
(<username>_inst.v) template that can be used to instantiate the core in a top-level design. An example RTL
top-level reference source file is also provided in
\<project_dir>\soft_spi4_eval\<username>\src\rtl\top\ecp3\spi4_referencetop.v. Users
may use this top-level reference as the starting template for their top-level complete design. In the example, the SPI4
core is instantiated in the FPGA top-level file along with some test logic (user-side spi4 loop, PLLs, I/O buffers,
debug, etc.).

The top-level RTL example design is also supported by some of the parameters defined in the params.v file found
in \<project_dir>\soft_spi4_eval\<username>\src\params\params.v. A description of the parame-
ters for this IP core and top-level design is provided in the Parameter Descriptions section of this document.

The top-level file spi4_reference_top.v is the same top-level file that is used in the simulation model described in
the next section.

To instantiate this IP core using the Linux platform, users must manually add one environment variable named
“SYNPLIFY” to indicate the installation path of SYNPLIFY TOOLS in the local environment file.

Running Functional Simulation
Simulations utilize a SPI4 test-bench top-level file (\testbench\top\spi4_tb_top.v) that connects a SPI4
simulation driver (provides a SPI4 bus source /sink) to the same FPGA top-level file mentioned above and contains
the Soft SPI4 IP core and user-side loop-around module. The loop-around module loops packets and packet frag-
ments received from the SPI4 driver back to it through the user-side interface of the SPI4 core inside the FPGA.
This mode of simulation testing is referred to as a far-end loop. This evaluation test-bench top-level provides clock
sources and the context for SPI4 simulation driver instantiation as well as instantiation of the FPGA top and con-
nection of the two.

The capability provided reflects a configuration-specific simulation of the Soft SPI4 IP core that is consistent with
the default settings of the GUI process. Varying GUI parameters are permitted but not all possible combinations are
guaranteed to yield a successful simulation, especially those with large channel count numbers due to test-bench
limitations. The functional simulation includes a configuration-specific behavioral model of the Soft SPI4 IP Core
(spi4_soft_core_beh.v) that is instantiated in an FPGA top level.

Table 4-2. Additional Files

File Description

<username>_generate.tcl This file is created when the GUI “Generate” button is pushed. This file may be run from com-
mand line.

<username>_generate.log This is the synthesis and map log file.

<username>_gen.log This is the IPexpress IP generation log file

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 47 Soft SPI4 IP Core User’s Guide

Users may run the simulation by doing the following:

1. Open ModelSim

2. Under the File tab, select Change Directory and choose folder
<project_dir>\soft_spi4_eval\<username>\sim\modelsim\rtl

3. Execute simulation do script do <username>_eval.do.

The following SPI4 data formats will be run. If errors occur, they will be written to the ModelSim dialogue window.
The simulation waveform results will be displayed in the ModelSim Wave window.

• // DF00 - Incremental length single/full bursts

• // DF01 - Incremental length interleaved multiple bursts packets

• // DF02 - Random length interleaved multiple bursts packets

• // DF03 - Back-to-back EOPs (up to 4 EOPs per slice)

• // DF04 - Even-even, even-odd, odd-even, odd-odd bursts etc.

• // DF05 - Abort testing

• // DF06 - DIP4 indication

• // DF07 - Training pattern filtering (currently not supported)

Synthesizing and Implementing the Core in a Top-Level Design
The Soft SPI4 IP core itself is synthesized and provided in NGO format when the core is generated. Users may
synthesize the a black box of the core in their own top-level design by instantiating the black box
(<username>_bb.v) in their top-level as described previously and then synthesizing the entire design with either
Synplify or Precision RTL Synthesis.

As mentioned above, an evaluation capability of the core in a synthesis and map, place and route context is also
created for the user and is based upon the FPGA top-level file described above. The user can, through Diamond or
ispLEVER, browse to the generated directory \<project_dir>\soft_spi4_eval\<core_name>\impl and
load the <project_dir>.syn file. SPI4 specific map and par options will automatically be loaded having been created
by the generation process. The user can then run map and place and route only or run through the entire Diamond
or ispLEVER flow including synthesis map, place, and route. All settings are automatically set up by the generation
phase.

Place and route is supported for both Core_Only configurations as well as Full_Top configurations that include the
SPI4 Loop Module (S4LP). Selection is made in the GUI capture phase. When the Core_Only option is selected
and there are no connections to the internal user-side interface, the map -u command line option is used to ensure
that unused logic is not minimized away and an accurate count of IP core logic can be made. I/O insertion is dis-
abled during synthesis and so these internal nets are simply left dangling and warnings will be seen during map for
them as expected.

When the Full_Top configuration is used, a small amount of extra logic (~200 slices) is added to provide the user-
side SPI4 loop-back capability but the design can now be evaluated as a complete FPGA design. This design pro-
vides a far-end SPI4 loop-back capability that can be simulated (see below) and then taken into a lab “as is” without
modification for hardware evaluation.

For the Diamond or ispLEVER Linux platform, the top-level synthesis must be run separately with a standalone
synthesis tool, such as Synplify Pro, since ispLEVER for Linux only accepts an EDIF entry. Synthesis tcl files will be
generated for this purpose including spi4_top.tcl in the directory
\<project_dir>\soft_spi4_eval\<username>\impl\syn_eval.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 48 Soft SPI4 IP Core User’s Guide

The user can type the following command to synthesize the top_level files:
synplify_pro
batch spi4_top.tcl

To use this project file in Diamond:

1. Choose File > Open > Project.

2. Browse to
\<project_dir>\soft_spi4_eval\<username>\impl\synplify (or precision) in the Open Proj-
ect dialog box.

3. Select and open <username>.ldf. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the Process tab in the left-hand GUI window.

5. Implement the complete design via the standard Diamond GUI flow.

To use this project file in ispLEVER:

1. Choose File > Open Project.

2. Browse to
\<project_dir>\soft_spi4_eval\<username>\impl\synplify (or precision) in the Open
Project dialog box.

3. Select and open <username>.syn. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Hardware Evaluation
The Soft SPI4 IP core supports supports Lattice’s IP hardware evaluation capability, which makes it possible to cre-
ate versions of the IP core that operate in hardware for a limited period of time (approximately four hours) without
requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined
designs.

Enabling Hardware Evaluation in Diamond
Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be
enabled/disabled in the Strategy dialog box. It is enabled by default.

Enabling Hardware Evaluation in ispLEVER
In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the
dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is
enabled by default.

Updating/Regenerating the IP Core
By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design
entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP
core or to create a new but similar one.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 49 Soft SPI4 IP Core User’s Guide

Regenerating an IP Core in Diamond
To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-
get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The
base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-
sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the
About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As
the options change, the schematic diagram of the module changes to show the I/O and the device resources
the module will need.

7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not
available in stand-alone mode).

8. Click Generate.

9. Check the Generate Log tab to check for warnings and error messages.

10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP
core required to support simulation, synthesis and implementation. The IP core may be included in a user's design
by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is
already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the
module’s dialog box showing the current option settings. Then go to step 6 above.

Regenerating an IP Core in ispLEVER
To regenerate an IP core in ispLEVER:

1. In the IPexpress tool, choose Tools > Regenerate IP/Module.

2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core
you wish to regenerate, and click Open.

3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core
in the Source Value box. Make your new settings in the Target Value box.

4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base
of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc exten-
sion.

5. Click Next. The IP core’s dialog box opens showing the current option settings.

6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the
About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with addi-
tional information. As the options change, the schematic diagram of the IP core changes to show the I/O and
the device resources the IP core will need.

Lattice Semiconductor IP Core Generation

IPUG59_01.7, September 2010 50 Soft SPI4 IP Core User’s Guide

7. Click Generate.

8. Click the Generate Log tab to check for warnings and error messages.

IPUG59_01.7, September 2010 51 Soft SPI4 IP Core User’s Guide

This chapter provides application support information for the Soft SPI4 IP core.

Hard-Core Physical Placement
Knowing the placement of various functions in the design allows for effective floorplanning. The relative effects of
physical placement are included in the following discussions on IO placement and clocking and synchronization.

SPI4 Line-Side I/O
Following the standard FPGA design flow allows the user to specify whatever I/O placement is desired. However,
the IP core evaluation package includes a predefined set of I/O assignments for the external SPI4 bus that have
been assigned and lab tested. Assuming these I/O assignments are used, the resulting floorplan results in the
receiver (S4RX) being placed roughly in the bottom right quadrant and the transmitter (S4TX) in the lower left
quadrant, or left side of the devices. Similar to the SPI4 line-side I/O, the EBRs, especially line-side ones, can be
adjusted to be more tightly connected with the I/Os.

According to the OIF-SPI4_02.1, the type of current for SPI4 line-side status channel I/Os is set to LVCMOS33.
Depending on the vendor devices the SPI4 interface is connected with, the I/O type may need to be adjusted to
LVCMOS25, or another type, if needed.

Clocking and Synchronization
This section describes the various approaches that may be taken for delivery and extraction of clock signals to/from
the IP core. There are many potential clock domains that may be specified for this core depending on specific appli-
cation needs. Additionally, there is a great deal of flexibility in specifying the source (I/O, PLL, flip-flops, etc.) and
speed of various clock domains used. Core behavior and performance are affected by the type of and manner in
which synchronization is applied to the core.

Clock List
Table 5-1 and Table 5-2 provide a comprehensive view of the total number of clock nets possible when using the
SPI4 core as well as additional information about each net that may be useful when determining a synchronization
strategy. Issues to consider when determining a synchronization plan include:

• There are a number of ways to consolidate clock nets and therefore clock driver resources. For example, clocks
associated with the status interface such as rxstck, rxcalck, txstck, and txcalck all have top-level appearance at
the user level and can all be connected to the same primary clock driver if desired or grouped in some other
manner. They can be further consolidated into one of the transmit txstck_line, or receive data path divide-by-four
clock nets ('rxs4ls4_ck') if desired.

• Clocks can be assigned based on quadrant only needs, freeing up clock routing resources for user functions, as
shown in the table below. Lattice FPGAs provide eight primary clock drivers and four secondary clock drivers per
quadrant. Therefore, there should be sufficient drivers available for user functions assuming clocks are floor-
planned at the quadrant level.

Chapter 5:

Application Support

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 52 Soft SPI4 IP Core User’s Guide

Table 5-1. Clock List for LatticeECP3 Devices

Clock Usage Diagram
Figure 5-1 provides a graphical representation of the information presented in Table 5-1. It also shows one method
for generating the 'SDCK' and 'TXS4HS_CK' clock signals through FPGA PLLs. Figure 5-2 provides similar infor-
mation for Table 5-2.

Clock Net Name
Originating FPGA

Port Name Driver Source
Clock Driver

Type
Quadrants

(Left or Right)
Max. Frequency

(MHz)

SPI4 Line Data Related Clocks

1 rxs4hs_ck RCLK[P:N] PIO Edge/FRC Left or Right 350

2 rxs4ls2_ck RCLK[P:N] DLL Primary Left or Right 175

3 rxs4ls4_ck1 RCLK[P:N] FPGA (ff) Secondary Left or Right 87.5

4 txs4hs_ck TXREF PLL/PIO Edge/FRC Left or Right 350

5 txs4ls2_ck TXREF CLKDIV Secondary Left or Right 175

6 txs4ls4_ck1 TXREF PGA (ff) Primary Left or Right 87.5

SPI4 Line Status Related Clocks

7 rxstck RXSTCK PIO/PLL Primary Left or Right 100

8 rxstck_line RXSTCK PIO/PLL Primary Left or Right 100

9 rxcalck RXCALCK PIO/PLL Primary Left or Right 100

10 txstck TXSTCK PIO/PLL Primary Left or Right 100

11 txcalck TXCALCK PIO/PLL Primary Left or Right 100

System Clocks

12 rxsdck SDCK2 PLL/PIO Primary Left or Right 200

13 txsdck SDCK2 PLL/PIO Primary Left or Right 200

1. Used only in 128b mode
2. SDCK = 200MHz in 64b mode, ~140MHz in 128b mode.

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 53 Soft SPI4 IP Core User’s Guide

Figure 5-1. Clock Usage Diagram

RXGB

rxs4ls2_ck

rxs4hs_ck
PIC

RDCLK

RDAT

DLL

edge_clk

Primary &
Secondary

Clocks

rxs4ls4_ckRxFIFO1
Controller

TXGB

txs4ls2_ck

txs4hs_ck

PIC

PIC

TDCLK

TDAT

edge_clk

PLL
(2x)

SDCK
TxFIFO2
Controller

PLL
(2-4x)

TxREF

S4TXDP

S4RXDP

txs4ls2_ck

FPGA Array

data

data

S4RX

S4TX

rxcalck

rxstck_line RXSTCK

RXCALCK

txcalck

txstck TXSTCK

TXCALCK

2

1

13

12

9

8

5

10

11

3

/2

SDCK

TXS4HS_CK

TXS4LS2_CK4

/2

rxsdck

txsdck

6

DLLDELB

OS

CLKDIV

PIC

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 54 Soft SPI4 IP Core User’s Guide

Table 5-2. Clock List for LatticeSC Devices

#
Clock Net

Name
Originating FPGA

Port Name
Driver
Source

Clock Driver
Type

Quadrants
(Left or Right)

Max.
Freq.

SPI4 Line Data Related Clocks

1 rxs4hs_ck ‘RCLK[P:N]’ PIO Edge/FRC Bottom + Top 500MHz

2 rxs4ls2_ck ‘RCLK[P:N]’ CLKDIV Primary Bottom 250MHz

3 rxs4ls4_ck1 ‘RCLK[P:N]’ FPGA (ff) Primary Bottom 125MHz

4 txs4hs_ck ‘TXREF’ PLL/PIO Edge/FRC Bottom + Top 500MHz

5 txs4ls2_ck2 ‘TXREF’ CLKDIV Primary Bottom + Top 250MHz

6 txs4ls4_ck1 ‘TXREF’ CLKDIV Primary Bottom 125MHz

SPI4 Line Status Related Clocks

7 rxstck ‘RXSTCK’ PIO/PLL Primary Bottom + Top 125MHz

8 rxstck_line ‘RXSTCK’ PIO/PLL Primary Bottom + Top 125MHz

9 rxcalck ‘RXCALCK’ PIO/PLL Primary Bottom 125MHz

10 txstck ‘TXSTCK’ PIO/PLL Primary Bottom 125MHz

11 txcalck ‘TXCALCK’ PIO/PLL Primary Bottom 125MHz

System Clocks

12 rxsdck ‘SDCK’3 PLL/PIO Primary Bottom + Top 250Mhz

13 txsdck ‘SDCK’3 PLL/PIO Primary Bottom + Top 250MHz

1. Used only in 128b mode.
2. Used only in 64b mode.
3. SDCK = 250MHz in 64b mode, ~150MHz in 128b mode for dynamic mode.

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 55 Soft SPI4 IP Core User’s Guide

Figure 5-2. LatticeSC (Dynamic RX Mode) Clock Usage Diagram

System-Level Synchronization
Figure 5-3 shows an example of a system-level synchronization scheme where a timing reference is supplied to an
optional Transmit PLL (TxREF) at each end of the SPI4 link. This is the starting point from which system level tim-
ing can be analyzed. In this example, status is driven back to the far end using the divide-by-four version
('RxS4LS4_CK') of the SPI4 line clock. This arrangement results in status being received from the far end that is at
frequency locked to the near end version of the same clock.

A slight modification to this arrangement is possible where the received divide-by-two or -four version
('RxS4LS4_CK') of the SPI4 line clock can be used as the timing reference to an internal Transmit PLL. A timing
loop would be created if this is done at both ends. Somewhere in the user system there needs to be a fixed timing
reference.

RXGB

rxs4ls2_ck

rxs4hs_ck
PIC

PIC

RDCLK

RDAT

CLKDIV(/2)

edge_clk
divider

edge_clk

Primary
Clock

rxs4ls4_ckRxFIFO1
Controller

TXGB
Txs4ls2/4_ck

txs4hs_ck

PIC

PIC

TDCLK

TDAT

PLL
(2x)

SDCK

TxFIFO2
Controller

PLL
(2-4x)

TxREF

S4TXDP

S4RXDP

txsdck

Txs4ls2/4_ck

data

data

S4RX

S4TX

rxcalck

KCTSXRkctsxr

RXCALCK

txcalck

KCTSXTkctsxt

TXCALCK

SMI_CLK

/2

SDCK

TXS4HS_CK

rxsdck

CLKDIV
(/2 or/4)

edge_clock
divider

edge_clk

elsr

deskew

elsr

FPGA ARRAY

1
7

8

2

3

11

12

5/6

9

4

10

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 56 Soft SPI4 IP Core User’s Guide

System-level clocking (SDCK) shown in this example also uses a PLL and a timing reference but the PLL is not
required. System clocking is only used inside the device.

In the example diagram below, clocks are doubled up in terms of functionality in order to simplify and reduce the
need for clock routing resources (primary/secondary) within the FPGA.

Figure 5-3. Top and System Level Clocking Example for LatticeSC/M Devices (Both SPI4 Ends)

Selecting a System Data Clock Frequency ('SDCK') - Receiver
In 128b mode, the receive Parser module reads full 136-bit data slices (128 bits of data [eight 16-bit words] and 8
bits of control [one bit per word]) from RxFIFO1 using 'SDCK'. Reading occurs continuously unless the FIFO emp-
ties (which occurs regularly due to over-speed) or when the Parser encounters an EOP within the data slice. When
an EOP is detected, the Parser will stall (stop reading) RxFIFO1 for one or more clock cycles. Slices may contain
multiple EOPs for different channels (up to four) or one or more EOPs and an SOP or partial data segment. A sin-
gle RxFIFO2 entry cannot contain data from more than one channel, so the Parser stops reading RxFIFO1 as it
separates (unpacks) the data for different channels and writes the corresponding number of words into RxFIFO2.
Performing this function results in a waste of bandwidth since at the end of a packet, some number of the words
written to RxFIFO2 are not fully populated. This wasted bandwidth must be compensated for and hence the need
for over-speed.

In this core, 2n clock cycles are required to process a data word containing n EOPs. For example, a slice with one
EOP requires two read-side clock cycles, a slice with two EOPs requires four read-side clocks, and so on, with a
slice containing four EOPs requiring eight read-side clock cycles to process.

The amount of over-speed required is a function of the smallest allowable packet size, the number of active chan-
nels, the size of the FIFO to be stalled (i.e. RxFIFO1) and the stall behavior. The following discussion provides a
framework upon which the appropriate frequency for 'SDCK' can be determined.

Consider this absolute extreme worst-case scenario where the SPI4 Burst Size is 64 bytes, 128 channels are
equipped, and continuous 65 byte packets are received for each channel address without idle insertion between
packets. Assume also that packet starts across all channels are synchronized and remain synchronized such that
all channels end (EOP) at exactly the same time indefinitely. For this case, an SOP control word (two bytes) fol-
lowed a 64-byte burst of data will be received at the SPI4 interface for each of the 128 channels in sequence with-
out an EOP for any channel. A total of 66x128=8448 bytes, the SOPs and data, will be written into RxFIFO1 in 16-

TxREF
TxPLL

SPI4_TOP-1SPI4_TOP-0

SPI4_CORESPI4_CORE

S4TX
S4RX

S4RXIO

S4RX
S4TX

S4TXIO

S4RXIO

S4TXIO

S4RXSP
S4TXSP

txstck

TDCLK[P:N]RDCLK[P:N]

T
xS

4LS
2_C

K

T
xS

4L34_C
K

T
xS

4H
S

_C
K

TX_STATUS_CKRX_STATUS_CK

RX_STATUS_CKTX_STATUS_CK

RCLK[P:N]TDCLK[P:N]

txcalck

sdcksdck

rxcalck

rxstck_line
txcalck

txstck

rxcalck

RxS4LS_CK

rxstck

RxS4LS_CK

T
xS

4LS
2_C

K

T
xS

4H
S

_C
K

S4RXSP
S4TXSP

CLKDIV

CLKDIV

SDCK

rxstck

rxstck_line

/2

/2

SDCK_PLLSDCK_PLL
SDCK

TxREF
TxPLL

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 57 Soft SPI4 IP Core User’s Guide

byte slices, requiring 528 write clock cycles. Then an EOP control word (two bytes) followed by the remaining data
byte (padded to 16 bits) will be received for each of the 128 channels in sequence. The EOPs plus final data seg-
ments will be packed 4 per 16-byte slice and will be written into RxFIFO1 in 32 write-side clock cycles. This cycle of
528 write cycles containing SOP+ data followed by 32 write cycles each containing four EOPs per slice will con-
tinue indefinitely. Thus, to prevent the contents of RxFIFO1 from building and eventually overflowing, the Parser
must completely unload RxFIFO1 and process the 128 65-byte packets, one for each channel, within a period of
time corresponding to 560 RxFIFO1 write-side clock cycles.

The Parser can process slices containing SOP+data segments without any additional cycles. Thus 528 read-side
clock cycles will be required to process the SOP+data segments for all 128 channels. As indicated previously, the
Parser requires 2n clock cycles to process a data word containing n EOPs. Thus the 128 EOPs, which were written
into RxFIFO1 in 32 clock cycles, will require 256 read-side clock cycles (two per EOP) to process. During this time,
32 of the 256 clock cycles will result in actual reads of RxFIFO1. The FIFO will be stalled for the remaining 224
cycles, during which time the FIFO fill level will build.

Thus it will require a total of 560 write-side clock cycles to load 128 65-byte packets plus control into RxFIFO1 and
784 read-side clock cycles to unpack and empty RxFIFO1. To ensure that contents of the FIFO do not build over
time and eventually result in flow control, the over-speed on the read side needs to be sufficient enough to empty
the FIFO each 128-packet cycle. Thus, there must be 784 read cycles for every 560 write cycles, or 40% over-
speed. Assuming a SPI4 line rate of 311MHz, the RxFIFO1 write-side clock would be ~78MHz. The read-side clock
'SDCK' would need to be ~110MHz to prevent RxFIFO1 from causing a flow control under this worst case scenario.

As mentioned in the previous discussion, reading from RxFIFO1 will be stalled for the equivalent of 224 read-side
clock cycles, or 2.04usec, during EOP processing. The FIFO is continuing to be written while reading is stalled.
With a read-side clock of 78MHz, 160 memory locations will be written. RxFIFO1 is 512 words deep, providing sig-
nificant margin for this worst-case scenario.

Note that the scenario analyzed will typically never happen, let alone be sustained over time in real applications
having even moderately variable packet sizes. For most applications it seems reasonable to assume that signifi-
cantly less than 40% over-speed for 'SDCK' will be required. It is expected that approximately 20% overspeed
should typically be more than sufficient. Note that scaling back 'SDCK' does not mean that the worst-case scenario
cannot be handled, but only that it cannot be handled indefinitely without eventual flow-control. With ~20% over-
speed, many cycles of simultaneous EOPs on 128 channels with minimum size packet, such as the one described
above, could be properly handled before the FIFO would eventually hit the high-water mark resulting in flow-control.
Note also that this worst-case scenario occurs only with the smallest packet sizes for most systems (~64 bytes).
Larger packets increase the FIFO recovery time, reducing the amount of over-speed required.

Although not mentioned above, the SPI4 burst size chosen by the transmitter also affects the required clock fre-
quency. Consider again the worst-case 65-byte synchronous packet scenario just discussed. If the SPI4 burst size
is increased to 80 bytes, no partial packet segments are transmitted and multiple EOPs per slice cannot occur.
With this scenario it still takes 560 write-side clock cycles to write 128 packets+control into RxFIFO1, but since
there is at most only one EOP per slice, only 128 additional read-side clock cycles are required to process the 128
EOPs and the amount of over-speed required is reduced to ~23% worst case.

Note that the S4RX design can handle packets smaller than 64 bytes (e.g. 8 bytes). Just as larger packets increase
the FIFO recovery time, reducing the amount of over-speed required, smaller packets reduce FIFO recovery time
and coupled with non-optimal burst size settings have the potential to significantly increase the over-speed require-
ment before flow-control.

The preceding analysis is specific to the 128b mode of IP core operation. However, the results can be easily scaled
to address the 64b mode as well. In short, when selecting a System Data Clock Frequency, the amount of over-
speed necessary for the 64b mode is one-half the amount for the 128b mode. This is because the amount of
wasted bandwidth per cycle is exactly one-half given that the bus cut in half.

Lattice Semiconductor Application Support

IPUG59_01.7, September 2010 58 Soft SPI4 IP Core User’s Guide

Selecting a System Data Clock Frequency ('SDCK') - Transmitter
The Aligner in the transmit path requires over-speed for reasons that are the inverse of the receive path in order to
achieve 100% utilization of the SPI4 line bandwidth. However, there are some differences, one of which is the
amount of over-speed required.

In the transmit direction, only one TxFIFO1 read per EOP is required, compared to two cycles per EOP in the
receive direction. Consider the same worst case scenario discussed in the previous section: 64-byte SPI4 Burst
Size, 128 channels, continuous 65 byte packets sent on each channel address without idle insertion, packet trans-
mission start on all channels synchronized such that all channels end (EOP) at exactly the same time indefinitely.
When all 128 channels terminate with only a single byte valid, it takes 4 TxFIFO1 read cycles to write the TxFIFO2
output FIFO once in order to pack the line. For this design, approximately 10-15% overspeed is required to guaran-
tee a fully utilized SPI4 line.

Note also that while inadequate overspeed on the receive side may result in flow control, inadequate overspeed on
the transmit side results in the transmission of idles between segments and inefficient line utilization.

IPUG59_01.7, September 2010 59 Soft SPI4 IP Core User’s Guide

A summary of compliance tests for the Hard SPI4 IP core in LatticeSC/SCM is given in Lattice Technical Note
TN1121, LatticeSCM SPI4.2 Interoperability with PMC-Sierra PM3388. The same source was used to build the
Soft SPI4 IP core.

Chapter 6:

Core Verification

http://www.latticesemi.com/documents/TN1121.pdf

IPUG59_01.7, September 2010 60 Soft SPI4 IP Core User’s Guide

This chapter contains information about Lattice Technical Support, additional references, and document revision
history.

Lattice Technical Support
There are a number of ways to receive technical support.

Online Forums
The first place to look is Lattice Forums (http://www.latticesemi.com/support/forums.cfm). Lattice Forums contain a
wealth of knowledge and are actively monitored by Lattice Applications Engineers.

Telephone Support Hotline
Receive direct technical support for all Lattice products by calling Lattice Applications from 5:30 a.m. to 6 p.m.
Pacific Time.

• For USA & Canada: 1-800-LATTICE (528-8423)

• For other locations: +1 503 268 8001

In Asia, call Lattice Applications from 8:30 a.m. to 5:30 p.m. Beijing Time (CST), +0800 UTC. Chinese and English
language only.

• For Asia: +86 21 52989090

E-mail Support

• techsupport@latticesemi.com

• techsupport-asia@latticesemi.com

Local Support
Contact your nearest Lattice Sales Office.

Internet
www.latticesemi.com

References
The following documents provide more information on implementing this core:

• IPUG44, LatticeSCM SPI4.2 MACO Core User’s Guide

• TN1121, LatticeSCM SPI4.2 Interoperability with PMC-Sierra PM3388

LatticeECP3

• HB1009, LatticeECP3 Family Handbook

LatticeSCM

• DS1004, LatticeSC/M Family Data Sheet

• DS1005, LatticeSC/M Family flexiPCS Data Sheet

Chapter 7:

Support Resources

www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
http://www.latticesemi.com/documents/ipug44.pdf
http://www.latticesemi.com/documents/TN1121.pdf
http://www.latticesemi.com/support/forums.cfm
http://www.latticesemi.com/documents/DS1004.pdf
www.latticesemi.com
www.latticesemi.com/dynamic/view_document.cfm?document_id=19029
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001

Lattice Semiconductor Support Resources

IPUG59_01.7, September 2010 61 Soft SPI4 IP Core User’s Guide

Revision History

Date
Document

Version
IP Core
Version Change Summary

August 2006 01.0 0.1 Initial release.

October 2006 01.1 1.1 Added appendix for LatticeECP2M devices.

August 2007 01.2 2.0 Updated appendices for LatticeECP2 and LatticeECP2M devices.
Added appendix for LatticeSC/M devices.

March 2009 01.3 2.2 Updates to include asynchronous user side status interfaces.

December 2009 01.4 2.5 Updated footnotes in Appendix tables.

March 2010 01.5 2.6 Removed references to LatticeECP2M family and added support for
LatticeECP3 FPGA family.

July 2010

01.6 2.6 Divided document into chapters. Added table of contents.

Added Quick Facts tables in Chapter 1, “Introduction.”

Added new content in Chapter 3, “Parameter Settings.”

Added new content in Chapter 4, “IP Core Generation.”

Added new content in Chapter 6, “Core Verification.”

September 2010 01.7 2.7 Added support for Diamond software throughout.

IPUG59_01.7, September 2010 62 Soft SPI4 IP Core User’s Guide

This appendix gives resource utilization information for Lattice FPGAs using the Soft SPI4 IP core.

IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER
design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond or ispLEVER
help system. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at:
www.latticesemi.com/software.

LatticeECP3 FPGAs
Table A-1. Performance and Resource Utilization1

Supplied Netlist Configurations
The Ordering Part Number (OPN) for the SPI4.2 IP core targeting LatticeECP3 devices is SPI-42-E3-U3.

LatticeSC/M FPGAs
Table A-2. Performance and Resource Utilization1

Supplied Netlist Configurations
The Ordering Part Number (OPN) for the SPI4.2 IP core targeting LatticeSC/M devices is SPI-42-SC-U3.

Configuration

Bus Mode Status Mode SLICEs LUTs Registers I/Os EBRs
Line Rate

(MHz)

64 Transparent 2324 2600 3206 80 12 312

128 RAM 3967 4327 5185 80 18 350

1. Performance and utilization data are generated using an LFE3-70EA-8FN672CES device with Lattice Diamond 1.0 and Synplify Pro D-
2009.12L-1 software. Performance might vary when using a different software version or targeting a different device density or speed grade
within the LatticeECP3 family.

Configuration

Bus Mode Status Mode SLICEs LUTs Registers I/Os EBRs Line Rate (MHz)

64 Transparent 2405 5126 3001 80 12 400

128 RAM 4015 5126 4840 80 18 400

1. Performance and utilization data are generated using an LFSC3GA25E-6FF1020C device with Lattice Diamond 1.0 and Synplify Pro D-
2009.12L-1 software. Performance might vary when using a different software version or targeting a different device density or speed grade
within the LatticeSC/M family.

Appendix A:

Resource Utilization

http://www.latticesemi.com/products/designsoftware/index.cfm

