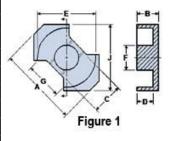


RM Cores (6298280121)

Part Number: 6298280121

98 RM CORE SET

RM (Rectangular Modulus) cores allow better shielding than E type geometries while also providing easier winding accessibility and better power dissipation than a pot core configuration. Fair- Rite \square s standard RM cores all have a solid center post and standard height, low profile and alternate materials are available upon request.


 \Box RM cores can be supplied with the center post gapped to a mechanical dimension or an A_L value.

Catalog Drawing 3D Model

Weight indicated is per pair or set.

Weight: 22 (g)

** C151	<u>11.</u> 22 (5)			
Dim	mm	mm tol	nominal inch	inch misc.
A	27.8	± 0.60	1.094	
В	9.3	± 0.15	0.366	
С	13.25	± 0.25	0.522	
D	6.4	± 0.20	0.252	
Е	21.65	± 0.45	0.852	
F	10.65	± 0.20	0.419	
G	12.5	min	0.493	min
J	24.15	± 0.55	0.951	

Chart Legend

 $\Sigma l/A$: Core Constant, l_e : Effective Path Length, A_e : Effective Cross-Sectional Area, V_e :

Effective Core Volume A_L : Inductance Factor

Explanation of Part Numbers: Digits 1 & 2 = product class and 3 & 4 = material grade.

Electrical Properties				
$A_L(nH)$	4300 ±25%			
Ae(cm ²)	0.898			
$\Sigma l/A(cm^{-1})$	5.3			
l _e (cm)	4.79			
$V_e(cm^3)$	4.306			
$A_{min}(cm^2)$	0.884			

 A_{r} value is measured at 1 kHz, B < 10 gauss.