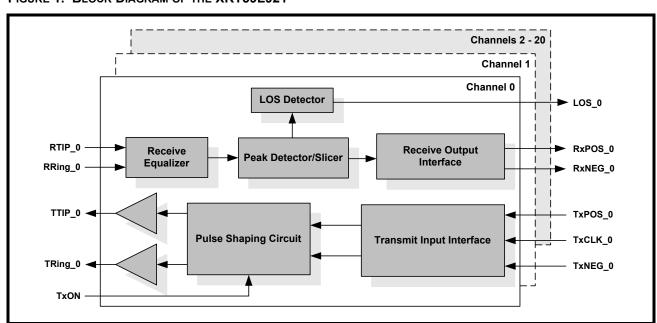


MARCH 2007 REV. 1.2.1

GENERAL DESCRIPTION

The XRT59L921 is an optimized twenty-one channel, E1, line interface unit, fabricated using low power CMOS technology. The device contains twenty-one independent E1 channels. It is primarily targeted towards the SDH multiplexers that accommodate TU12 Tributary Unit Frames. Line cards in these units multiplex 21 E1 channels into higher SDH rates. Devices with 21 E1 interfaces such as the XRT59L921 provide the most efficient method of implementing 63-channel line cards. Each channel performs the driver and receiver functions necessary to convert bipolar signals to logical levels and vice versa.

The receiver input accepts transformer coupled 1:1 signals, while the transmitter is coupled to the line using a 1:2 transformer. The same transformer configuration can be used for both balanced and unbalanced interfaces. The device offers Loss of Signal (LOS) detection, that provides an LOS output indication signal with thresholds and delay that comply with the ITU G.775 requirements.


FEATURES

- Twenty-One (21) Independent E1 (CEPT) Line Interface Units (Transmitter, Receiver, and Recovery)
- Transmit Output Pulses that are Compliant with the ITU-T G.703 Pulse Template Requirement for 2.048Mbps (E1) Rates
- On-Chip Pulse Shaping for both 75Ω and 120Ω line drivers
- Detects and Clears LOS (Loss of Signal) Per ITU-T G.775
- Operates over the Industrial Temperature Range
- Ultra Low power consumption
- 3.3V operation with 5V Tolerant Input

APPLICATIONS

- PDH Multiplexers
- SDH Multiplexers
- Digital Cross-Connect Systems
- DECT (Digital European Cordless Telephone) Base Stations
- CSU/DSU Equipment

FIGURE 1. BLOCK DIAGRAM OF THE XRT59L921

ORDERING INFORMATION

PART NUMBER	Package	OPERATING TEMPERATURE RANGE
XRT59L921IB	316 Shrink Thin Ball Grid Array (21.0 mm x 21.0 mm, STBGA)	-40°C to +85°C

FIGURE 2. PIN OUT OF THE XRT59L921 (BOTTOM VIEW)

FIGUR	SURE 2. PIN OUT OF THE ART 1991921 (BOTTOM VIEW)																			
20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Α
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Е
0	0	0	0	0											0	0	0	0	0	F
0	0	0	0	0											0	0	0	0	0	G
0	0	0	0	0											0	0	0	0	0	н
0	0	0	0	0				0	0	0	0				0	0	0	0	0	J
0	0	0	0	0				0	0	0	0				0	0	0	0	0	Κ
0	0	0	0	0				0	0	0	0				0	0	0	0	0	L
0	0	0	0	0				0	0	0	0				0	0	0	0	0	М
0	0	0	0	0								ı			0	0	0	0	0	N
0	0	0	0	0											0	0	0	0	0	Р
0	0	0	0	0											0	0	0	0	0	R
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Т
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	v
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	w
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Y

NOTE: Refer to pin list for pin names.

TABLE OF CONTENTS

GENERAL DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
FIGURE 1. BLOCK DIAGRAM OF THE XRT59L921	
ORDERING INFORMATION	
FIGURE 2. PIN OUT OF THE XRT59L921 (BOTTOM VIEW)	
TABLE OF CONTENTS	
PIN DESCRIPTIONS	
RECEIVER ELECTRICAL CHARACTERISTICS	
TRANSMITTER ELECTRICAL CHARACTERISTICS	
FIGURE 3. E1. ITU G.703 PULSE TEMPLATE FOR TRANSMITTER OUTPUT	
DC ELECTRICAL CHARACTERISTICS	
AC ELECTRICAL CHARACTERISTICS	
PER CHANNEL POWER CONSUMPTION INCLUDING THE LINE POWER DISSIPATION, TRANMISSION AND RECEIVE	
ALL ACTIVE:	
ABSOLUTE MAXIMUM RATINGS	
SYSTEM DESCRIPTION	
1.0 THE TRANSMIT SECTION	
1.1 THE TRANSMIT INPUT INTERFACE	15
1.2 OPERATING THE TRANSMITTER IN THE CLOCK MODE	
FIGURE 4. ILLUSTRATION ON HOW THE XRT59L921 SAMPLES THE DATA ON THE TXPOS_N AND TXNEG_N INPUT PINS 1.2.1 OPERATING THE TRANSMITTER IN THE CLOCKLESS MODE	16
1.2.2 SHUTTING OFF THE TRANSMITER	
FIGURE 5. ILLUSTRATION ON HOW THE TERMINAL EQUIPMENT SHOULD APPLY DATA TO THE TRANSMIT SECTION OF A GIVEN CHAN	INEL (WITH
IN THE XRT59L921), WHEN OPERATING IN THE CLOCKLESS MODE	
1.3 THE PULSE SHAPING CIRCUIT	
FIGURE 6. ILLUSTRATION OF THE ITU-T G.703 PULSE TEMPLATE FOR E1 APPLICATIONS	
FIGURE 7. ILLUSTRATION OF HOW TO INTERFACE THE TRANSMIT SECTIONS OF THE XRT59L921 TO THE LINE (FOR 75W APPLI 19 FIGURE 8. ILLUSTRATION OF HOW TO INTERFACE THE TRANSMIT SECTIONS THE XRT59L921 TO THE LINE (FOR 120W APPLICA Transmit Transformer Recommendations	ATIONS)19
The following Transformers are Recommended for Use	
MAGNETIC SUPPLIER INFORMATION	
2.0 THE RECEIVE SECTION	
2.1 INTERFACING THE RECEIVE SECTIONS TO THE LINE (TRANSFORMER COUPLING)	
FIGURE 9. RECOMMENDED SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT59L921 TO THE LINE FOR 75W TIONS (TRANSFORMER-COUPLING)	APPLICA-
FIGURE 10. RECOMMENDED SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT59L921 TO THE LINE FOR 120)W APPLI-
CATIONS (TRANSFORMER-COUPLING)	
TRANSFORMER RECOMENDATION	_
Receive Transformer Recommendations	
2.2 INTERFACING THE XRT59L921 RECEIVE SECTION TO THE LINE (CAPACITIVE COUPLING)	
FIGURE 11. RECOMMENDED 75W CAPACITIVE COUPLING APPLICATION	
2.3 THE RECEIVE EQUALIZER BOCK	
2.4 THE PEAK DETECTOR AND SLICER BLOCK	
2.5 THE LOS DETECTOR BLOCK	
Figure 13. Illustration of the Signal Levels that the Receiver Sections (within XRT59L921) will declare and cl 24	
FIGURE 14. THE BEHAVIOR OF THE LOS OUTPUT INDICATOR, IN RESPONSE TO THE LOSS OF SIGNAL, AND THE RESTORATION OF	
NAL	
2.6 LOS MUTE DESCRIPTION	
3.0 SHUTTING OFF THE TRANSMITTER	
FIGURE 15. TRANSMIT TIMING DIAGRAM	_
FIGURE 16. RECEIVE TIMING DIAGRAM	
APPLICATION INFORMATION	

XRT59L921

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT

Experience <i>Our</i> Connectivity.
REV. 1.2.1

FIGURE 17. ILLUSTRATION ON HOW TO INTERFACE CHANNEL 1 (OF THE XRT59L921) TO THE LINE (RECEIVER IS TRANSFO	RMER-COUPLED
TO A 75W UNBALANCED LINE)	27
TO A 75W UNBALANCED LINE)	RMER-COUPLED
TO A 120W BALANCED LINE)	
ORDERING INFORMATION	29
PACKAGE DIMENSIONS	29
REVISION HISTORY	30

Pin#	SYMBOL	Түре	DESCRIPTION
D8	RxPOS_0	0	Receiver Positive Data Out – Channel_n: (n=0 to 20)
C9	RxPOS_1		This output pin will pulse "High" whenever Channel_n, within the XRT59L921 has
D9	RxPOS_2		received a Positive Polarity pulse, in the incoming line signal, at RTIP_n/RRing_n
A10	RxPOS_3		inputs.
C11	RxPOS_4		
A12	RxPOS_5		
V10	RxPOS_6		
Y9	RxPOS_7		
U9	RxPOS_8		
V8	RxPOS_9		
U7	RxPOS_10		
U14	RxPOS_11		
Y14	RxPOS_12		
V12	RxPOS_13		
Y12	RxPOS_14		
Y11	RxPOS_15		
B13	RxPOS_16		
D13	RxPOS_17		
C14	RxPOS_18		
B14	RxPOS_19		
A15	RxPOS_20		
E7	RxNEG_0	0	Receiver Negative Data Out – Channel_n:
C8	RxNEG_1		This output pin will pulse "High" whenever Channel_n, within the XRT59L921 has
E9	RxNEG_2		received a Negative Polarity pulse, in the incoming line signal, at RTIP_n/RRing_n
B9	RxNEG_3		inputs.
C10	RxNEG_4		
B11	RxNEG_5		
V9	RxNEG_6		
W8	RxNEG_7		
Т9	RxNEG_8		
U8	RxNEG_9		
T7	RxNEG_10		
T14	RxNEG_11		
W14	RxNEG_12		
V13	RxNEG_13		
W12	RxNEG_14		
W10	RxNEG_15		
C12	RxNEG_16		
E13	RxNEG_17		
D14	RxNEG_18		
C15	RxNEG_19		
A14	RxNEG_20		

Pin#	SYMBOL	Түре	DESCRIPTION
D7	LOS_0	0	Receiver Loss of Signal Output Indicator – Channel_n:
В8	LOS_1		This output pin toggles "High" if Channel_n, within the XRT59L921 has detected a
E8	LOS_2		Loss of Signal condition in the incoming line signal.
A9	LOS_3		
B10	LOS_4		
A11	LOS_5		
W9	LOS_6		
Y8	LOS_7		
T8	LOS_8		
V7	LOS_9		
T6	LOS_10		
T15	LOS_11		
Y13	LOS_12		
W13	LOS_13		
W11	LOS_14		
Y10	LOS_15		
B12	LOS_16		
E14	LOS_17		
C13	LOS_18		
B15	LOS_19		
A13	LOS_20		
B1	RTIP_0	I	Receiver_n Positive Bipolar Input – Channel_n:
D1	RTIP_1		The Receive Section of Channel_n uses this input pin, along with RRing_n to receive
E1	RTIP_2		the bipolar line signal from the Remote E1 Terminal.
G1	RTIP_3		
H1	RTIP_4		
K1	RTIP_5		
L1	RTIP_6		
N1	RTIP_7		
P1	RTIP_8		
T1	RTIP_9		
U1	RTIP_10		
U20	RTIP_11		
T20	RTIP_12		
P20	RTIP_13		
N20	RTIP_14		
L20	RTIP_15		
K20	RTIP_16		
H20	RTIP_17		
G20	RTIP_18		
E20	RTIP_19		
D20	RTIP_20		

REV. 1.2.1

Pin#	SYMBOL	Түре	DESCRIPTION
C1	RRing_0	I	Receiver Negative Bipolar Input – Channel_n:
D2	RRing_1		The Receive Section of Channel_n uses this input pin, along with RTIP_n to receive
E2	RRing_2		the bipolar line signal from the Remote E1 Terminal.
G2	RRing_3		
H2	RRing_4		
K2	RRing_5		
L2	RRing_6		
N2	RRing_7		
P2	RRing_8		
T2	RRing_9		
U2	RRing_10		
U19	RRing_11		
T19	RRing_12		
P19	RRing_13		
N19	RRing_14		
L19	RRing_15		
K19	RRing_16		
H19	RRing_17		
G19	RRing_18		
E19	RRing_19		
D19	RRing_20		
V11	TxON	I	Transmit ON/OFF Input:
			Upon power up, all of the transmitters are powered off. If the TxON pin is pulled
			"High" all 21 transmitters are powered on. Individual Channels can be powered
			down by connecting TxClk_n "Low" and with TPOS_n/TNEG_n data applied to that Channel_n.
			NOTE: Internally pulled "Low" with a $50k\Omega$ resistor.

Pin#	SYMBOL	TYPE	DESCRIPTION
C4	TTIP_0	0	Transmitter Positive Bipolar Output – Channel_n:
D5	TTIP_1		Channel_n within the XRT59L921 will use this pin, along with TRing_n, to transmit a
F4	TTIP_2		bipolar line signal, via a 1:2 step-up transformer.
G5	TTIP_3		
J4	TTIP_4		
K5	TTIP_5		
M4	TTIP_6		
N5	TTIP_7		
R4	TTIP_8		
T5	TTIP_9		
V4	TTIP_10		
V17	TTIP_11		
T16	TTIP_12		
R17	TTIP_13		
N16	TTIP_14-		
M17	TTIP_15-		
K16	TTIP_16-		
J17	TTIP_17		
G16	TTIP_18		
F17	TTIP_19		
D16	TTIP_20		
C3	TRing_0	0	Transmitter Negative Bipolar Output - Channel_n:
D4	TRing_1		Channel_n within the XRT59L921 will use this pin, along with TTIP_n, to transmit a
F3	TRing_2		bipolar line signal, via a 1:2 step-up transformer.
G4	TRing_3		
J3	TRing_4		
K4	TRing_5		
М3	TRing_6		
N4	TRing_7		
R3	TRing_8		
T4	TRing_9		
V3	TRing_10		
V18	TRing_11		
T17	TRing_12		
R18	TRing_13		
N17	TRing_14		
M18	TRing_15		
K17	TRing-16		
J18	TRing_17		
G17	TRing_18		
F18	TRing_19		
D17	TRing_20		

REV. 1.2.1

Pin#	SYMBOL	ТҮРЕ	DESCRIPTION
A2	TxClk_0	I	Transmitter Clock Input – Channel_n:
A4	TxClk_1		If the user operates Channel_n (within the XRT59L921) in the Clock mode, then the
A6	TxClk_2		Transmit Section of the Channel_n will use the falling edge of this signal to sample
C7	TxClk_3		the data at the TxPOS_n and TxNEG_n input pins.
E6	TxClk_4		NOTE: If the user operates the Channel_n in the clockless mode, then the Terminal
A8	TxClk_5		Equipment should not apply a clock signal to this input pin and TxCLK should be tied "High".
U6	TxClk_6		be lieu Tilgit .
W5	TxClk_7		
Y6	TxClk_8		
Y4	TxClk-9		
W2	TxClk_10		
Y19	TxClk_11		
Y17	TxClk_12		
Y15	TxClk_13		
V15	TxClk_14		
U15	TxClk_15		
E15	TxClk_16		
C18	TxClk_17		
B17	TxClk_18		
A18	TxClk_19		
B20	TxClk_20		
В3	TxNEG_0	I	Transmitter - Negative Data Input - Channel_n:
B4	TxNEG_1		The exact signal that should be applied to this input pin depends upon whether the
В6	TxNEG_2		user intends to operate the Transmit Section (of Channel_n) in the Clock or Clock-
D6	TxNEG_3		less Mode
E4	TxNEG_4		Clock Mode:
B7	TxNEG_5		The Terminal Equipment should apply bit-wide NRZ pulses on this input pin, whenever the Terminal Equipment needs to transmit a Negative-Polarity pulse onto the
U4	TxNEG_6		line via TTIP_n and TRing_n output pins. The XRT59L921 will sample this input pin
V6	TxNEG_7		upon the falling edge of the TClk_n signal.
W7	TxNEG_8		Clockless Mode:
W4	TxNEG_9		The Terminal Equipment should apply RZ pulses to this input pin, anytime the Termi-
W3	TxNEG_10		nal Equipment needs to transmit a Negative-Polarity pulse onto the line viaTTIP_n
W19	TxNEG_11		and TRing_n output pins.
W17	TxNEG_12		NOTE: In clockless mode, transmit output pulse width is determined by the RZ signal
W16	TxNEG_13		applied to TxNEG/TxPOS.
V14	TxNEG_14		
U17	TxNEG_15		
E17	TxNEG_16		
C16	TxNEG_17		
B16	TxNEG_18		
B18	TxNEG_19		
B19	TxNEG_20		

T12

L16

AGND AGND REV. 1.2.1

PIN DESCRIPTIONS

PIN# SYMBOL **TYPE** DESCRIPTION TxPOS 0 А3 I Transmitter - Positive Data Input - Channel_n: A5 TxPOS 1 The exact signal that should be applied to this input pin depends upon whether the user intends to operate the Transmit Section (of Channel n) in the Clock or Clock-**B5** TxPOS 2 less Mode. C6 TxPOS 3 **Clock Mode:** TxPOS_4 E5 The Terminal Equipment should apply bit-wide NRZ pulses on this input whenever A7 TxPOS 5 the Terminal Equipment needs to transmit a Positive-Polarity pulse onto the line via U5 TxPOS 6 TTIP n and TRing n output pins. The XRT59L921 will sample this input pin upon the W6 TxPOS 7 falling edge of the TClk n signal. **Y7** TxPOS 8 **Clockless Mode:** Y5 TxPOS 9 The Terminal Equipment should apply RZ pulses to this input pin, anytime the Termi-**Y3** TxPOS 10 nal Equipment needs to transmit a Positive-Polarity pulse onto the line via TTIP n Y18 and TRing n output pins. TxPOS_11 W18 TxPOS 12 Y16 TxPOS 13 W15 TxPOS_14 **U16** TxPOS 15 E16 TxPOS 16 C17 TxPOS_17 TxPOS 18 A16 A17 TxPOS 19 A19 TxPOS_20 **TCK** JTAG Test Clock input, Boundary Scan Clock input: L5 Τ Note: This input pin should be pulled "Low" for normal operation. internally pulled "High" with a $50k\Omega$ resistor. Ī H4 TDI JTAG Test Data input, Boundary Scan Test Data Input: NOTE: This input pin should be pulled "Low" for normal operation. internally pulled "High" with a $50k\Omega$ resistor. L4 **TDO** 0 JTAG Test Data output: Boundary Scan Test Data Output: Ι JTAG Test Mode Select, Boundary Scan Test Mode Select input pin: H5 **TMS** P4 **TRST** I JTAG Test Mode Reset, Boundary Scan Mode Reset Input pin: NOTE: This input pin should be pulled "Low" for normal operation, internally pulled "High" with a $50k\Omega$ resistor. H17 **FACTORY FACTORY TEST PINS: TEST PINS** T13 The customer must tie these pins to ground for normal operation. U13 E10 **AGND** Analog Ground - Receivers **AGND** E12 **AGND** T10

PIN#	SYMBOL	Түре	DESCRIPTION
D10	AVDD	-	Positive Supply - (+3.3V ± 5%). Receivers
D12	AVDD		
U10	AVDD		
U12	AVDD		
L17	AVDD		
A1	DVDD	-	Positive Supply (+3.3V ± 5%). Digital Circuitry.
A20	DVDD		
Y1	DVDD		
Y2	DVDD		
Y20	DVDD		
U11	DVDD		
W20			
C20			
D11			
F1	DGND	-	Digital Ground: Digital Circuitry.
F20	DGND		
J1	DGND		
J20	DGND		
M1	DGND		
M20	DGND		
R1			
R20			
W1			
T11			
V1			
V20			
C19			
E11			
B2			

XRT59L921

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT

PIN#	SYMBOL	Түре	DESCRIPTION
H16	AGND	-	Ground Pins
J9			
J10			
J11			
J12			
K9			
K10			
K11			
K12			
L9			
L10			
L11			
L12			
M9			
M10			
M11			
M12			
P5			
P16			
P17			
D15	N/C	-	No Connect

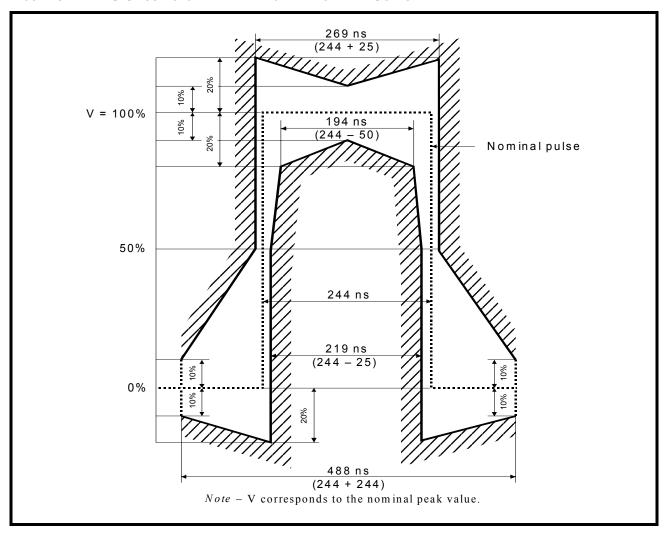
REV. 1.2.1

Pin#	SYMBOL	Түре	DESCRIPTION
C2	TGND_0	-	Digital Ground. Transmitter_n
D3	TGND_1		<u> </u>
F2	TGND_2		
G3	TGND_3		
J2	TGND_4		
K3	TGND_5		
M2	TGND_6		
N3	TGND_7		
R2	TGND_8		
Т3	TGND_9		
V2	TGND_10		
V19	TGND_11		
T18	TGND_12		
R19	TGND_13		
N18	TGND_14		
M19	TGND_15		
K18	TGND_16		
J19	TGND_17		
G18	TGND_18		
F19	TGND_19		
D18	TGND_20		
C5	TVDD_0	-	Positive Supply (+3.3V ± 5%), Transmitter_n
E3	TVDD_1		
F5	TVDD_2		
Н3	TVDD_3		
J5	TVDD_4		
L3	TVDD_5		
M5	TVDD_6		
P3	TVDD_7		
R5	TVDD_8		
U3	TVDD_9		
V5	TVDD_10		
V16	TVDD_11		
U18	TVDD_12		
R16	TVDD_13		
P18	TVDD_14		
M16	TVDD_15		
L18	TVDD_16		
J16	TVDD_17		
H18	TVDD_18		
F16	TVDD_19		
E18	TVDD_20		

RECEIVER ELECTRICAL CHARACTERISTICS

T_A=-40 to 85°C, V_{DD}=3.3V±5%, unless otherwise specified.

Parameter	Min	Түр	Max	Unit	TEST CONDITIONS
Receiver Loss of Signa	al:		<u> </u>	I	
Threshold to Assert	-	20	-	dB	Cable attenuation @ 1024KHz
Threshold to Clear	-	15	-	dB	
Time Delay	10	-	255	bit	Per ITU-G.775
Hysteresis	-	5	-	dB	
Receiver Sensitivity	9	11	-	dB	Below nominal pulse amplitude of 3.0V for 120Ω and $2.37V$ for 75Ω applications.
Interference Margin	-18	-14	-	dB	With 6dB cable loss.
Input Impedance	5	-	-	ΚΩ	
Jitter Tolerance:		· ·	1	1	
20Hz	10			Ulpp	
700Hz	5	-	-	Ulpp	
10KHz —100KHz	0.3			Ulpp	
Return Loss:	1		•	1	
51KHz —102KHz	14	-	-	dB	Per ITU-G.703
102KHz—2048KHz	20	-	-	dB	
2048KHz—3072KHz	16	-	-	dB	


TRANSMITTER ELECTRICAL CHARACTERISTICS

TA=-40 to 85°C, VDD=3.3V±5%, unless otherwise specified

Parameter	Min	Түр	Max	Unit	Test Conditions			
AMI Output Pulse Amplitude:								
75Ω Application	2.13	2.37	2.60	V	Use transformer with 1:2 ratio			
120Ω Application	2.70	3.0	3.30	V	and 9.1Ω resistor in series with each end of primary			
Output Pulse Width	224	244	264	ns				
Output Pulse Width Ratio	0.95	_	1.05	-	Per ITU-G.703			
Output Pulse Amplitude Ratio	0.95	-	1.05	-	Per ITU-G.703			
Output Return Loss:								
51KHz —102KHz	8	-	-	dB	Per ETSI 300 166 and G.703			
102KHz—2048KHz	8	-	-	dB				
2048KHz—3072KHz	8	-	-	dB				

Experience Our Connectivity...

FIGURE 3. E1. ITU G.703 PULSE TEMPLATE FOR TRANSMITTER OUTPUT

DC ELECTRICAL CHARACTERISTICS

TA=-25°C, VDD=3.3V±5%, unless otherwise specified

PARAMETER	SYMBOL	Min	Түр	Max	Unit
Power Supply Voltage	VDD	3.13	3.3	3.46	V
Input High Voltage	VIH	2.0	-	5.0	V
Input Low Voltage	VIL	-0.5	-	0.8	V
Output High Voltage @ IOH=-5mA	VOH	2.4	-	-	V
Output Low Voltage @ IOL=5mA	VOL	-		- 0.4	V
Input Leakage Current (except Input pins w/ pull-up resistor.)	IL	-	-	± 10	μΑ
Input Capacitance	CI		5.0		pF
Output Load Capacitance	CL	-	-	25	pF

AC ELECTRICAL CHARACTERISTICS

TA=-25°C, VDD=3.3V±5%, unless otherwise specified

PARAMETER	SYMBOL	Min	Түр	Max	Unit
TCLK Clock Period	T ₁	-	488	-	ns
TCLK Duty Cycle	T ₂	47	50	53	%
Transmit Data Setup Time	T _{su}	50	-	-	ns
Transmit Data Hold Time	T _{ho}	30	-	-	ns
Transmit Data Prop. Delay Time - RZ data Mode - NRZ data Mode (clock mode)	T ₃		30 30		ns ns
TCLK Rise Time(10%/90%)	T _r	-	-	40	ns
TCLK Fall Time(90%/10%)	T _f	-	-	40	ns
Receive Data Rise Time	R _{tr}	-	-	40	ns
Receive Data Fall Time	R _{tf}	-	-	40	ns
Receive Data Prop. Delay	R _{pd}	-	75	-	ns
Receive Data Pulse Width	R _{xpw}	200	244	350	ns

PER CHANNEL POWER CONSUMPTION INCLUDING THE LINE POWER DISSIPATION, TRANMISSION AND RECEIVE PATHS ALL ACTIVE:

TA=-40 to 85°C, VDD=3.3V±5%, unless otherwise specified

PARAMETER	SYMBOL	Min	Түр	Max	Unit	Conditions
Power Consumption	PC	-	510		mW	75Ω load, operating at 50% Mark Density.
Power Consumption	PC	-	650		mW	120 Ω load, operating at 50% Mark Density.
Power Consumption	PC	-	1000		mW	75Ω load, operating at 100% Mark Density.
Power Consumption	PC	-	900		mW	120 Ω load, operating at 100% Mark Density.
Power Consumption	PC	-	170		mW	Transmitter in Powered-down mode.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to + 150°C	
Operating Temperature	-40°C to + 85°C	
ESD Rating	>2000V on all pins	Note: Human Body Model, 100pF capacitor discharged through a 1.5 K Ω resistor.
Supply Voltage	-0.5V to + 6.0V	

SYSTEM DESCRIPTION

The XRT59L921 is a Twenty-One (21) channel E1 transceiver that provides an electrical interface for 2.048Mbps applications. Each of the twenty-one channels includes a receive circuit that converts an ITU-T G.703 compliant bipolar signal into a TTL compatible logic levels. Each receiver also includes an LOS (Loss of Signal) detection circuit. Similarly, in the Transmit Direction, each Transmitter converts TTL compatible logic levels into a G.703 compatible bipolar signal. The Transmitter may be operated in either a Clock or Clockless Mode.

Each channel within the XRT59L921 LIU consists of both a Transmit Section and a Receive Section, each of these sections will be discussed in detail below.

1.0 THE TRANSMIT SECTION

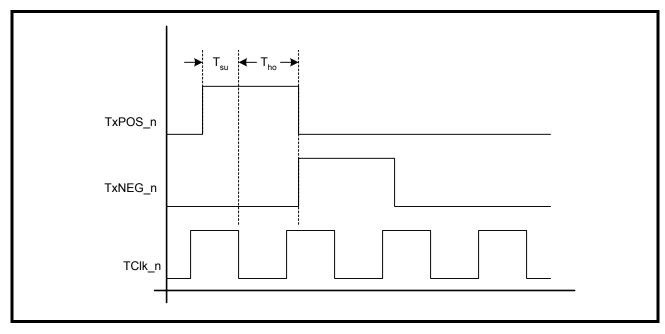
In general, the purpose of the Transmit Section (within each channel of the XRT59L921) is to accept TTL/CMOS level digital data (from the Terminal Equipment), and to encode it into a format such that it can:

- 1. Be efficiently transmitted over coaxial- or twistedpair cable at the E1 data rate and
- 2. Be reliably received by the Remote Terminal Equipment at the other end of the E1 data link.
- 3. Comply with the ITU-T G.703 pulse template requirements, for E1 applications.

The circuitry that the Transmit Section (within the XRT59L921) uses to accomplish this goal is discussed below. The Transmit Section of the XRT59L921 consists of the following blocks:

- Transmit Input Interface
- Pulse Shaping Block

1.1 The Transmit Input Interface


The Transmit Input Interface accepts either Clock or clockless data from the Terminal Equipment. The manner in how the Terminal Equipment should apply data to a given channel within the XRT59L921 depends upon whether the channel is being operated in the Clock or clockless mode.

1.2 Operating the Transmitter in the Clock Mode

The user can configure a given channel (within the XRT59L921) to operate in the Clock mode by simply applying a 2.048MHz clock signal to the TxClk_n input pin (where x denotes a given channel within the XRT59L921). The XRT59L921 contains circuitry that senses activity on the TxClk_n line. If this circuit senses activity on the TxClk_n line, then the corresponding channel will automatically be operating in the Clock Mode.

In the Clock Mode, the Terminal Equipment is expected to apply a 2.048MHz clock signal at the TxClk_n input pin and NRZ data at the TxPOS_n and TxNEG_n input pins. The Transmit Input Interface circuit will sample the data, at the TxPOS_n and TxNEG_n input pins, upon the falling edge of TxClk_n, as illustrated in Figure 4.

FIGURE 4. ILLUSTRATION ON HOW THE XRT59L921 SAMPLES THE DATA ON THE TXPOS_N AND TXNEG_N INPUT PINS

In general, if the XRT59L921 samples a "1" on the TxPOS_n input pin, then the Transmit Section of the device will ultimately generate a positive polarity pulse via the TTIP_n and TRing_n output pins (across a 1:2 transformer). Conversely, if the XRT59L921 samples a "1" on the TxNEG_n input pin, then the Transmit Section of the device will ultimately generate a negative polarity pulse via the TTIP_n and TRing_n output pins (across a 1:2 transformer).

1.2.1 Operating the Transmitter in the Clockless Mode

The user can configure a given channel (within the XRT59L921) to operate in the Clockless mode by doing the following:

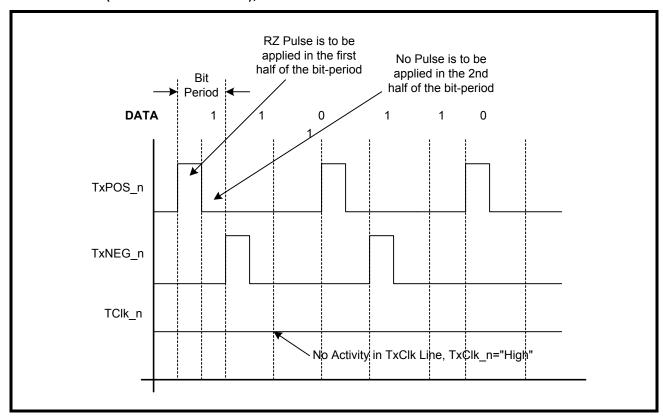
- Not applying a clock signal to the TxClk_n input, and pulling this pin to VDD.
- By applying RZ (Return to Zero) data to the TxPOS_n and TxNEG_n input pins, as illustrated below.
- If TxClk_n is grounded and RZ data is applied to TPOS and TNEG, the transmitter will be powered down and tri-stated.

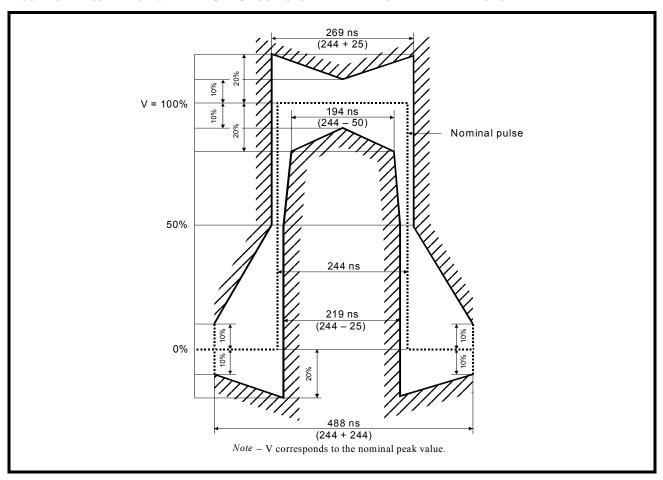
1.2.2 Shutting off the Transmiter

The Transmit Driver for each Channel_n (within the XRT59L921) can be shut off. To activate this feature, Connect the TxCLK_n input pin to a logic "0" (e.g. GND) and continue to apply data via the TxPOS_n and TxNEG n input pins.

Experience Our Connectivity...

FIGURE 5. ILLUSTRATION ON HOW THE TERMINAL EQUIPMENT SHOULD APPLY DATA TO THE TRANSMIT SECTION OF A GIVEN CHANNEL (WITHIN THE XRT59L921), WHEN OPERATING IN THE CLOCKLESS MODE




Figure 5, indicates that when the user is operating a channel in the Clockless Mode, then the corresponding Terminal Equipment must do the following:

- Not apply a signal on the TxClk_n line and connect TxClk to "High"
- When applying a pulse (to either the TxPOS_n or TxNEG_n input pin), apply an RZ pulse to the appropriate input pin. This RZ pulse should only have a width of one-half the bit-period.

1.3 The Pulse Shaping Circuit

The purpose of the Transmit Pulse Shaping circuit is to generate Transmit Output pulses that comply with the ITU-T G.703 Pulse Template Requirements for E1 Applications.

FIGURE 6. ILLUSTRATION OF THE ITU-T G.703 PULSE TEMPLATE FOR E1 APPLICATIONS

Each channel (within the XRT59L921) will take each mark (which is provided to it via the Transmit Input Interface block, and will generate a pulse that complies with the pulse template, presented in Figure 6, (when measured on the secondary-side of the Transmit Output Transformer).

1.4 Interfacing the Transmit Sections of the XRT59L921 to the Line

ITU-T G.703 specifies that the E1 line signal can be transmitted over coaxial cable and terminated with 75 Ω or transmitted over twisted-pair and terminated with 120 Ω . However, in both applications (e.g., 75 Ω or 120 Ω), the user is advised to interface the Transmitter to the Line, in the manner as depicted in Figure 7 and Figure 8, respectively.

FIGURE 7. ILLUSTRATION OF HOW TO INTERFACE THE TRANSMIT SECTIONS OF THE XRT59L921 TO THE LINE (FOR 75Ω APPLICATIONS)

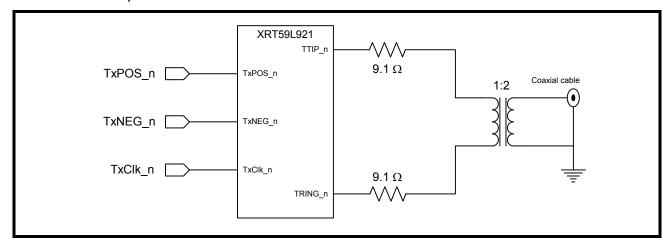
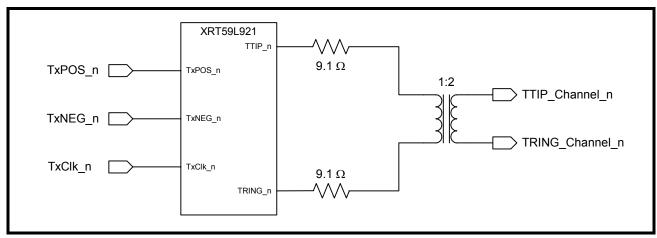



FIGURE 8. ILLUSTRATION OF HOW TO INTERFACE THE TRANSMIT SECTIONS THE XRT59L921 TO THE LINE (FOR 120Ω Applications)

Notes:

- 1. Figure 7 and Figure 8, indicate that for both 75Ω and 120Ω applications, the user should connect a 9.1Ω resistor, in series, between the TTIP/TRing outputs and the transformers.
- 2. Figure 5 and 6, indicate that the user should use a 1:2 STEP-UP Transformer.

TRANSMIT TRANSFORMER RECOMMENDATIONS

PARAMETER	VALUE
Turns Ratio	1:2
Primary Inductance	
Isolation Voltage	
Leakage Inductance	

THE FOLLOWING TRANSFORMERS ARE RECOMMENDED FOR USE

PART NUMBER	VENDOR	ISOLATION	PACKAGE TYPE
PE-65835	Pulse		
TTI 7154-R	Transpower Technologies, Inc.		
TG26-1205	HALO		

Note: More transformers will be added to this list as they are evaluated .

MAGNETIC SUPPLIER INFORMATION

Pulse

Corporate Office

12220 World Trade Drive

San Diego, CA 92128

Tel: (619)-674-8100

FAX: (619)-674-8262

Europe

1 & 2 Huxley Road

The Surrey Research Park

Guildford, Surrey GU2 5RE

United Kingdom

Tel: 44-1483-401700

FAX: 44-1483-401701

Asia

150 Kampong Ampat

#07-01/02

KA Centre

Singapore 368324

Tel: 65-287-8998

FAX: 65-280-0080

Transpower Technologies

Corporate Office

9410 Prototype Drive, Ste #1

Reno, NV 89511

Tel: (800)511-7308 or

(775)852-0140

Fax: (775)852-0145

www.trans-power.com

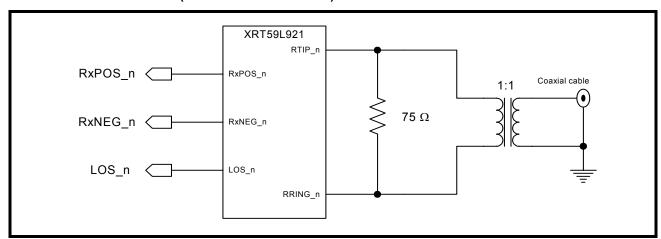
HALO Electronics

P.O. Box 5826

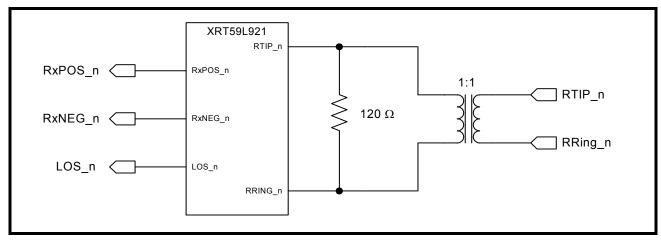
Redwood City, CA 94063

Tel: (650)568-5800 FAX: (650)568-6161

2.0 THE RECEIVE SECTION


The Receive Sections of the XRT59L921 consists of the following blocks:

- The Receive Equalizer block
- The Peak Detector and Slicer block
- The LOS Detector block
- The Receive Output Interface block


2.1 Interfacing the Receive Sections to the Line (Transformer Coupling)

The design of each channel (within the XRT59L921) permits the user to transformer-couple the Receive Section to the line. Additionally, as mentioned earlier, the specification documents for E1 specify 75Ω termination loads, when transmitting over coaxial cable, and 120Ω loads, when transmitting over twisted-pair. Figure 9, and Figure 10 present the two methods that the user can employ in order to interface the Receivers (of the XRT59L921) to the line.

FIGURE 9. RECOMMENDED SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT59L921 TO THE LINE FOR 75Ω Applications (Transformer-Coupling)

FIGURE 10. RECOMMENDED SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT59L921 TO THE LINE FOR 120Ω Applications (Transformer-Coupling)

Note: Figure 9 and Figure 10 indicate that the user should use a 1:1 transformer, when interfacing the receiver to the line.

TRANSFORMER RECOMENDATION

RECEIVE TRANSFORMER RECOMMENDATIONS

PARAMETER	VALUE
Turns Ratio	1:1
Primary Inductance	
Isolation Voltage	
Leakage Inductance	

2.2 Interfacing the XRT59L921 Receive Section to the Line (Capacitive Coupling)

Figure 11 and Figure 12 are recommended methods to Interface the the receive sections of the XRT59L921to the line.

FIGURE 11. RECOMMENDED 75 Ω CAPACITIVE COUPLING APPLICATION

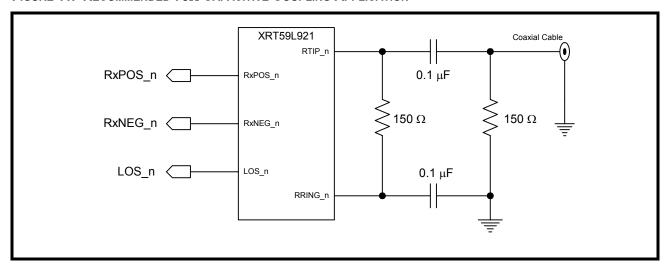
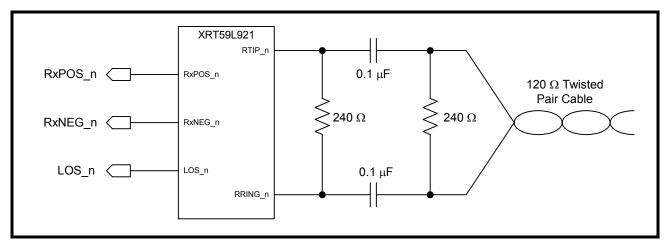



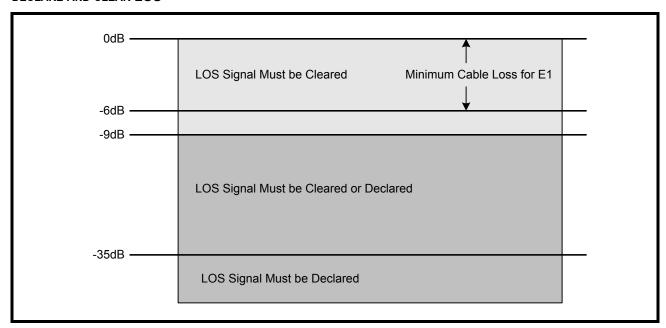
FIGURE 12. RECOMMENDED 120 Ω TWISTED PAIR CAPACITIVE COUPLING APPLICATION

2.3 The Receive Equalizer Bock

After a given Channel (within the XRT59L921) has received the incoming line signal, via the RTIP_n and RRing n input pins, the first block that this signal will pass through is the Receive Equalizer block.

As the line signal is transmitted from a given Transmitting terminal, the pulse shapes (at that location) are basically square. Hence, these pulses consist of a combination of low and high frequency Fourier components. As this line signal travels from the transmitting terminal (via the coaxial cable or twisted pair) to the receiving terminal, it will be subjected to frequency-dependent loss. In other words, the higher frequency components of the signal will be subjected to a greater amount of attenuation than the lower frequency components. If this line signal travels over reasonably long cable lengths, then the shape of the pulses (which were originally square) will be distorted and with inter-symbol interference increases.

The purpose of this block is to equalize the incoming distorted signal, due to cable loss. In essence, the Receive Equalizer block accomplishes this by subjecting the received line signal to frequency-dependent amplification (which attempts to counter the frequency-dependent loss that the line signal has experienced). By doing this, the Receive Equalizer is attempting to restore the shape of the line signal so that the received data can be recovered reliably.

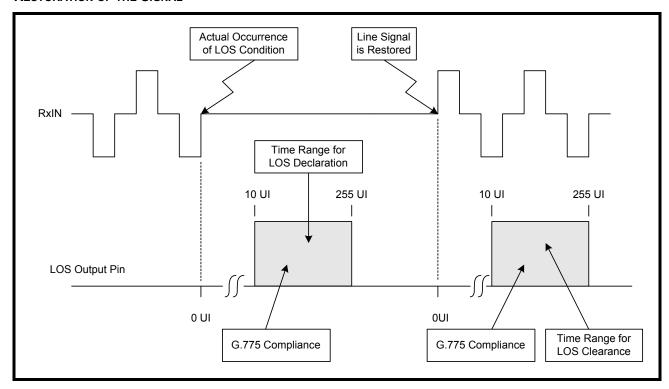

2.4 The Peak Detector and Slicer Block

After the incoming line signal has passed through the Receive Equalizer block, it will next be routed to the Slicer block. The purpose of the Slicer block is to quantify a given bit-period (or symbol) within the incoming line signal as either a "1" or a "0".

2.5 The LOS Detector block

The LOS Detector block, within each channel (of the XRT59L921) was specifically designed to comply with the LOS Declaration/Clearance requirements per ITU-T G.775. As a consequence, the channel will declare a LOS Condition, (by driving the RxLOS output pin "High") if the received line signal amplitude drops to –20dB or below. Further, the channel will clear the LOS Condition if the signal amplitude rises back up to –15dB or above. Figure 13 presents an illustration that depicts the signal levels at which a given channel (within the XRT59L921) will assert and clear LOS.

FIGURE 13. ILLUSTRATION OF THE SIGNAL LEVELS THAT THE RECEIVER SECTIONS (WITHIN XRT59L921) WILL DECLARE AND CLEAR LOS



Timing Requirements associated with Declaring and Clearing the LOS Indicator. The XRT59L921 was designed to meet the ITU-T G.775 specification timing requirements for declaring and clearing the LOS

Experience Our Connectivity

indicator. In particular, the XRT59L921 will declare a LOS, between 10 and 255 UI (or E1 bit-periods) after the actual time the LOS condition occurred. Further, the XRT59L921 will clear the LOS indicator within 10 to 255 UI after restoration of the incoming line signal. Figure 14 illustrates the LOS Declaration and Clearance behavior, in response to first, the Loss of Signal event and then afterwards, the restoration of the signal.

FIGURE 14. THE BEHAVIOR OF THE LOS OUTPUT INDICATOR, IN RESPONSE TO THE LOSS OF SIGNAL, AND THE RESTORATION OF THE SIGNAL

2.6 LOS Mute Description

The LOSMute feature is included in the XRT59L921 such that when the input signal to a receiver is too low or is lost. The LOS in pin will toggle "High" and at the same time the RPOS in and RNEG in outputs are muted to a "Zero" state to prevent output data chattering.

2.7 The Receive Output Interface block

The purpose of the Receive Output Interface block is to interface directly with the Receiving Terminal Equipment. The Receive Output Interface block outputs the data (which has been recovered from the incoming line signal) to the Receive Terminal Equipment via the RxPOS n and RxNEG n output pins.

If the Receive Sections of the XRT59L921 has received a Positive-Polarity pulse, via the RTIP in and RRing in input pins, then the Receive Output Interface will output a pulse via the RxPOS n output pins.

Similarly, if the Receive Sections of the XRT59L921 has received a Negative-Polarity pulse, via the RTIP n and RRing n input pins, then the Receive Output Interface will output a pulse via the RxNEG n output pins.

Note: The Receive Output Interface block does not supply a recovered clock. This device is intended to be used in those applications, where the Clock Recovery circuit is realized in an ASIC solution.

3.0 SHUTTING OFF THE TRANSMITTER

Each channel (within the XRT59L921) permits the user to shut off the Transmit Driver within their respective Transmit Section. This feature can come in handy for system redundancy design considerations or during diagnostic testing. The user can activate this feature by connecting the TxClk n input pin to a logic "0" (e.g., GND) and continue to apply data via the TxPOS n and TxNEG n input pins.

FIGURE 15. TRANSMIT TIMING DIAGRAM

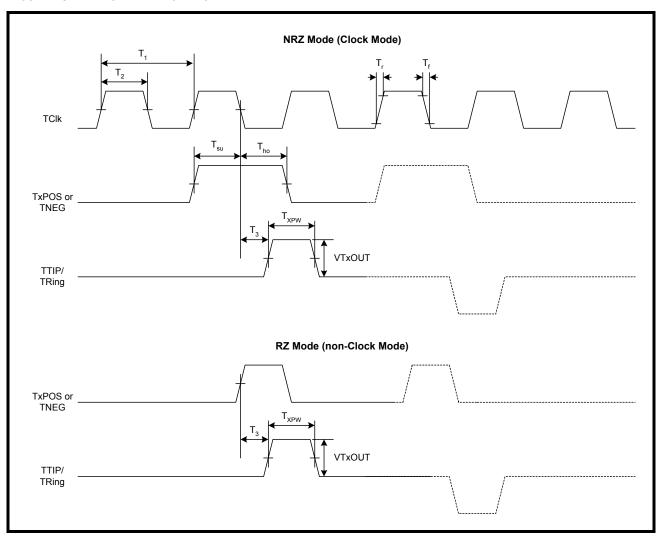
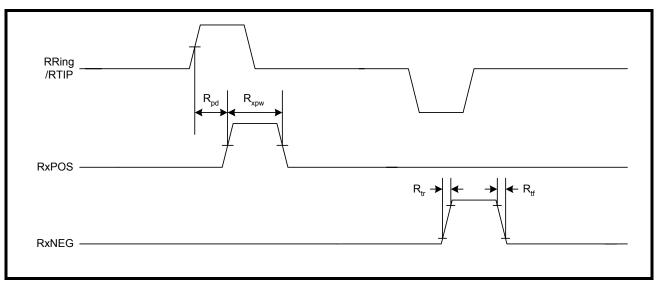



FIGURE 16. RECEIVE TIMING DIAGRAM

APPLICATION INFORMATION

Figure 17 and Figure 18, provide example schematics on how to interface Channel 1 of the XRT59L921 to the line, under the following conditions.

- Receiver is Transformer-coupled to a 75Ω unbalanced line.
- Receiver is Transformer-coupled to a 120Ω balanced line.

FIGURE 17. ILLUSTRATION ON HOW TO INTERFACE CHANNEL 1 (OF THE XRT59L921) TO THE LINE (RECEIVER IS Transformer-coupled to a 75 Ω unbalanced line)

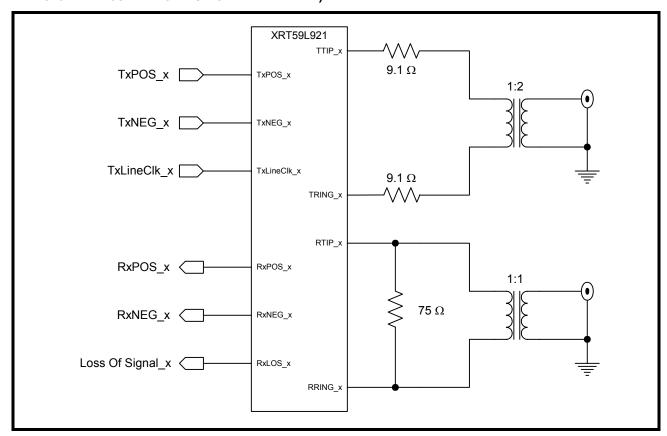
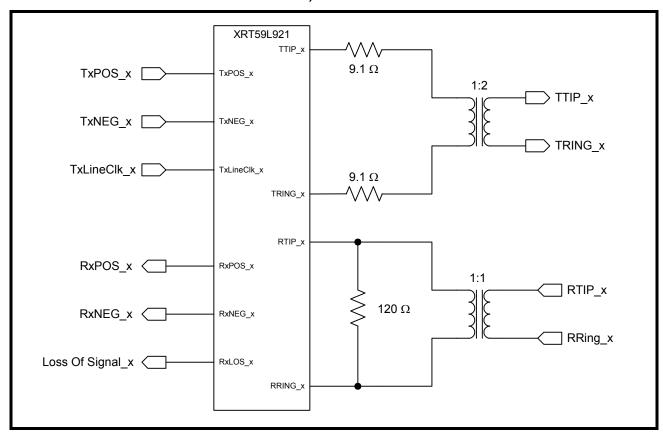
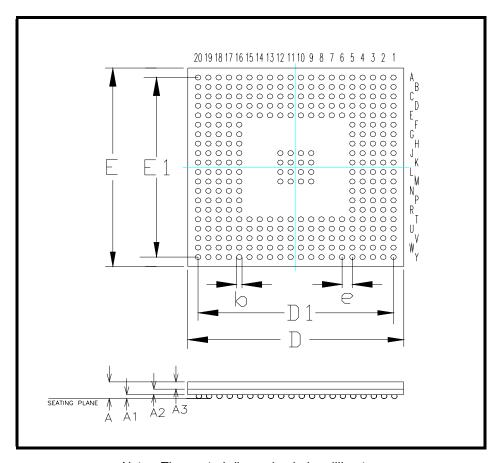



FIGURE 18. ILLUSTRATION ON HOW TO INTERFACE CHANNEL 1 (OF THE XRT59L921) TO THE LINE (RECEIVER IS TRANSFORMER-COUPLED TO A 120Ω BALANCED LINE)



REV. 1.2.1

ORDERING INFORMATION

PRODUCT NUMBER	PACKAGE	OPERATING TEMPERATURE RANGE
XRT59L921IB	316 Shrink Thin Ball Grid Array (21.0 mm x 21.0 mm, STBGA)	-40 ⁰ C to +85 ⁰ C

PACKAGE DIMENSIONS

Note: The control dimension is in millimeter.

	INC	HES	MILLIN	IETERS
SYMBOL	MIN MAX		MIN	MAX
Α	0.056	0.067	1.41	1.69
A1	0.011	0.015	0.28	0.38
A2	0.019	0.022	0.48	0.56
A3	0.026	0.030	0.65	0.75
D	0.819	0.835	20.80	21.20
D1	0.7480	BSC	19.00	BSC
Е	0.819	0.835	20.80	21.20
E1	0.7480	0.7480 BSC		BSC
b	0.018	0.022	0.45	0.55
е	0.0394	BSC	1.00	BSC

TWENTY-ONE CHANNEL E1 LINE INTERFACE UNIT

REVISION HISTORY

Revision #	DATE	DESCRIPTION
P1.0.0	09/01/04	1st release of the XRT59L921 preliminary data sheet.
P1.0.1	10/28/04	CCorrected receive transformer turns ratio from 1:2 to 1:1. Added package outline drawing and pin numbers. Other minor edits
1.0.0	06/23/05	Replaced power supply current TBD's with actual. Release to production
1.1.0	09/07/05	Added comment to TxCLK pin description, added note to TxNEG pin description[, deleted "with -18db" comment from electrical receiver sensitivity, minor edit to sect.1.2 and added sect. 1.2.2.
1.2.0	03/07/07	Added A2O, Y2, Y20 pins to positive supply. Added pins F1, F20, J1, J20, M1, M20, R1, R20 to digital ground. Added pins H16, P5, P16, P17 to AGND description.Added pin D15 to NC
1.2.1	03/12/07	Added pin V1 DGND in pin list.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2007 EXAR Corporation

Datasheet March 2007.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.