VS-GA250SA60S

www.vishay.com

Vishay Semiconductors

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 250 A

SOT-227

PRODUCT SUMMARY					
V _{CES}	600 V				
V _{CE(on)} (typical) at 200 A, 25 °C	1.33 V				
$I_{\rm C}$ at $T_{\rm C}$ = 90 °C ⁽¹⁾	250 A				

Note

⁽¹⁾ Maximum collector current admitted 100 A to do not exceed the maximum temperature of terminals

FEATURES

- Standard: Optimized for minimum saturation voltage and low speed up to 5 kHz
- Lowest conduction losses available
- Fully isolated package (2500 V_{AC})
- Very low internal inductance (5 nH typical)
- Industry standard outline
- Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, TIG welding, induction heating
- Easy to assemble and parallel
- Direct mounting to heatsink
- Plug-in compatible with other SOT-227 packages

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector ourrent	I _C ⁽¹⁾	T _C = 25 °C	400		
Continuous collector current		T _C = 90 °C	250		
Pulsed collector current	I _{CM}	Repetitive rating; $V_{GE} = 20 V$, pulse width limited by maximum junction temperature	400	А	
Clamped Inductive load current	I _{LM}	V_{CC} = 80 % (V _{CES}), V _{GE} = 20 V, L = 10 μH, R _g = 2.0 Ω,	400	.00	
Gate to emitter voltage	V_{GE}		± 20	V	
Power dissipation	Р	T _C = 25 °C	961	w	
	P _D	T _C = 90 °C	462	vv	
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 minute	2500	V	

Note

⁽¹⁾ Maximum collector current admitted 100 A to do not exceed the maximum temperature of terminals

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature	T _J , T _{STG}	- 40	-	150	°C	
Junction to case thermal resistance	R _{thJC}	-	-	0.13	°C/W	
Case to sink thermal resistance, flat, greased surface	R _{thCS}	-	0.1	-	- C/W	
Mounting torque, on terminals and heatsink	Т	-	-	1.3	Nm	
Weight		-	30	-	g	
Case style	SOT-227					

Revision: 20-Jul-12

1

Document Number: 94704

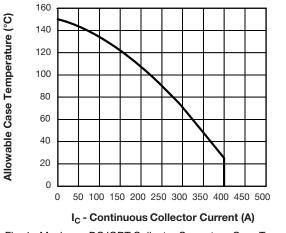
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Pb-free RoHS COMPLIANT

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITI	IONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	V _{GE} = 0 V, I _C = 1 mA		600	-	-	
Emitter to collector breakdown voltage	V _{(BR)ECS} ⁽¹⁾	$V_{GE} = 0 V, I_{C} = 1.0 A$		18	-	-	
		I _C = 100 A		-	1.10	1.3	- V
		I _C = 200 A	V _{GE} = 15 V	-	1.33	1.66	
Collector to omitter voltage	V	$I_{C} = 100 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$		-	1.02	-	
Collector to emitter voltage	V _{CE(on)}	$I_{C} = 200 \text{ A}, \text{ T}_{J} = 125 ^{\circ}\text{C}$		-	1.32	-	
		$I_{C} = 100 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$		-	1.02	-	
		I _C = 200 A, T _J = 150 °C		-	1.33	-	
Cata threshold voltage	V _{GE(th)}	$V_{CE}=V_{GE},I_{C}=250\;\mu\text{A}$		3.0	4.5	6.0	
Gate threshold voltage		$V_{CE}=V_{GE},I_C=250\;\mu\text{A},T_J=125\;^\circ\text{C}$		-	3.1	-	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)} / \Delta T_J$	V_{CE} = V_{GE} , I_C = 1 mA, 25 °C to 125 °C		-	- 12	-	mV/°C
	I _{CES}	$V_{GE} = 0 V, V_{CE} = 600 V$		-	20	1000	μA
Collector to emitter leakage current		V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 125 °C		-	0.2	-	mA
		$V_{GE} = 0 \text{ V}, \text{ V}_{CE} = 600 \text{ V}, \text{ T}_{J} = 150 ^{\circ}\text{C}$		-	0.6	10	IIIA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 250	nA

Notes

 $^{(1)}~$ Pulse width $\leq 80~\mu s;~duty~factor \leq 0.1~\%$


PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg			-	770	1200	
Gate-to-emitter charge (turn-on)	Q _{ge}	I _C = 100 A, V _{CC} = 600 V	/, V _{GE} = 15 V	-	100	150	nC
Gate-to-collector charge (turn-on)	Q _{gc}			-	260	380	
Turn-on switching loss	E _{on}			-	0.55	-	mJ
Turn-off switching loss	E _{off}	T _J = 25 °C		-	25	-	
Total switching loss	E _{tot}	I _C = 100 A V _{CC} = 480 V		-	25.5	-	
Turn-on delay time	t _{d(on)}	V _{CC} = 480 V V _{GE} = 15 V		-	267	-	
Rise time	tr	R _g = 5.0 Ω		-	42	-	
Turn-off delay time	t _{d(off)}	L = 500 µH	Energy losses include tail and diode recovery. Diode used 60APH06	-	310	-	- ns
Fall time	t _f			-	450	-	
Turn-on switching loss	E _{on}			-	0.67	-	mJ ns
Turn-off switching loss	E _{off}	T _J = 125 °C I _C = 100 A V _{CC} = 480 V		-	43.0	-	
Total switching loss	E _{tot}			-	43.7	-	
Turn-on delay time	t _{d(on)}	V _{GE} = 15 V		-	275	-	
Rise time	tr	R _g = 5.0 Ω L = 500 μH		-	50	-	
Turn-off delay time	t _{d(off)}	000 p		-	350	-	
Fall time	t _f			-	700	-	
Internal emitter inductance	L _E	Between lead and center of die contact]	-	5.0	-	nH
Input capacitance	Cies	V _{GE} = 0 V , V _{CC} = 30 V, f = 1.0 MHz - 16 250 - 1040 - 190		-	16 250	-	
Output capacitance	C _{oes}			-	pF		
Reverse transfer capacitance	C _{res}			190	-	1	

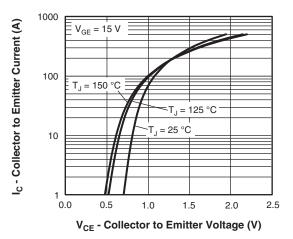
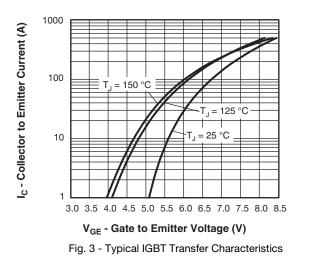
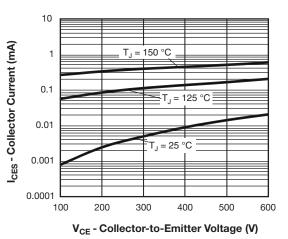
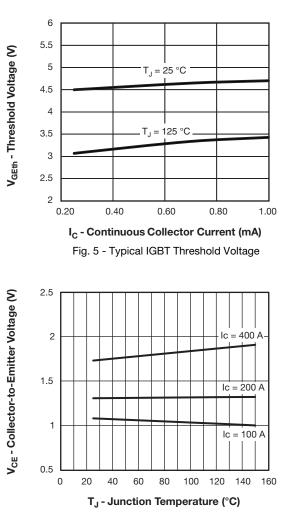
Revision: 20-Jul-12

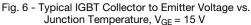
2

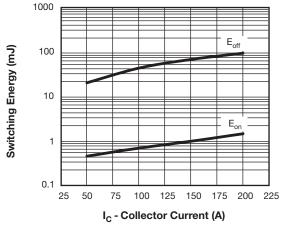
Document Number: 94704

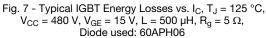
www.vishay.com

Fig. 1 - Maximum DC IGBT Collector Current vs. Case Temperature


Fig. 2 - Typical Collector to Emitter Current Output Characteristics


Revision: 20-Jul-12


3

Document Number: 94704

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

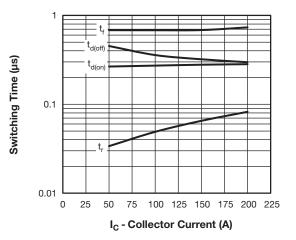


Fig. 8 - Typical IGBT Switching Time vs. I_C, T_J = 125 °C, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 μ H, R_g = 5 Ω , Diode used: 60APH06

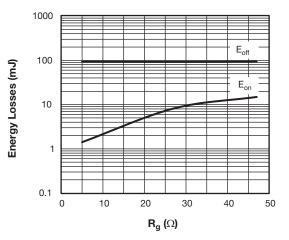


Fig. 9 - Typical IGBT Energy Losses vs. $R_g,$ T_J = 125 °C, $~I_C$ = 200 A, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 μ H, Diode used: 60APH06

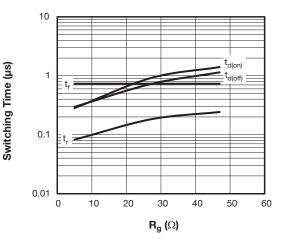


Fig. 10 - Typical IGBT Switching Time vs. $R_g,$ T_J = 125 °C, $~I_C$ = 200 A, V_{CC} = 480 V, V_{GE} = 15 V, L = 500 $~\mu\text{H},$ Diode used: 60APH06

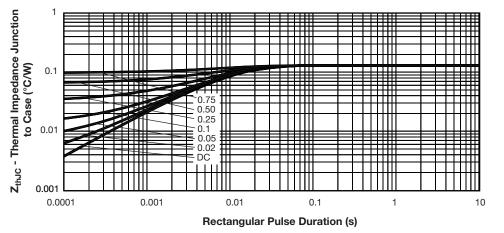


Fig. 11 - Maximum Thermal Impedance Z_{thJC} Characteristics

Revision: 20-Jul-12 **4** Document Number: 94704 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

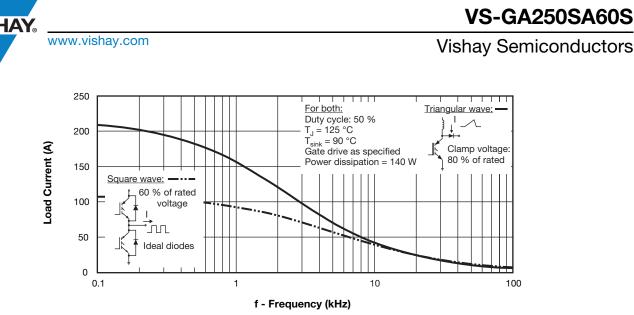
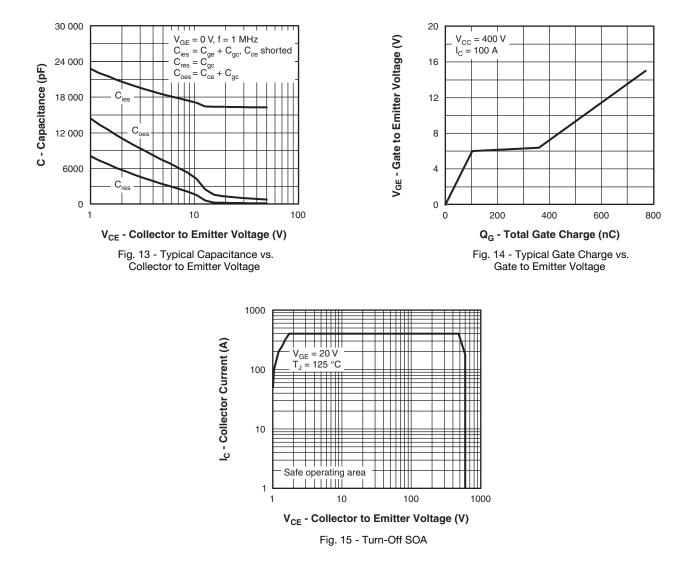
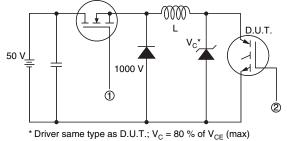



Fig. 12 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)



5

Document Number: 94704

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain rated I_d

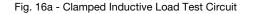
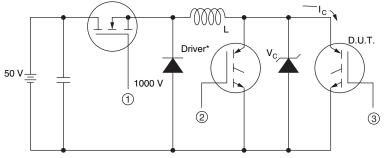



Fig. 16b - Pulsed Collector Current Test Circuit

* Driver same type as D.U.T., $V_{\rm C}$ = 480 V

Fig. 17a - Switching Lost Test Circuit

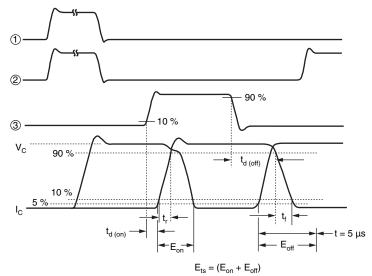
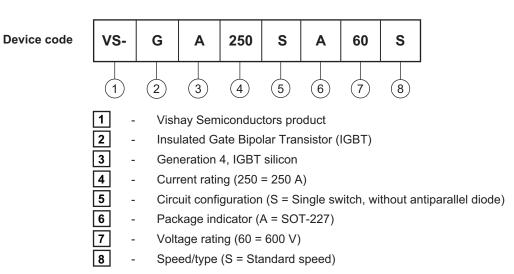
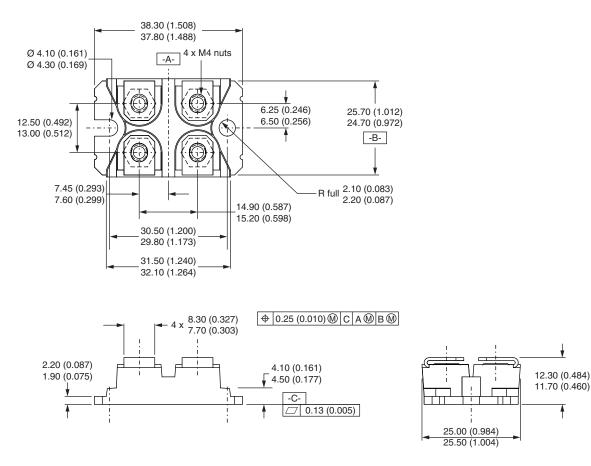



Fig. 17b - Switching Loss Waveforms

ORDERING INFORMATION TABLE


CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single switch, no antiparallel diode	S	Lead Assignment 4 2 (G) 0 1, 4 (E) N-channel			

LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?95423				
Packaging information	www.vishay.com/doc?95425			

SOT-227 Generation II

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.