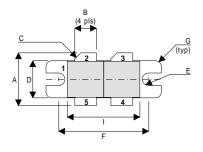
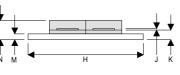
TetraFET

D1012UK

ROHS COMPLIANT METAL GATE RF SILICON FET

GOLD METALLISED


MULTI-PURPOSE SILICON


DMOS RF FET

100W - 28V - 500MHz

PUSH-PULL

MECHANICAL DATA

PIN 1	SOURCE (COMMON)	PIN 2	DRAIN 1
PIN 3	DRAIN 2	PIN 4	GATE 2

PIN 5 GATE 1

mm	Tol.	Inches	Tol.
13.97	0.26	0.550	0.010
5.72	0.13	0.225	0.005
45°	5°	45°	5°
9.78	0.13	0.385	0.005
1.65R	0.13	0.065R	0.005
23.75	0.13	0.935	0.005
1.52R	0.13	0.060R	0.005
30.48	0.13	1.200	0.005
19.17	0.26	0.755	0.010
0.13	0.02	0.005	0.001
2.54	0.13	0.100	0.005
1.52	0.13	0.060	0.005
5.08	0.50	0.200	0.020
	13.97 5.72 45° 9.78 1.65R 23.75 1.52R 30.48 19.17 0.13 2.54 1.52	$\begin{array}{c ccccc} 13.97 & 0.26 \\ 5.72 & 0.13 \\ 45^{\circ} & 5^{\circ} \\ 9.78 & 0.13 \\ 1.65R & 0.13 \\ 23.75 & 0.13 \\ 1.52R & 0.13 \\ 30.48 & 0.13 \\ 19.17 & 0.26 \\ 0.13 & 0.02 \\ 2.54 & 0.13 \\ 1.52 & 0.13 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW C_{rss}
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

APPLICATIONS

• HF/VHF/UHF COMMUNICATIONS from 1 MHz to 500 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

P _D	Power Dissipation	290W
BV _{DSS}	Drain – Source Breakdown Voltage *	70V
BV _{GSS}	Gate – Source Breakdown Voltage *	±20V
I _{D(sat)}	Drain Current *	15A
T _{stg}	Storage Temperature	–65 to 150°C
Тj	Maximum Operating Junction Temperature	200°C

^{*} Per Side

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test	Conditions	Min.	Тур.	Max.	Unit
	PER SIDE						
BVaca	Drain-Source	V _{GS} = 0	I _D = 100mA	70			V
BV _{DSS}	Breakdown Voltage	VGS – 0	$I_D = 100IIIA$	10			v
	Zero Gate Voltage	1/ 201/	V _{GS} = 0			3	
DSS	Drain Current	V _{DS} = 28V				3	mA
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	$V_{DS} = 0$			1	μΑ
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 3A	2.4			S
		тот	AL DEVICE				
G _{PS}	Common Source Power Gain	P _O = 100W		10			dB
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} = 1.2A	50			%
VSWR	Load Mismatch Tolerance	f = 500MHz		20:1			_
PER SIDE							
C _{iss}	Input Capacitance	V _{DS} = 28V	$V_{GS} = -5V \text{ f} = 1MHz$			180	pF
C _{oss}	Output Capacitance	V _{DS} = 28V	$V_{GS} = 0$ f = 1MHz			90	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 28V$	$V_{GS} = 0$ f = 1MHz			7.5	pF

* Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 0.6°C / W
-----------------------	------------------------------------	----------------

D1012UK

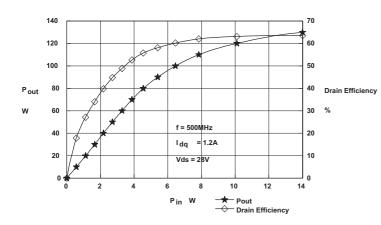
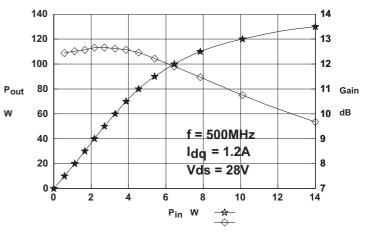
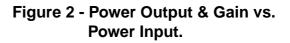




Figure 1 - Power Output and Efficiency vs. Power Input.

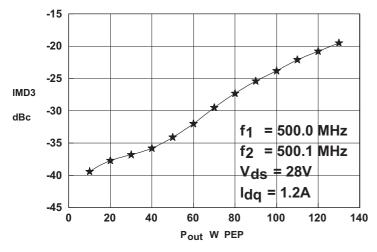


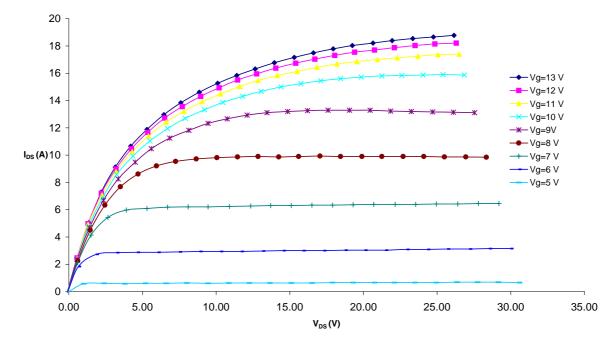
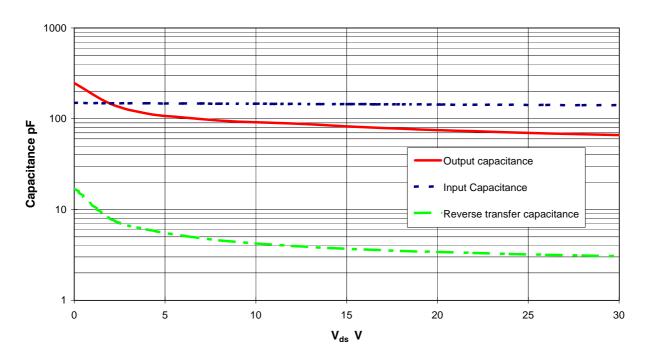
Figure 3 - IMD vs. Output Power.

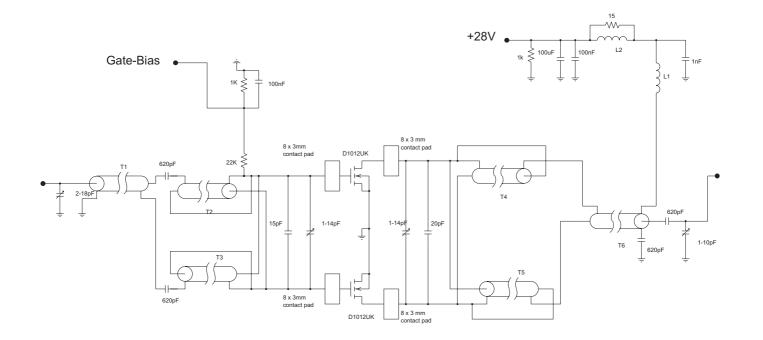
D1012UK OPTIMUM SOURCE AND LOAD IMPEDANCE

Frequency	Z _S	ZL
MHz	Ω	Ω
500	2.0 - j2.2	2.6 - j0.6

N.B. Impedances measured terminal to terminal

D1012UK


Figure 4 – Typical IV Characteristics.

D1012UK

D1012UK 500MHz TEST FIXTURE

T1,6	65mm	50 Ohm UT85 semi-rigid coax
T2,3,4,5	75mm	15 Ohm UT85-15 semi-rigid coax
L1	6 turns	21 swg enamelled copper wire, 3mm i.d.
L2	8.5 turns	19 swg enamelled copper wire on Fair-Rite FT82-43 core

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: D1012UK