

Application Note

AC-DC Switching Power Module

CBM100S Series

APPLICATION NOTE

Ver. 1.0

Application Note

Content

1.INTRODUCTION	3
2. CBM100S SERIES CONVERTER FEATURES	3
3. TECHNICAL SPECIFICATIONS	4
4. MAIN FEATURES AND FUNCTION	6
4.1 Operating Temperature Range	6
4.2 Output Protection	6
• 5. EMC & SAFETY	6
• 6. APPLICATIONS	6
6.1 CBM100S Series Derating Curve	6
6.2 Full-Brick Heat Sink	7
■ 6.3 Test Set-Up	7
6.4 Output Ripple and Noise Measurement	7
• 6.5 Efficiency VS. Load	8
• 7. CBM100S SERIES MECHANICAL OUTLINE DIAGRAMS	9
8. PART NUMBER	10

Revision History

Revision Version	Date	Change Description	Signature
1.0	31 May 2013	Original Issue	SYLin

Application Note

1. Introduction

This application note describes the features and functions of Cincon's CBM100S series, the switching AC-DC power module. The CBM100S series with single output AC/DC power modules are highly efficient, reliable, compact, and highly power-density, The module is fully protected against short-circuit and over-voltage conditions. Cincon's world-class automated manufacturing methods, extensive test and qualified program, ensure that the CBM100S series power module is extremely reliable.

2. CBM100S Series Converter Features

- Universal Input Range 90~264Vac
- Full Load with Baseplate Cooled and no fan required
- Wide Operating Temperature Range
- 17mm Ultra Low Profile Package
- Safety Meets EN60950-1
- Built-in EN55022 Class B Filter
- Active PFC Meets EN61000-3-2
- High Efficiency Up to 90% Typical
- No Load Input Power Consumption <0.5W
- Over Temperature Protection
- Over Voltage Protection
- Over Current Protection

Application Note

3. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
ABSOLUTE RATINGS					•	
Input Voltage (Continuous)			90		264	Vac
Operating Temperature	See derating curve		-20		+85	°C
Storage Temperature			-40		+100	°C
Input/Output Isolation Voltage	1 minute		4242			Vdc
NPUT CHARACTERISTICS						
Operating Voltage Range			100		240	Vac
Input Frequency Range			47		63	Hz
Input Current	100% Load, Vin=100Vac				1.5	А
Leakage Current	Vin=264Vac				3.5	mA
Inrush Current	Vin=240Vac, cold start at 25°C.				100	А
		CBM100S120 CBM100S240	11.88 23.76	12 24	12.12 24.24	
OUTPUT CHARACTERISTICS						
Output Voltage Set Point	Vin=Nominal Line, Io=Io.max, Tc=25 ^o C	CBM100S280	27.72	28	28.28	Vdc
		CBM100S360	35.64	36	36.36	
		CBM100S480	47.52	48	48.48	
		CBM100S120 CBM100S240			8.4 4.2	
Operating Output Current Range		CBM100S240			3.6	А
operating output outfold hange		CBM100S360			2.8	
		CBM100S480			2.1	
Holdup Time	Vin=115Vac			12		mS
	1	1	I	1	1	1
OUTPUT VOLTAGE REGULATION						
Load Regulation	20% to 60% & 60% to 100% rated load				±1.0	%
Line Regulation	Vin= High Line to Low Line				±0.5	%
Over current Protection			130	160	200	%

Application Note

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Unit
		CBM100S120		15		
Over Voltage Protection		CBM100S240		33		
		CBM100S280		33		Vdc
		CBM100S360		45		
		CBM100S480		60		
	1. Add a 0.1uF ceramic capacitor and a	CBM100S120			120	
	10uF aluminum electrolytic capacitor to	CBM100S240			240	
Output Ripple and Noise	e output .	CBM100S280			280	mVp-p
	2. The bandwidth of oscilloscope is 20MHz .	CBM100S360			360	
	3. Ambient temperature = $25^{\circ}C$	CBM100S480			480	
		CBM100S120			8570	
	1. Ambient temperature = 25°C	CBM100S240			4220	
Load Capacitance	2. Input voltage is 115Vac and 230Vac	CBM100S280			3600	uF
	3. Output is rated load	CBM100S360			2860	
		CBM100S480			2100	
Efficiency		CBM100S120		90		
	1. Output is Rated Load	CBM100S240		91		
	2. Ambient temperature = $25^{\circ}C$	CBM100S280		91		%
	3. Input voltage is 230Vac	CBM100S360		91		
		CBM100S480		91.5		
SOLATION CHARACTERIS	TICS					
Input to Output	1 minute				4242	Vdc
Input to Earth(Ground)	1 minute				2121	Vdc
Output to Earth(Ground)	1 minute				500	Vdc
Isolation Resistance			100			MΩ
SENERAL SPECIFICATION	3					
NTOF	Vin = 115Vac, lo = 100%, Ta=25℃ per		400			
MTBF	MIL-HDBK-217F		100			K Hours
Switching Frequency				130		KHz
Weight				236		g

4. Main Features and Functions

4.1 Operating Temperature Range

The highly efficient design of Cincon's CBM100S series power module has resulted in their ability to operate within ambient temperature environments from -20°C to 85°C. The derating curve was drawn from the CBM100S power module.

4.2 Output Protection

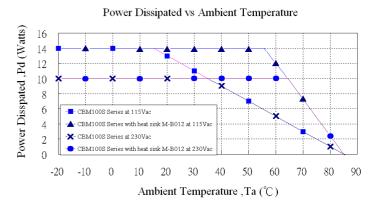
Over current protection (OCP)

CBM100S Series provide fully continuous short-circuit protection. The unit will auto recover until the short circuit is removed. To provide a protection in a fault condition, the unit is equipped with internal OCP. The unit will operate normally until the fault condition is removed. The power module will go to hiccup mode if output current reaches the condition of OCP, 130% to 200% rated current.

Over voltage protection (OVP)

All different voltage models have a fully continuous OVP. The power module will supply OVP, and the maximum voltage of OVP is 140% rated voltage. In the event of happen the OVP, the converter will shut down, and then It must recycle AC input to restart the converter.

5. EMC & Safety


- CB IEC 60950-1
- ■TUV EN 60950-1
- UL/cUL UL60950-1
- ■CE EN 55022 Class B,
- FCC Part 15 for a Class B, CISPR 22

6. Applications

6.1 CBM100S Series Derating Curve

The operating temperature range of CBM100S series is -25° C to $+85^{\circ}$ C. When operating the CBM100S series, proper derating is needed. The maximum ambient temperature under any operating condition should not exceed 85° C.

The following chart is the derating curve of CBM100S series.

Example :

What is the maximum ambient temperature of CBM100S120 operating at Vin=115Vac and 50% rated load with heat sink M-B012?

	Typical Thermal Resistance (Rca)
Heat Sink M-B012 Natural Convection 20ft./min.(0.1m/s)	2.07°C/W
No Heat Sink Natural Convection 20ft./min.(0.1m/s)	5.0℃/W

Solution:

Given:

Heat sink M-B012 thermal resistance 2.07^oC/W

Vin=115Vac, Vo=12Vdc

When Io=4.2A, efficiency=88.6% (see chapter 6.5)

Determine Power dissipation (Pd):

Pd=Pi-Po=Po(1-η)/η

=12x4.2x(1-0.886)/0886=6.4Watts

Determine maximum ambient temperature:

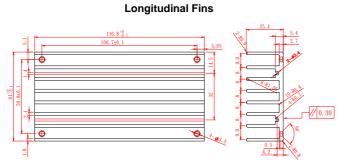
Given: Pd=6.4W

Then check above Power derating curve

The maximum ambient temperature is about Ta=71°C

Verify:

Maximum temperature rise $\triangle T = Pd \times Rca=6.4x2.07=13.248$ °C Maximum ambient temperature Ta=Tc- $\triangle T$ =85-13.248=71.752°C Where:


The Rca is thermal resistance from case to ambience.

The Ta is ambient temperature and the Tc is case temperature.

Application Note

6.2 Full-Brick Heat Sink

Heat Sink: 116.8*61*25.4(mm)(M-B012-00A) (G6620090204) Thermal pad: SR60*115.8*0.23 (G6135013070) Screw SMP+SW M3*8L (G75A1300322) Rca: 2.07°C/W (typ.), at natural convection

6.3 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 1. When testing the Cincon's CBM100S series under any transient conditions, please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

• Efficiency

• Load regulation and line regulation. The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Pin} \times 100\%$$

Where:

Vo is output voltage, lo is output current, Pin is input power,

The value of load regulation is defined as:

$$Load_{reg.} = \frac{V_{Full-Load} - V_{60\% Full-Load}}{V_{60\% Full-Load}} \times 100\%$$
$$Load_{reg.} = \frac{V_{60\% Full-Load} - V_{20\% Full-Load}}{V_{60\% Full-Load}} \times 100\%$$

V_{20% Full-Load}

The value of line regulation is defined as:

$$Line_{reg.} = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where :

 V_{HL} is the output voltage of maximum input voltage at full load. V_{LL} is the output voltage of minimum input voltage at full load.

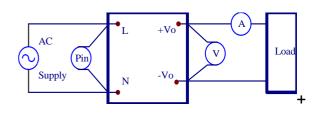


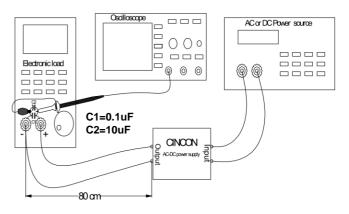
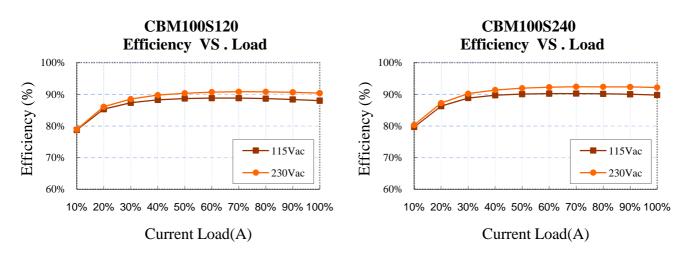
Figure 1. CBM100S Series Test Setup

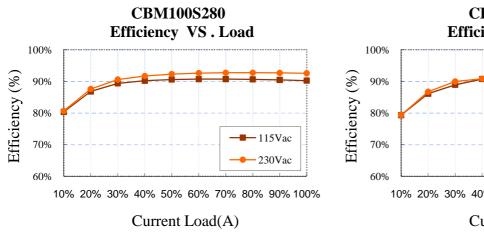
6.4 Output Ripple and Noise Measurement

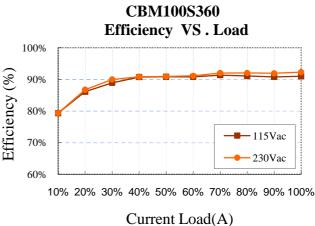
The test which set-up for noise and ripple measurement is shown in Figure 2.

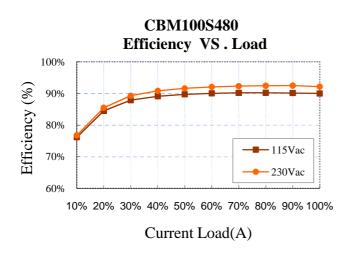
Add a 0.1 uF ceramic capacitor and a 47 uF electrolytic capacitor to

output at 20 MHz Band Width.

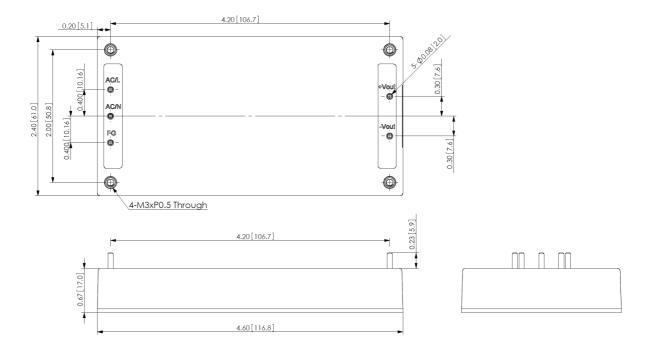




Figure 2. Output Voltage Ripple and Noise Measurement




Application Note

6.5 Efficiency VS. Load

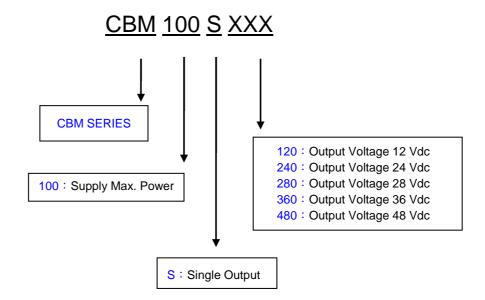

Application Note

7. CBM100S Series Mechanical Outline Diagrams

Annotations :

All Dimensions in Inches[mm] Tolerance : Inches : x.xx ±0.02, x.xxx=±0.01

I Millimeters:x.x=±0.5, x.xx=±0.25



CBM100S series Mechanical Outline Diagram

Application Note

8. Part Number

CINCON ELECTRONICS CO., LTD.

Headquarters:	Factory:	Cincon North America:
14F, No.306, Sec.4, Hsin Yi Rd.	No. 8-1, Fu Kung Rd.	1655 Mesa Verde Ave. Ste 180
Taipei, Taiwan	Fu Hsing Industrial Park	Ventura, CA 93003
Tel: 886-2-27086210	Fu Hsing Hsiang,	Tel: 805-639-3350
Fax: 886-2-27029852	Chang Hua Hsien, Taiwan	Fax: 805-639-4101
E-mail: support@cincon.com.tw	Tel: 886-4-7690261	E-mail: info@cincon.com
Web Site: http://www.cincon.com	Fax: 886-4-7698031	