
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Part Number: 6678404121

Frequency Range: Dimensions

Description: 78 PQ CORE

Inductive Components Application:

Where Used: Closed Magnetic Circuit

Part Type: PQ Cores Generic Name: PQ40/40

Mechanical Specifications

Weight: 97.000 (g) per Set

Part Type Information

PQ20/16, PQ20/20, PQ26/20, PQ26/25, PQ32/20, PQ32/30, PQ35/35, PQ40/40, PQ50/50

PQ cores were developed for use in power applications. The large surface area to volume of the core aids in heat dissipation. PQ cores are employed both in filter and transformer designs for switch mode power supplies.

- -PQ cores can be supplied with the centerpost gapped to a mechanical dimension or an AL value.
- -AL value is measured at 1 kHz, B < 10 gauss.
- -Weight indicated is per pair or set.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 6678404121 Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	40.50	± 0.9	1.594	
В	19.88	± 0.13	0.783	-
С	27.93	± 0.53	1.100	-
D	14.75	± 0.15	0.581	-
E	36.40	min	1.433	min
F	14.70	± 0.30	0.579	-
G	27.20	min	1.071	min
Н	-	•	-	-
J	-		-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)				
Electrical Properties				
A _L (nH)	4300 ±25%			
Ae(cm ²)	1.98000			
Σ I/A(cm ⁻¹)	5.23			
I _e (cm)	10.36			
V _e (cm ³)	20.50000			
A _{min} (cm ²)	1.700			

Land Patterns

V	W	Х	Υ	Z
-	-	-	1 1	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^2}\right)$

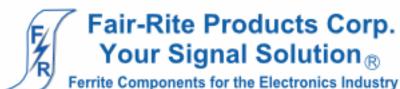
I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 6678404121 Printed: 2013-07-03



Ferrite Material Constants

0.25 cal/g/°C Specific Heat 3.5 - 4.5 mW/cm - °C Thermal Conductivity Coefficient of Linear Expansion 8 - 10x10-6/°C 4.9 kgf/mm² Tensile Strength Compressive Strength 42 kgf/mm² 15x103 kgf/mm2 Young's Modulus Hardness (Knoop)..... 650 Specific Gravity $\approx 4.7 \text{ g/cm}^3$ The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

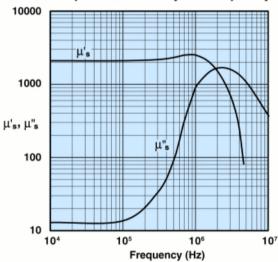
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite specifically designed for power applications for frequencies up to 200 kHz.

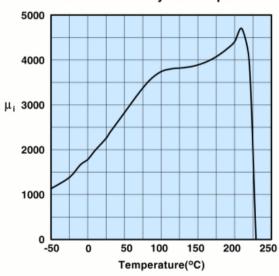
RFID rods, toroids, U cores, and E&I cores are all available in 78 material.

Fair-Rite Product's Catalog Part Data Sheet, 6678404121

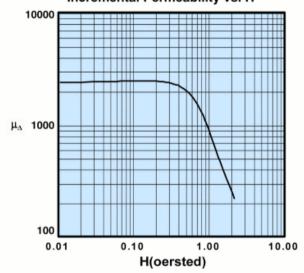
Printed: 2013-07-03



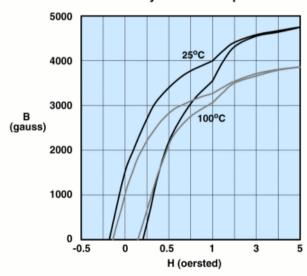
78 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_{i}	2300
Flux Density	gauss	В	4800
@ Field Strength	oersted	н	5
Residual Flux Density	gauss	B,	1500
Coercive Force	oersted	H _c	0.20
Loss Factor	10-6	tan δ/μ	4.5
@ Frequency	MHz		0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		1.0
Curie Temperature	°C	T _c	>200
Resistivity	Ωcm	ρ	2x10 ²

Complex Permeability vs. Frequency


Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

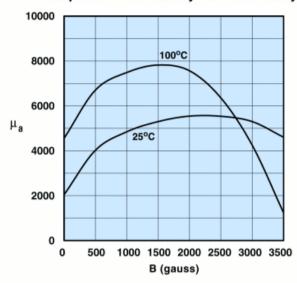
Initial Permeability vs. Temperature



Measured on an 18/10/6mm toroid at 100kHz.

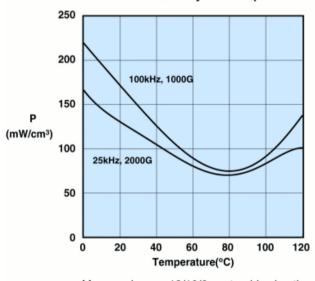
Incremental Permeability vs. H

Hysteresis Loop


Measured on an 18/10/6mm toroid at 10kHz.

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry


Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

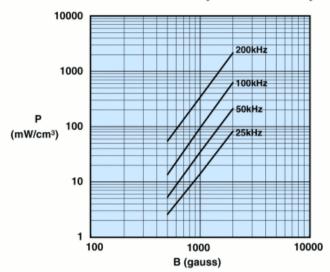
Amplitude Permeability vs. Flux Density

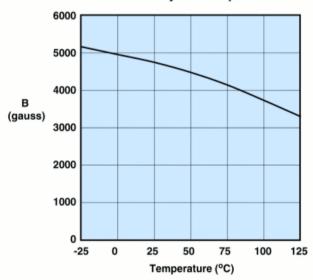
Measured on an 18/10/6mm toroid at 10kHz.

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Fair-Rite Product's Catalog Part Data Sheet, 6678404121


Printed: 2013-07-03



Power Loss Density vs. Flux Density

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

Flux Density vs. Temperature

Measured on an 18/10/6 mm toroid at 10kHz and H=5 oersted.