

120 V power Schottky rectifier

Features

- High junction temperature capability
- Avalanche rated
- Low leakage current
- Good trade-off between leakage current and forward voltage drop
- ECOPACK®2 compliant

Applications

- Switching diode
- SMPS
- DC/DC converter
- LED lighting
- Notebook adapter

Description

This single Schottky rectifier is suited for high frequency switch mode power supply. Packaged in TO-220AC, the **STPS20120D** is optimized for use in notebook & LCD adaptors, desktop SMPS, providing in these applications a margin between the remaining voltages applied on the diode and the voltage capability of the diode.

Product status link	
STPS20120D	
Product summary	
Symbol	Value
$I_{F(AV)}$	20 A
V_{RRM}	120 V
T_j (max.)	175 °C
V_F (typ.)	0.72 V

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol	Parameter		Value	Unit	
V_{RRM}	Repetitive peak reverse voltage		120	V	
$I_{F(RMS)}$	Forward rms current		30	A	
$I_{F(AV)}$	Average forward current, $\delta = 0.5$ square wave		$T_c = 130$ °C	20	A
I_{FSM}	Surge non repetitive forward current		$t_p = 10$ ms sinusoidal	200	A
P_{ARM}	Repetitive peak avalanche power		$t_p = 10$ µs, $T_j = 125$ °C	619	W
T_{stg}	Storage temperature range			-65 to +175	°C
T_j	Maximum operating junction temperature ⁽¹⁾			175	°C

1. $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameters

Symbol	Parameter	Value	Unit
$R_{th(j-c)}$	Junction to case	2.2	°C/W

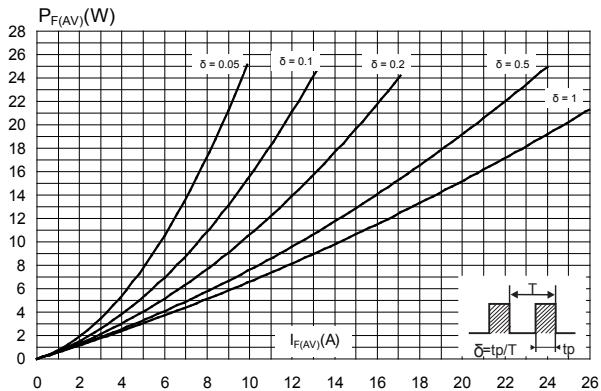
Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Typ.	Max.	Unit
$I_R^{(1)}$	Reverse leakage current	$T_j = 25$ °C	$V_R = V_{RRM}$	-		20	µA
		$T_j = 125$ °C		-	3	10	mA
$V_F^{(2)}$	Forward voltage drop	$T_j = 25$ °C	$I_F = 5$ A	-		0.70	V
		$T_j = 125$ °C		-	0.54	0.58	
		$T_j = 25$ °C	$I_F = 10$ A	-		0.80	
		$T_j = 125$ °C		-	0.62	0.66	
		$T_j = 25$ °C	$I_F = 20$ A	-		0.93	
		$T_j = 125$ °C		-	0.72	0.76	

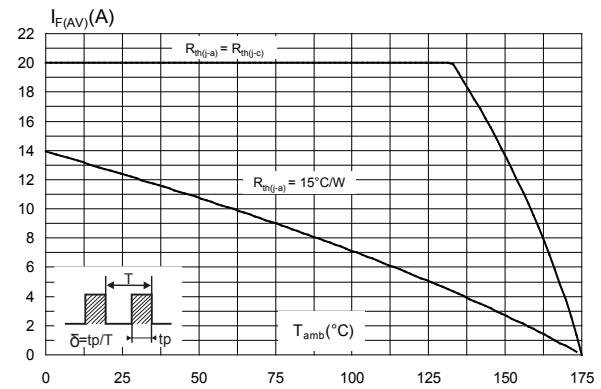
1. Pulse test: $t_p = 5$ ms, $\delta < 2\%$

2. Pulse test: $t_p = 380$ µs, $\delta < 2\%$

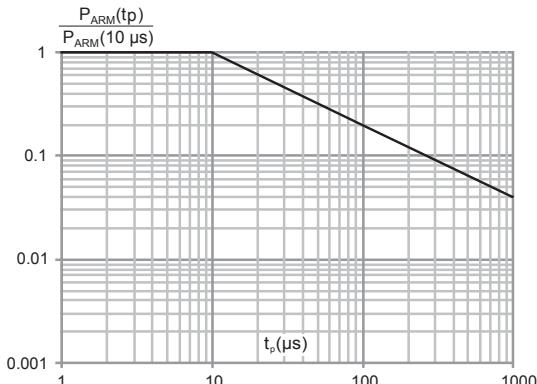
To evaluate the conduction losses, use the following equation:

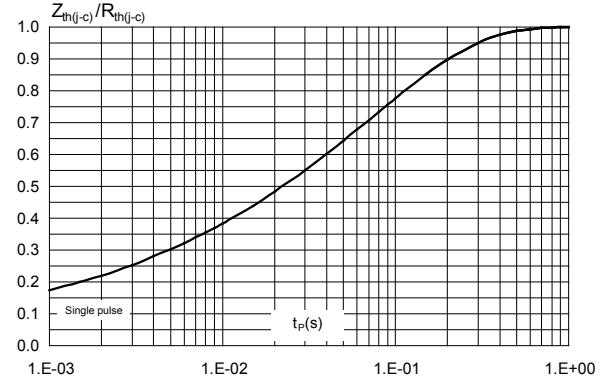

$$P = 0.56 \times I_{F(AV)} + 0.010 \times I_{F(RMS)}^2$$

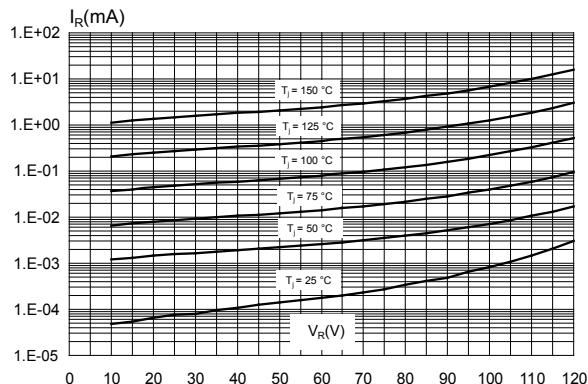
For more information, please refer to the following application notes related to the power losses :

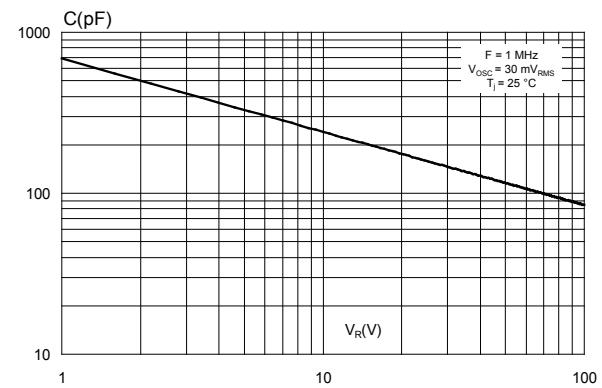

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

1.1 Characteristics (curves)


Figure 1. Average forward power dissipation versus average forward current


Figure 2. Average forward current versus ambient temperature ($\delta = 0.5$)


Figure 3. Normalized avalanche power derating versus pulse duration ($T_j = 125$ °C)


Figure 4. Relative variation of thermal impedance junction to case versus pulse duration

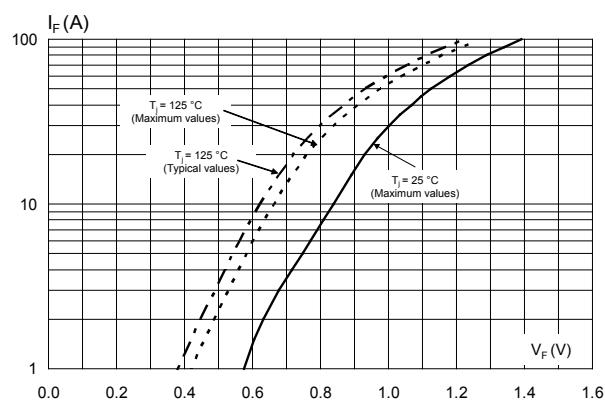
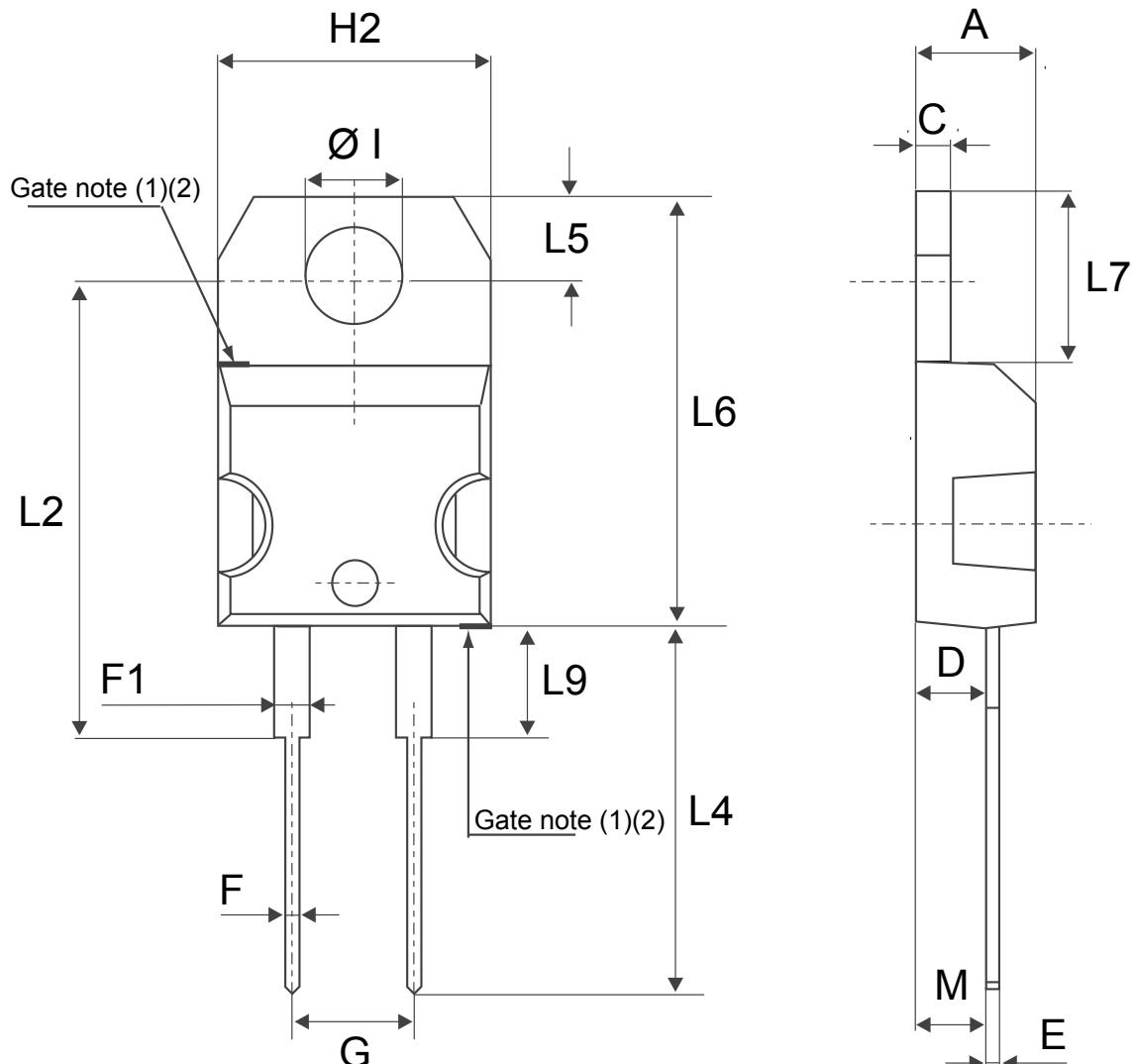

Figure 5. Reverse leakage current versus reverse voltage applied (typical values)

Figure 6. Junction capacitance versus reverse voltage applied (typical values)

Figure 7. Forward voltage drop versus forward current


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 TO-220AC package information

- Epoxy meets UL 94,VO
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 N·m
- Maximum torque value: 0.70 N·m

Figure 8. TO-220AC package outline

(1) :Max resin gate protusion 0.5 mm

(2) :Resin gate position is accepted in each of the two positions shown on the drawings or their symmetrical

Table 4. TO-220AC package mechanical data

Ref.	Dimensions			
	Millimeters		Inches (for reference only)	
	Min.	Max.	Min.	Max.
A	4.40	4.60	0.173	0.181
C	1.23	1.32	0.048	0.051
D	2.40	2.72	0.094	0.107
E	0.49	0.70	0.019	0.027
F	0.61	0.88	0.024	0.034
F1	1.14	1.70	0.044	0.066
G	4.95	5.15	0.194	0.202
H2	10.00	10.40	0.393	0.409
L2	16.40 typ.		0.645 typ.	
L4	13.00	14.00	0.511	0.551
L5	2.65	2.95	0.104	0.116
L6	15.25	15.75	0.600	0.620
L7	6.20	6.60	0.244	0.259
L9	3.50	3.93	0.137	0.154
M	2.60 typ.		0.102 typ.	
Diam	3.75	3.85	0.147	0.151

3 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS20120D	STPS20120D	TO-220AC	1.86 g	50	Tube

Revision history

Table 6. Document revision history

Date	Version	Changes
18-Feb-2005	1	First issue.
02-Jul-2018	2	Removed figure 4 and figure 5. Updated Figure 3. Normalized avalanche power derating versus pulse duration ($T_j = 125^\circ\text{C}$) and Table 1. Absolute ratings (limiting values at 25°C unless otherwise specified). Minor text changes to improve readability.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved