74VHCT257A

Quad 2 channel multiplexer (3-state)

Datasheet -production data

Features

- High speed: $t_{PD} = 4.8 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$
- Low power dissipation $I_{CC} = 4 \mu A \text{ (max.)}$ at $T_A = 25 \text{ °C}$
- Compatible with TTL outputs $V_{IH} = 2 \text{ V (min.)}, V_{IL} = 0.8 \text{ V (max.)}$
- Power-down protection on inputs and outputs
- Symmetrical output impedance $II_{OH}I = I_{OL} = 8 \text{ mA (min.)}$
- Balanced propagation delays: t_{Pl H} ≅ t_{PHI}
- Operating voltage range: V_{CC(opr)} = 4.5 to 5.5 V
- Pin and function compatible with 74 series 257
- Improved latch-up immunity
- Low noise: V_{OLP} = 0.8 V (max.)

Description

The 74VHCT257A is an advanced high-speed CMOS quad 2 channel multiplexer (3-state) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

It is composed of four independent 2 channel multiplexers with common select and enable input $(\overline{\text{OE}})$. The VHCT257A is a non-inverting multiplexer.

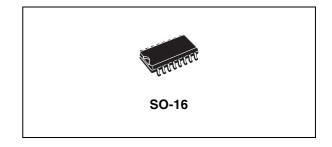
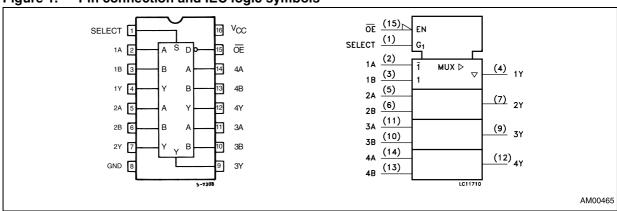


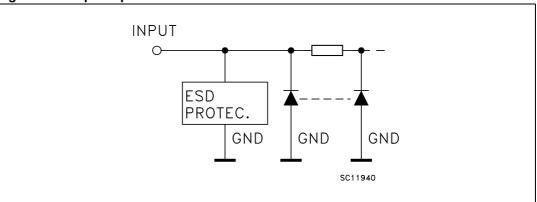
Table 1. Order code


Package	Tape and reel
SO-16	74VHCT257AMTR

When the enable input is held "high", all outputs become high impedance state. If the select input is held "low", "A" data is selected, when select input is "high", "B" data is chosen.

Power-down protection is provided on all inputs and outputs and 0 to 7 V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5 V to 3 V since all inputs are equipped with TTL threshold.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2 KV ESD immunity and transient excess voltage.


Figure 1. Pin connection and IEC logic symbols

2/15

1 Input equivalent circuit

Figure 2. Input equivalent circuit

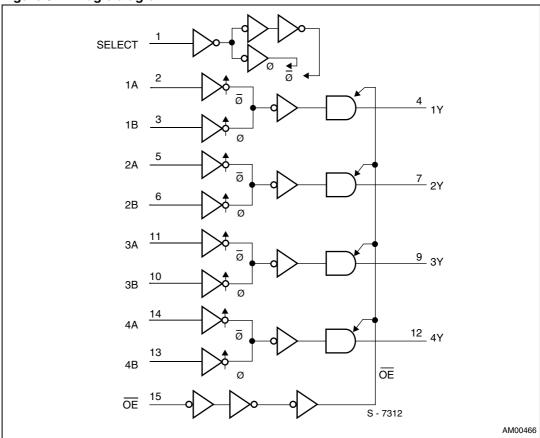
74VHCT257A Pin settings

2 Pin settings

Table 2. Pin description

Pin No	Symbol	Name and function	
1	SELECT	Common data select inputs	
2, 5, 11, 14	1A to 4A	1A to 4A Data inputs from source A	
3, 6, 10, 13	1B to 4B	Data inputs from source B	
4, 7, 9, 12	1Y to 4Y	3-state multiplexer outputs	
15	ŌĒ	3-state output enable inputs (active LOW)	
8	GND	Ground (0 V)	
16	V _{CC}	Positive supply voltage	

Table 3. Truth table


	Inputs						
ŌĒ	SELECT	A	В	Υ			
Н	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	Z ⁽²⁾			
L	L	L	X ⁽¹⁾	L			
L	L	Н	X ⁽¹⁾	Н			
L	Н	X ⁽¹⁾	L	L			
L	Н	X ⁽¹⁾	Н	Н			

^{1. &}quot;Don't care".

^{2.} High impedance.

Pin settings 74VHCT257A

Figure 3. Logic diagram

1. This logic diagram has not be used to estimate propagation delays.

74VHCT257A Maximum ratings

3 Maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +7.0	V
VI	DC input voltage	-0.5 to +7.0	V
V _O	DC output voltage ⁽¹⁾	-0.5 to +7.0	V
V _O	DC output voltage ⁽²⁾	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC input diode current	- 20	mA
I _{OK}	DC output diode current	±20	mA
Io	DC output current	±25	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current	±50	mA
T _{stg}	Storage temperature	-65 to +150	°C
T _L	Lead temperature (10 sec.)	300	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional
operation under these conditions is not implied: output in OFF state.

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	4.5 to 5.5	V
V _I	Input voltage	0 to 5.5	V
V _O	Output voltage ⁽¹⁾	0 to 5.5	V
V _O	Output voltage (2)	0 to V _{CC}	V
T _{op}	Operating temperature	-55 to 125	°C
dt/dv	Input rise and fall time ⁽³⁾ ($V_{CC} = 5.0 \pm 0.5 \text{ V}$)	0 to 20	ns/V

^{1.} Output in OFF state.

^{2.} Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied: high or low state.

^{2.} High or low state.

^{3.} V_{IN} from 0.8 V to 2 V.

Electrical characteristics 74VHCT257A

4 Electrical characteristics

Table 6. DC specifications

	Test condition					Value)				
Symbol	Symbol Parameter		v		T _A = 25 °C -40 to 85 °C				-55 to	Unit	
		V _{CC} (V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High level input voltage	4.5 to 5.5		2			2		2		V
V _{IL}	Low level input voltage	4.5 to 5.5				0.8		0.8		0.8	٧
V _{OH}	High level output	4.5	I _O = -50 μA	4.4	4.5		4.4		4.4		V
VOH	voltage	4.5	I _O = -8 mA	3.94			3.8		3.7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V _{OL}	Low level output	4.5	I _O = 50 μA		0.0	0.1		0.1		0.1	V
VOL	voltage	4.5	I _O = 8 mA			0.36		0.44		0.55	V
I _{OZ}	High impedance output leakage current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ V to } 5.5 \text{ V}$			±0.25		±2.5		±2.5	μА
I _I	Input leakage current	0 to 5.5	V _I = 5.5 V or GND			±0.1		±1.0		±1.0	μА
Icc	Quiescent supply current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μА
+I _{CC}	Additional worst case supply current	5.5	One input at 3.4 V, other input at V _{CC} or GND			1.35		1.5		1.5	mA
I _{OPD}	Output leakage current	0	V _{OUT} = 5.5 V			0.5		5.0		5.0	μА

Test condition Value $T_A = 25 \, ^{\circ}C$ -40 to 85 °C | -55 to 125 °C Unit **Symbol Parameter** $V_{CC}^{(1)}(V)$ C_L (pF) Min. Тур. Max. Min. Max. Min. Max. 5.0 15 4.8 7.0 1.0 8.0 1.0 8.0 Propagation delay time A, B, t_{PLH} t_{PHL} 5.0 50 5.5 8.0 1.0 9.0 1.0 9.0 5.0 15 6.0 6.8 1.0 8.0 1.0 8.0 t_{PLH} Propagation delay time ns SELECT to Y t_{PHL} 5.0 50 7.0 8.8 1.0 10.0 1.0 10.0 5.0 15 5.8 6.8 1.0 8.0 1.0 8.0 t_{PZL} Output enable time ns t_{PZH} 5.0 50 6.5 1.0 10.0 1.0 10.0 8.8 t_{PLZ} Output disable time 5.0 50 5.7 7.9 1.0 9.0 1.0 9.0 ns t_{PHZ}

Table 7. AC electrical characteristics (input $t_r = t_f = 3 \text{ ns}$)

Table 8. Capacitive characteristics

		Test condition Value								
Symbol	Parameter		T _A = 25 °C		-40 to	85 °C	-55 to 125 °C		Unit	
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input capacitance			4	10		10		10	pF
C _{OUT}	Output capacitance			6						pF
C _{PD}	Power dissipation capacitance ⁽¹⁾			23						pF

CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Figure 5: Test circuit). Average operating current can be obtained by equation: I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/4 (per channel).

Table 9. Dynamic switching characteristics

Table 3.	Dynamic Switching char	by halfile switching characteristics									
			Test condition		Value						
Symbol	Parameter	v _{cc}		T,	₁ = 25	°C	-40 to	85 °C	-55 to	125 °C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{OLP}	Dynamic low voltage quiet	5.0			0.3	0.8					
V _{OLV}	output ⁽¹⁾ , ⁽²⁾	3.0	C _I = 50 pF	-0.8	-0.3						V
V _{IHD}	Dynamic high voltage input ⁽¹⁾ , ⁽³⁾	5.0	OL = 50 PF	2.0							\ \ \
V_{ILD}	Dynamic low voltage input ⁽¹⁾ , ⁽³⁾	5.0				0.8					

^{1.} Worst case package.

^{1.} Voltage range is $5.0 \text{ V} \pm 0.5 \text{ V}$.

^{2.} Max. number of outputs defined as (n). Data inputs are driven 0 V to 3.0 V, (n-1) outputs switching and one output at GND.

^{3.} Max. number of data inputs (n) switching. (n-1) switching 0 V to 3.0 V. Inputs under test switching: 3.0 V to threshold (V_{ILD}), 0 V to threshold (V_{IHD}), f = 1 MHz.

Test circuit 74VHCT257A

5 Test circuit

Figure 4. Test circuit

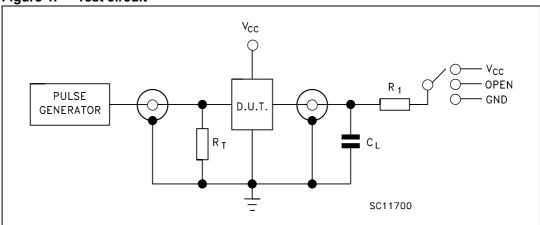


Table 10. Switch configuration

Туре	Input		Lo	ad	Switch position			
Туре	VI	t _r , t _f	C _L	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74VHCT257	3 V	6 ns	50 pF	1 kΩ	Open	GND	V _{CC}	

 $C_L = 15/50$ pF or equivalent (includes jig and probe capacitance).

 $R_L = R_1 = 1 \text{ K}\Omega \text{ or equivalent.}$

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω).

74VHCT257A Waveforms

6 Waveforms

Figure 5. Waveform - propagation delays for inverting conditions (f = 1 mhz; 50% duty cycle)

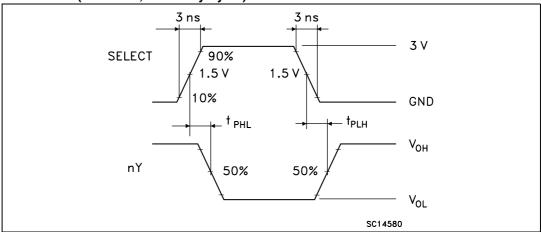
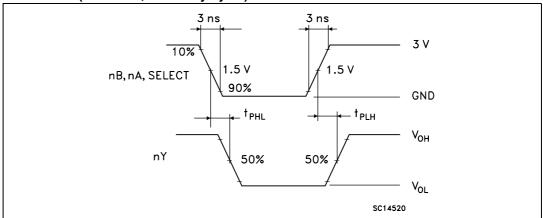



Figure 6. Waveform - propagation delays for non-inverting conditions (f = 1 MHz; 50% duty cycle)

Waveforms 74VHCT257A

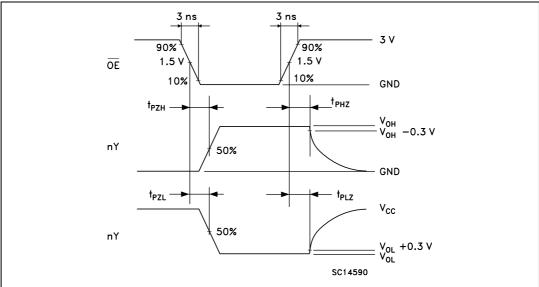


Figure 7. Waveform - output enable and disable time (f = 1 MHz; 50% duty cycle)

Doc ID 7073 Rev 4

74VHCT257A Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Package information 74VHCT257A

Figure 8. SO-16 package outline

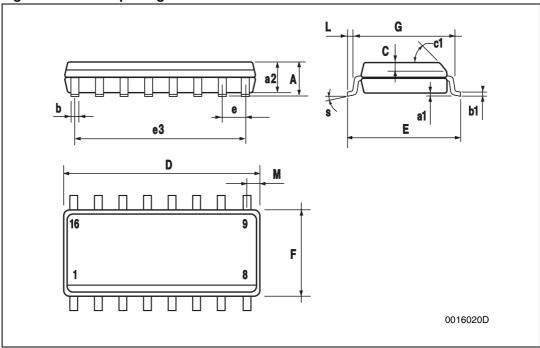
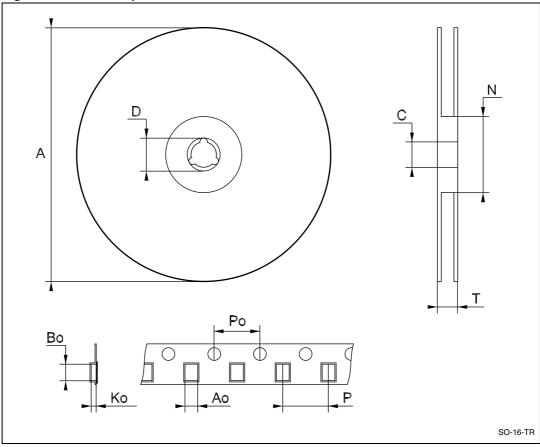



Table 11. SO-16 mechanical data

Table 11.						
			Dimens	sions		
Symbol		mm			inch	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5		0.019		
c1			45° (t	yp.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
s			8° (m	ax.)		

Figure 9. SO-16 tape and reel

1. drawing not in scale.

Table 12. SO-16 tape and reel mechanical data

		Dimensions									
Symbol		mm			inch						
	Min.	Тур.	Max.	Min.	Тур.	Max.					
Α			330			12.992					
С	12.8		13.2	0.504		0.519					
D	20.2			0.795							
N	60			2.362							
Т			22.4			0.882					
Ao	6.45		6.65	0.254		0.262					
Во	10.3		10.5	0.406		0.414					
Ко	2.1		2.3	0.082		0.090					
Ро	3.9		4.1	0.153		0.161					
Р	7.9		8.1	0.311		0.319					

Revision history 74VHCT257A

Revision history

Table 13. Document revision history

Date	Revision	Changes
16-Dec-2004	3	Order Codes Revision - pag. 1.
21-Nov-2012	4	Removed 74VHCT257ATTR device and TSSOP package from document. Replaced SOP by SO16 package on page 1. Added numbered headings to Section 1: Input equivalent circuit to Section 7: Package information. Updated Table 10 (removed 74HC257 device, 74HCT257 replaced by 74VHCT257 device). Updated Section 7: Package information, added ECOPACK®. Minor text corrections throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

 ${\rm ST}$ and the ${\rm ST}$ logo are trademarks or registered trademarks of ${\rm ST}$ in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 7073 Rev 4