

HEXFRED®

Ultrafast Soft Recovery Diode, 320 A

TO-244

FEATURES

- Very low Q_{rr} and t_{rr}
- UL approved file E222165
- Designed and qualified for industrial level
- Material categorization:
For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced RFI and EMI
- Reduced snubbing

DESCRIPTION

HEXFRED® diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and dI_F/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

PRODUCT SUMMARY	
$I_{F(AV)}$	320 A
V_R	400 V
$I_{F(DC)}$ at T_C	255 A at 85 °C
Package	TO-244 (TO-244AB)
Circuit	Two diodes common cathode

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Cathode to anode voltage	V_R			400	V
Continuous forward current	I_F	$T_C = 25^\circ\text{C}$	420	A	
		$T_C = 85^\circ\text{C}$	255		
		$T_C = 115^\circ\text{C}$	160		
Single pulse forward current	I_{FSM}	Limited by junction temperature	1200		
Non-repetitive avalanche energy	E_{AS}	$L = 100 \mu\text{H}$, duty cycle limited by maximum T_J	1.4	mJ	
Maximum power dissipation	P_D	$T_C = 25^\circ\text{C}$	625	W	
		$T_C = 100^\circ\text{C}$	250		
Operating junction and storage temperature range	T_J, T_{Stg}			-55 to 150	°C

ELECTRICAL SPECIFICATIONS ($T_J = 25^\circ\text{C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V_{BR}	$I_R = 100 \mu\text{A}$	400	-	-	V	
Maximum forward voltage	V_{FM}	$I_F = 160 \text{ A}$	See fig. 1	-	1.10	1.35	
		$I_F = 320 \text{ A}$		-	1.30	1.54	
		$I_F = 160 \text{ A}, T_J = 125^\circ\text{C}$		-	1.00	1.20	
Maximum reverse leakage current	I_{RM}	$T_J = 125^\circ\text{C}, V_R = 400 \text{ V}$	See fig. 2	-	0.9	3	mA
Junction capacitance	C_T	$V_R = 200 \text{ V}$	See fig. 3	-	370	500	pF
Series inductance	L_S	From top of terminal hole to mounting plane	-	5.0	-	nH	

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time See fig. 5	t_{rr}	$I_F = 1.0 \text{ A}$, $dI_F/dt = 200 \text{ A}/\mu\text{s}$, $V_R = 30 \text{ V}$		-	45	-	ns
		$T_J = 25^\circ\text{C}$		-	90	140	
		$T_J = 125^\circ\text{C}$		-	290	440	
Peak recovery current See fig. 6	I_{RRM}	$T_J = 25^\circ\text{C}$		-	8.7	20	A
		$T_J = 125^\circ\text{C}$		-	18	30	
Reverse recovery charge See fig. 7	Q_{rr}	$T_J = 25^\circ\text{C}$		-	420	1100	nC
		$T_J = 125^\circ\text{C}$		-	2600	7000	
Peak rate of recovery current See fig. 8	$dI_{(rec)M}/dt$	$T_J = 25^\circ\text{C}$		-	300	-	$\text{A}/\mu\text{s}$
		$T_J = 125^\circ\text{C}$		-	280	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T_J, T_{Stg}	-55	-	150	°C	
Thermal resistance, junction to case	R_{thJC}	-	-	0.19	°C/W	
		-	-	0.095		
Typical thermal resistance, case to heatsink	R_{thCS}	-	0.10	-	K/W	
Weight		-	68	-	g	
		-	2.4	-	oz.	
Mounting torque ⁽¹⁾	center hole	30 (3.4)	-	40 (4.6)	N · m (lbf · in)	
		12 (1.4)	-	18 (2.1)		
Terminal torque		30 (3.4)	-	40 (4.6)		
Vertical pull		-	-	80	lbf · in	
2" lever pull		-	-	35		

Note

⁽¹⁾ Mounting surface must be smooth, flat, free of burrs or other protrusions. Apply a thin even film or thermal grease to mounting surface. Gradually tighten each mounting bolt in 5 to 10 lbf · in steps until desired or maximum torque limits are reached.

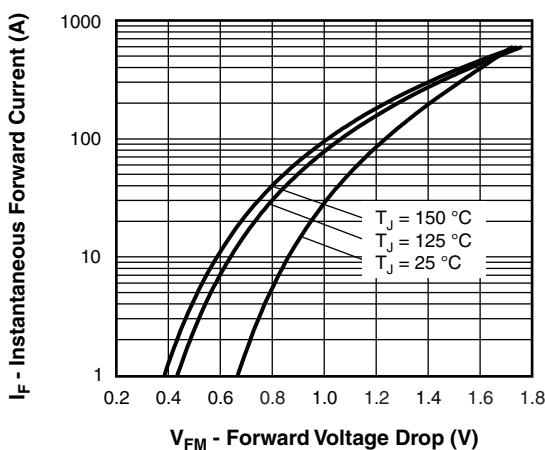


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

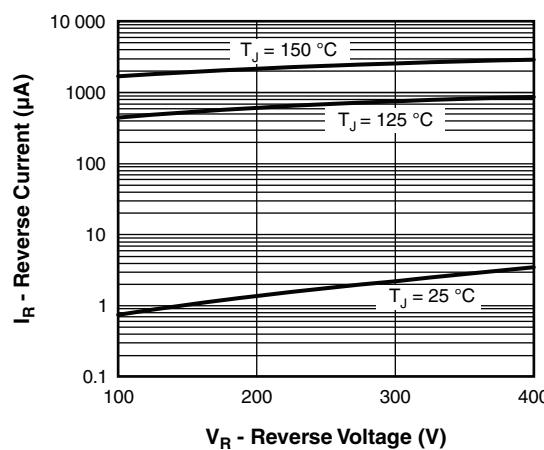


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

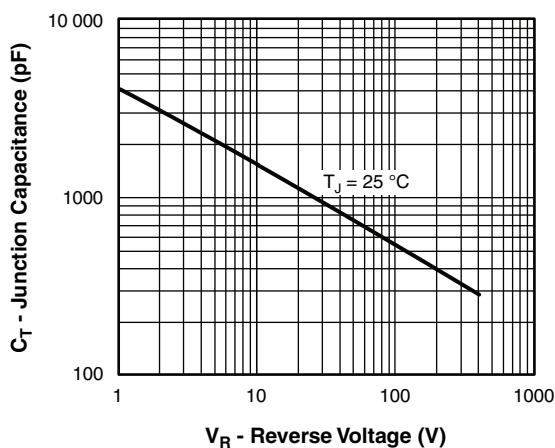


Fig. 3 - Typical Junction Capacitance vs.
Reverse Voltage (Per Leg)

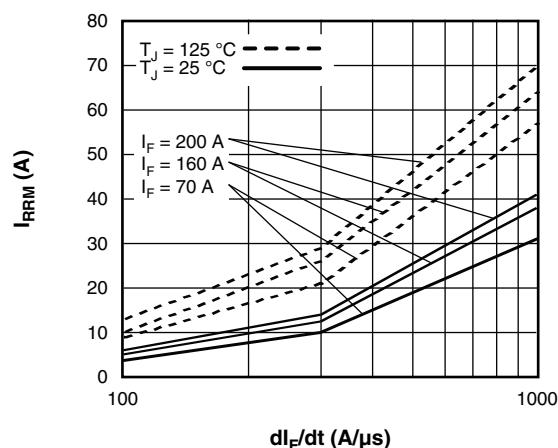


Fig. 6 - Typical Recovery Current vs. dI_F/dt (Per Leg)

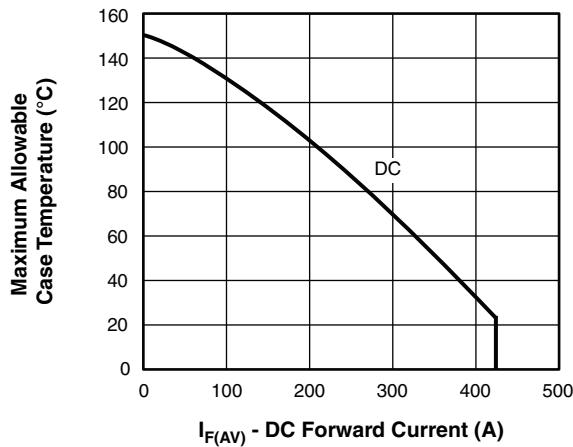


Fig. 4 - Maximum Allowable Case Temperature vs.
DC Forward Current (Per Leg)

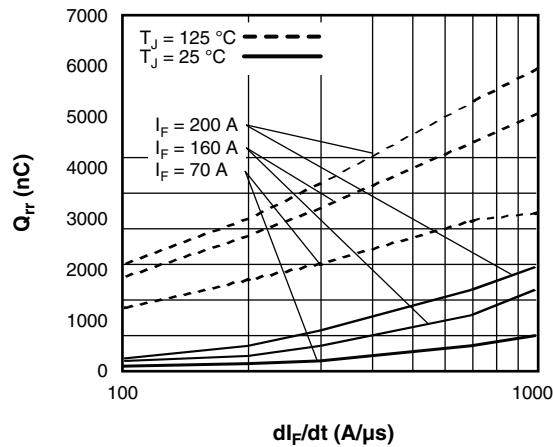


Fig. 7 - Typical Stored Charge vs. dI_F/dt (Per Leg)

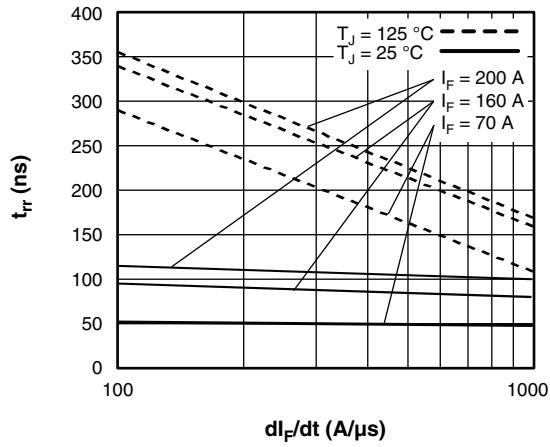


Fig. 5 - Typical Reverse Recovery Time vs. dI_F/dt (Per Leg)

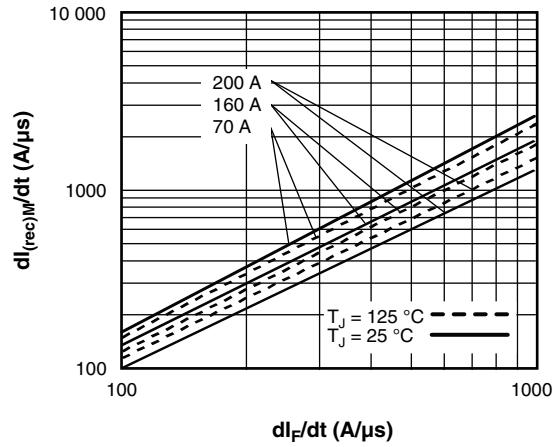


Fig. 8 - Typical $dI_{(\text{rec})M}/dt$ vs. dI_F/dt (Per Leg)

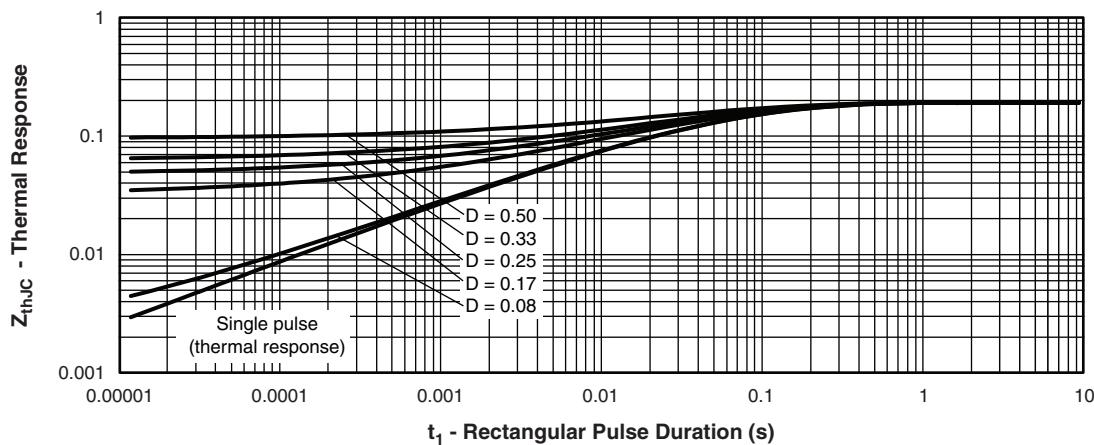


Fig. 9 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

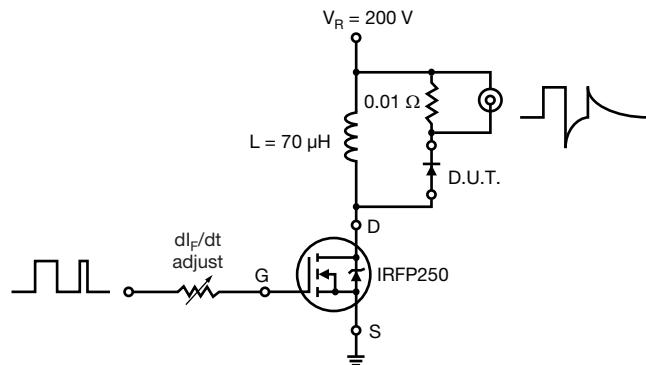
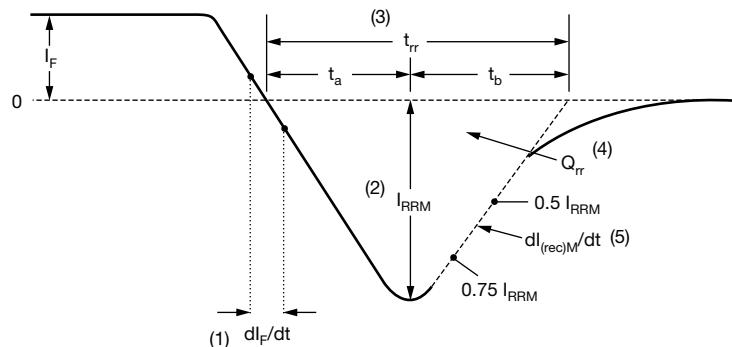



Fig. 10 - Reverse Recovery Parameter Test Circuit

(1) dl_F/dt - rate of change of current through zero crossing

(4) Q_{rr} - area under curve defined by t_{rr} and I_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(2) I_{RRM} - peak reverse recovery current

(5) $dl_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through $0.75 I_{RRM}$ and $0.50 I_{RRM}$ extrapolated to zero current.

Fig. 11 - Reverse Recovery Waveform and Definitions

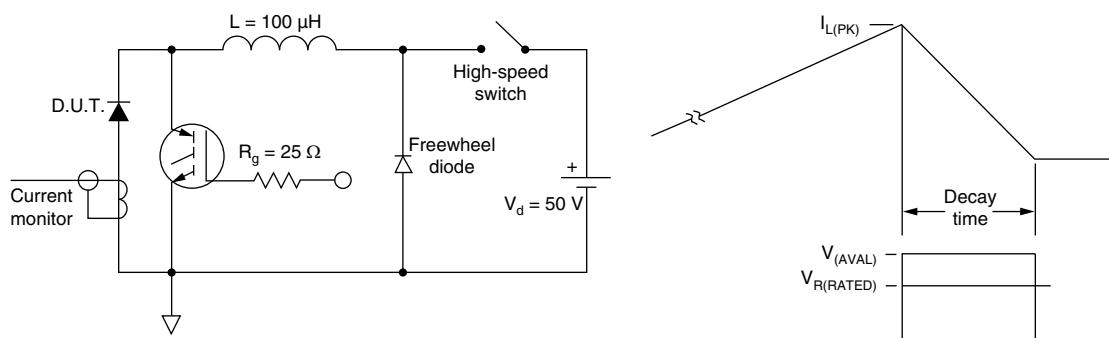
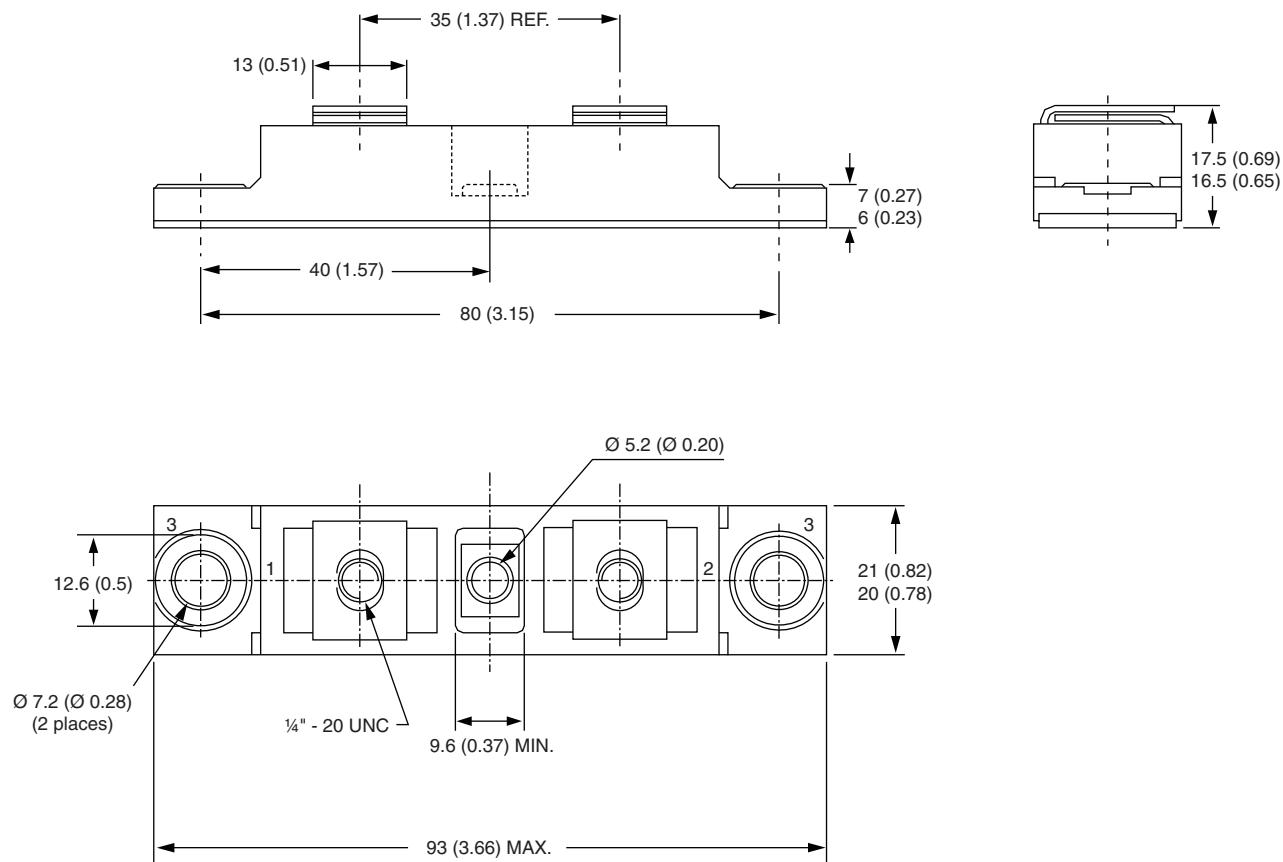


Fig. 12 - Avalanche Test Circuit and Waveforms

ORDERING INFORMATION TABLE


Device code	VS-	HFA	320	NJ	40	C	PbF
	1	2	3	4	5	6	7

- 1** - Vishay Semiconductors product
- 2** - HEXFRED® family, electron irradiated
- 3** - Average current rating
- 4** - NJ = TO-244
- 5** - Voltage rating (400 V)
- 6** - C = Common cathode
- 7** - Lead (Pb)-free

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95021

TO-244

DIMENSIONS in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.