
Rev. 0.4 8/09 Copyright © 2009 by Silicon Laboratories SDBC-DK3 UG

SDBC-DK3 UG

C8051F930 WIRELESS SOFTWARE DEVELOPMENT KIT USER’S GUIDE

1. Introduction

The Silicon Labs Wireless Product Software Development Board, MSC-DBSB8, is designed to help engineers
develop code for the Silicon Lab's EZRadio® and EZRadioPRO™ wireless products using the Silicon Labs
C8051F9xx microcontroller platform.

The C8051F9xx Wireless Software Development Board (MSC-DBSB8) is designed for code development. A
second platform, the WDS Loadboard, may also be purchased allowing for exhaustive RF lab based testing. The
Loadboard can be bought under the part number MSC-DKLB2 but also within the ISM-DK3 kit.

Figure 1. MSC-DBSB8
Software Development Board (SDB)

Figure 2. MSC-DBLB2 (Not Included)
Testing Platform for controlled Lab Tests

(Loadboard)

Both boards come with the Silicon Labs standard 40-pin socket for connecting standard EZRadio® and
EZRadioPRO™ evaluation testcards such as the Si4432-DKDB1. The onboard C8051F930 comes preloaded with
sample firmware to demonstrate a packet-based wireless link between two systems.

The MSC-DBSB8 C8051F9xx software development board includes:

 One 40-pin socket for EZRadio and EZRadioPRO testcards

 C8051F930 microcontroller preloaded with demonstration software

 Standard debug connector for Silicon Labs C8051 programming and debugging

 4 buttons and 4 LEDs for custom purposes

 LCD display for setup parameters and information display

 RS232 interface via a 9-pin DSUB male connector

 USB type B connector with Silicon Labs CP2102 USB > Serial Converter onboard

 On board 3.3 V PSU

 5 x 19 through hole breadboard area for customer's application

SDBC-DK3 UG

2 Rev. 0.4

SDBC-DK3 UG

Rev. 0.4 3

TABLE OF CONTENTS

Section Page

1. Introduction .1
2. Power Supply .5

2.1. On Board PSU .5
2.2. External PSU .5
2.3. Powered by USB Port .5

3. System Introduction: MSC-DBSB8 ICD Connector .6
4. System Introduction: Schematic (MSC-DBSB8) .8
5. Typical Testboard Schematic (Si443x Testcard) .10
6. Using the SDB with a Standard Testcard .11
7. Radio Evaluation .12

7.1. Demonstration Mode .12
7.1.1. Packet Error Rates (PER) .12
7.1.2. Screen 2: Setting Up the RF Parameters .14
7.1.3. Screen 3: Setting up Further RF Parameters .14
7.1.4. Understanding Antenna Diversity and Where to Use It16
7.1.5. Packet Length .17
7.1.6. Max Packets .18
7.1.7. Screen 5: The Ready Screen .18
7.1.8. Running the Demonstration .20

7.2. Lab Mode .22
7.2.1. Transmitter Evaluation Setup .26
7.2.2. Receiver Evaluation Setup .26
7.2.3. Transmitter Measurements .26
7.2.4. Results (CW Tests) .29
7.2.5. PN9 Measurement .30
7.2.6. Results (PN9 Tests) .32
7.2.7. Receiver Measurements .33
7.2.8. Results (BER Test) .35
7.2.9. Packet Error Test .36
7.2.10. Results (PER Test) .38

7.3. Additional Information .39
7.3.1. USB Communications .39
7.3.2. Packet Structure .40

8. Custom Software Development .41
8.1. Program Structure .41

8.1.1. Basic Code Overview .45
8.2. Basic Hardware Connections .46

9. Main .47
9.1. Flow Chart Main () .47
9.2. Main Source File .48

10. Si4432 .53

SDBC-DK3 UG

4 Rev. 0.4

10.1. Flow Chart .55
10.1.1. RF Packet Received() .55
10.1.2. RFTransmit() .55

10.2. Si4432 Header File .56
10.3. Si4432 Source File .60

11. C8051 .67
11.1. C8051 Header File .67
11.2. C8051 Source File .70

12. Troubleshooting .73
Document Change List .74
Contact Information .76

SDBC-DK3 UG

Rev. 0.4 5

2. Power Supply

The board has three power options. The user can select between these options by the supply source selector
switch (SW1).

2.1. On Board PSU
The on board PSU supplies 3.3 VDC. In this mode, the board should be powered by a standard 9 V ac or 9–12 V
dc adapter.

2.2. External PSU
In this mode, the board can be powered via the direct dc supply connector by an external PSU. Any supply voltage
can be used in the 3.3–4 V range. Polarity is marked on the PCB.

2.3. Powered by USB Port
In this mode, the board can be powered via the USB connector.

Note: When using the white LED Flash option, it is recommend to use an alternative power supply.

SDBC-DK3 UG

6 Rev. 0.4

3. System Introduction: MSC-DBSB8 ICD Connector

Figure 3. Debug Connector (Emulator and Programmer Interface)

Table 1. Debug Connector

Pin # Description

1 VDD (3.3 V)

2 GND

3 GND

4 P2.7

5 RESET

6 P2.7

7 RST/C2CK

8 —

9 GND

10 —

SDBC-DK3 UG

Rev. 0.4 7

Table 2. 40-Pin Testcard Connector (J5)

Pin # Description Pin # Description

1 J6/1 (SPI_MOSI) 21 GND

2 J7/1 22 J15/1

3 J6/2 (SPI_SCK) 23 GND

4 J7/2 24 J15/2

5 J6/3 (RF_NSEL) 25 J8/1

6 J7/3 26 EBID port (SPI_MOSI)

7 J6/4 27 GND

8 J7/4 28 EBID port (SPI_MISO)

9 J6/5 29 J8/2

10 J7/5 30 EBID port (SPI_SCK)

11 J6/6 31 GND

12 J7/6 (RF_NIRQ) 32 EBID port (EE_NSEL)

13 J6/7 (PWRDN) 33 J8/3

14 J7/7(RF_NIRQ) 34 J15/3

15 J6/8 (GPIO) 35 GND

16 J7/8(SPI_MISO 36 J15/4

17 VDD (3.3 V) 37 J8/4

18 VDD (3.3 V) 38 J15/5

19 VDD (3.3 V) 39 GND

20 VDD (3.3 V) 40 J15/6

SDBC-DK3 UG

8 Rev. 0.4

4. System Introduction: Schematic (MSC-DBSB8)

F
ig

u
re

4.
M

S
C

-D
B

S
B

8
S

ch
em

at
ic

 (
1

o
f

2)

SDBC-DK3 UG

Rev. 0.4 9

F
ig

u
re

5.
M

S
C

-D
B

S
B

8
S

ch
em

at
ic

 (
2

o
f

2)

SDBC-DK3 UG

10 Rev. 0.4

5. Typical Testboard Schematic (Si443x Testcard)

F
ig

u
re

6.
S

i4
43

x
Te

st
ca

rd
 S

ch
em

at
ic

SDBC-DK3 UG

Rev. 0.4 11

6. Using the SDB with a Standard Testcard

The standard EZRadio or EZRadioPRO testcards that are typically plugged into the MSC-DBLB2 Loadboard when
engineers are performing RF tests on the radio ICs can also be plugged into the 40pin socket on the Software
Development Board (SDB), as demonstrated below.

Figure 7. Software Development Board (MSC-DBSB8)
with a Standard Silicon Labs Testcard Installed

SDBC-DK3 UG

12 Rev. 0.4

7. Radio Evaluation

7.1. Demonstration Mode
When shipped, the MSC-DBSB8 comes with example firmware, which is used to demonstrate the basic RF
capabilities of Silicon Labs’ RFIC. In the current public release of this firmware only the EZRadioPRO Si4432
transceiver is supported, later releases are intended to demonstrate the ever increasing number of products from
Silicon Labs.

Newer firmware versions of the factory firmware may be available on the Silicon Labs website or via the WDS
CDROM.

Introducing the PER demonstration (Version 3.xr Firmware)

Reference firmware v3.xr is designed to show the Si443x in a packet error rate test demonstration. This firmware is
preloaded on to the c8051F930 microcontroller, but it is also available on the WDS CD-ROMs in the SDB section.
Source code to the Silicon Lab's firmware is also available in the same location, and is provided AS-IS for
reference purposes.

7.1.1. Packet Error Rates (PER)

Packet Errors are common place in wireless communications. In real life applications, these errors are handled
through the use of acknowledgements and retries. In the demonstration software such techniques are NOT
implemented such that system designers can understand range limitations in various environments, allowing them
to design robust protocols into their designs.

In order to use this demonstration, users should start the demo then move the two boards apart until packet errors
can be seen to start appearing and the average PER is in the order of 5%. At this point, the PER demonstration
should be cleared, and the test should be left alone to be re-run without being disturbed. It is expected that the
PER % will be reduce since the environmental factors will be more constant. Re-run the previous steps until a 2–
3% PER is found regularly at a given range. At this point, and with the current environmental conditions, you are at
a range where a higher level protocol is required. Silicon Labs has found that at a low datarate and sending
approximately 5000 packets, a 2–3 km range is attainable.

The demonstration shown below was performed along the Danube River in Budapest, Hungary using the Si4432.

Figure 8. Example Range-vs.-Data Rate
Location: Danube River in Budapest, Hungary

Data rate Range

2.4 kbps 2.05 km

4.8 kbps 2.03 km

9.6 kbps 1.5 km

50 kbps 1.37 km

100 kbps 1.1 km

125 kbps 0.96 km

SDBC-DK3 UG

Rev. 0.4 13

Note: The following screen shots reference firmware version 3.5r, screen shots may differ slightly from the version you have
received.

Figure 9. Welcome Screen

Users may by pass the introduction screen by pressing any of the pushbutton 1-4, alternatively wait until the screen
times out and moves on itself.

The following screen allows users to select the mode of operation:

Figure 10. Operating Modes

Figure 11. Screen 1: Demonstration Mode

Since the SDB's firmware recognized the Si4432 test card inserted into the 40 pin socket the appropriate modes of
operation are presented on the menu system—in this case TRx (Transceiver). It is possible however to operate a
transceiver in a RX (Receive) or TX (Transmit) mode also so menu features allow users to override the
functionality. Menu's are driven through the push button's 1–4 under the LCD—the function of each button is shown
on the screen.

Figure 12. Push Buttons and LCD Labeling

SDBC-DK3 UG

14 Rev. 0.4

The Up/Down button (PB1) moves the arrow up and down the LCD screen.

Figure 13. Active Menu Item Pointer

The arrow is used to highlight the function that will change when the user presses the '+' and '-' buttons. In the
screen shown above, 'Function:' is highlighted, pressing the '+' and '-' buttons will switch the mode of operation
between demonstration mode and lab mode.

Moving the arrow down to the ' =>Demo Mode: TRx' will allow the user to change between TRx, RX and TX
functionality via the '+' and '–' buttons.

For the purpose of this introduction to the system we shall operate in 'Demonstration Mode'. Please ensure Demo
mode is selected and TRx is enabled. The same selections should be made on both of the software development
boards.

<Press the GO button>

7.1.2. Screen 2: Setting Up the RF Parameters

Figure 14. Screen 2: RF Parameters Menu

The 2nd screen sets up the RF parameters for the link. Adjustments are made by scrolling up and down the LCD
using PB1, highlighting the relevant item to be changed and using the '+' and '-' buttons accordingly.

This introduction assumes the following settings:

Data Rate: 2.4 kbps

Modulation: GFSK

Frequency: 868.00 MHz

The same selections should be made on both of the software development boards.

<Press the GO button>

7.1.3. Screen 3: Setting up Further RF Parameters

On this screen, there may be a difference with respect to the screen shot available which is dependent on the
testcard installed in to the 40 pin connector. Several testcard options are available for the SDBC-DK3 (see website
for details). Typically, testcard variants include antenna diversity cards for use with antennas, single-ended Tx/Rx
testcards (also intended for use with antennas), and split Tx/Rx testcards designed for use with coaxial cable to lab
equipment (see "7.2. Lab Mode" on page 22 for more details).

SDBC-DK3 UG

Rev. 0.4 15

Figure 15. Antenna Diversity Testcard (May be Ordered Separately)

Figure 16. Split TX and RX Testcard (Rx: Left SMA, Tx: Right SMA) for Use with Coaxial Cable and
RF Test Equipment for Scientific RF Evaluation (May be Ordered Separately)

Figure 17. Single-Ended TX and RX Testcard

SDBC-DK3 UG

16 Rev. 0.4

If an Antenna Diversity card is fitted then the 'Antenna Mode' option on the 3rd screen will be available, this line is
automatically removed when non-antenna diversity cards such as the 4432-DKDB1 are inserted. With this options
users have the ability to select antenna 1, antenna 2 or both (antenna diversity enabled). For typical operation
select “1&2”.

This screen also allows users to setup the PA output levels of the of the radio. Figure 18 demonstrates an output
power of +20 dBm selected.

Figure 18. Screen 3: RF Parameters (Antenna Diversity Card Fitted)

7.1.4. Understanding Antenna Diversity and Where to Use It

Antenna Diversity is a technique that is use to improve the quality and reliability of a wireless link. The technique is
particularly useful in city-like urban and indoor environments where clear lines of sight between the transmitter and
the receiver cannot be achieved.

In environments where clear lines-of-sight (LOS) are not possible, signals reflect along multiple pathways
(multipath) before being received, each reflection can introduce phase shifts, time delays, attenuations and
distortions that can disrupt the quality of the signal which can cause problems for the receiver. Antenna diversity
assists the receiver by allowing it to see the signal from two slightly different positions through the use of multiple
antennas. Studies have shown that antenna diversity in both indoor and urban environments can recover 8–10 dB
of the link budget that is usually lost to the environment when receivers use only single antenna implementations.

The technique however does not provide any major benefits in open environments and often this mis-
understanding can cause confusion during range test exercises. In fact, due to the extra components used in the
antenna switch it is possible that there maybe a small addition loss in the link budget thus reducing range. See
Table 3 and Table 4.

Table 3. Illustrative Effects of Antenna Diversity in Indoor/Urban—Multipath Environments

Single Antenna Implementation Multiple Antenna Implementation

Transmit Power +20 dBm +20 dBm

Receive Sensitivity –118 dBm –118 dBm

Multipath Losses –10 dBm –2 dBm

Loss in Matching/Switch –2 dBm –3 dBm

Link Budget 126 dBm 133 dBm

Table 4. Effects of Antenna Diversity in Line of Sight (LOS)—Open Air Environments

Single Antenna Implementation Multiple Antenna Implementation

Transmit Power +20 dBm +20 dBm

Receive Sensitivity –118 dBm –118 dBm

Multipath Losses 0 dBm 0 dBm

Loss in Matching/Switch –2 dBm –3 dBm

Link Budget 136 dBm 135 dBm

SDBC-DK3 UG

Rev. 0.4 17

It can be seen from Table 3 and Table 4 that while the effects of antenna diversity on LOS environments are
negligible, the benefits in indoor/urban environments can significantly help create robust, higher quality robust
links.

Figure 19. Screen 4: Setting Up the Node Parameters

The Self ID on each card should already be selected and is contained in the EBID eeprom on the testcard. The
EBID is placed on the testcard so that our firmware and support GUI's (such as WDS) can recognize the
characteristics of the board. The EBID is NOT required as part of the bill-of-materials in an end customers design.
The EBID contains information such as the local ID, destination ID, matching network configuration and antenna/
test card configuration type.

Figure 20. Test Card Characteristics EEPROM (EBID)

The SDBC-DK3 is initially configured with the same value for the destination ID and the self ID. In order to run the
demo, you will need to configure the destination ID of the first board to that of the second and vice versa. This will
allow the two SDB boards to communicate with each other. The ID is considered the address.

7.1.5. Packet Length

The node parameters screen also allows users to adjust the packet length so that they may:

1. Perform head-to-head comparisons with competitive radios

2. Learn the effects of packet length with respect to data-rate and robustness

Many things affect the robustness of a radio link and often the lack of understanding of some of these variables can
skew test results quite substantially.

A good example of when this misunderstanding takes place is during head to head comparisons of different radio
IC suppliers. By using the 'packet length' option in the menu, users may adjust the length of the packet to match
such that they are looking at the same packet structure during their tests. (See section 7.7 for further details on the
packet structure)

Once designers are satisfied with their head-to head comparisons of the radio IC's having based their tests on
similar structures then designers can use the packet length option to experiment with their protocol. Packet length
can have many tradeoffs with respect to power savings, robustness, data rates, processing overheads, etc.

SDBC-DK3 UG

18 Rev. 0.4

Consider the following:

 During the transmission of long packets, there is an increased chance that a disturbance may occur somewhere
along that packet—thus the need to implement good CRC checks.

 During the transmission of short packets, there is an increased chance that the entire packet may be lost during
a disturbance—thus the need to implement more retries.

 Transmission of long/short packets with a slow data rates have good easily recognizable 1's and 0's but by
comparison to fast data rates have a greater 'on time' and may use more power but retries may be less (in turn
saving power).

 Transmission of long/short packets with a fast data rate may have a less 'on time' but retires may be greater,
antenna diversity may help reduce the multipath effects.

The trade offs in radio applications are many and the list above is by no means the only possible scenarios, every
application has its own list of acceptable trade offs and through the use of menu options such as data-rate, packet
length and antenna diversity engineers can learn to best understand what options work for them and their
environments.

7.1.6. Max Packets

So that designers can scientifically qualify the aforementioned trade offs, careful experimentation in applicable
application-like environments is recommended, the 'Max. Packets' menu option allows designers to select the
number of packets used to generate a Packet Error Rate (PER) result.

 A large number of packets (1000–9999) allows for a good averaged result but can take time particularly at low
data rates.

 A small number of packets (100) allows for a quick environmental assessment to be made prior to an
exhaustive test.

7.1.6.1. Example—Typical Usage

The designer will arrive at their test site and run a 100 packet test experiment prior to exhaustive testing. If the
results are in accordance with previous tests then the environment is similar to those of the previous occasion. If
there is a substantial difference in the results of a 100 packet test with any previous occasions results then new
environmental factors are playing into tests and these should be recorded as comments so that results from
exhaustive testing is better understood.

<Press the GO button>.

7.1.7. Screen 5: The Ready Screen

The ready screen on the LCD is the final step before starting your experimentation. The ready screen labels the
LEDs 1–4 according to the function they will perform. In this demonstration they are TX, RX, Antenna 1 and
Antenna 2. Note if you have disabled any of the antenna's or are using a none antenna diversity card then the
associated antenna is not represented by the LEDs.

Figure 21. Non-Antenna Diversity Testcard

Note: Only one antenna highlighted on the top row and NO-ANTDIV shown in the second line of text.

SDBC-DK3 UG

Rev. 0.4 19

Figure 22. Antenna Diversity Testcard

Note: Depending on antenna selection the relevant antennas are shown on the top row and either ANTDIV, A_DIV(1), or
A_DIV(2) is shown in the second line of text.

The ready screen is designed to allow you to review the settings on both boards. In the example shown above, we
illustrate the following configuration:

 Our first board with ID 091 is sending its message to board with the ID 094

 At 2.4 kbps

 With frequency 868.00 MHz

Using the ready screen, we can see that there is an error on the split TX/RX board in that it is configured with a
selfID of 054, this does not match the DestinationID on the antenna diversity board. From the 'ready screen' we
can update the antenna diversity board accordingly. To do this, we can press PB3 or PB4, which are highlighted as
'SETTINGS' where we can re-run the setting accordingly.

Once the settings are correct we can run the demonstration accordingly.

If the user has the ability to see both ends of the link then a white LED driver is made available on the SDB with
which you can enable a high brightness LED to make visual confirmation easier of the remote board.

SDBC-DK3 UG

20 Rev. 0.4

Figure 23. White LED Control

This feature is only manually enabled since the brightness of the LED may be distracting when on desk operation
is being implemented.

7.1.8. Running the Demonstration

Longer tests provide better averages, but in the interest of time, this demonstration sends only 1000 packets.
Users that modify the code can send as many or as few packets as they wish. The fact only 1000 packets are sent
can cause higher PER percentages since most of the dropped packets will occur while the user is setting up the
demonstration because he himself will absorb much of the radiation and add to multipath and fading effects. As
users become more familiar with radio it is highly recommended a greater number of packets be sent such that a
better average can be generated.

To run the demonstration, place one SDB in a fixed location. (If testing an antenna diversity system, place the
antenna diversity unit in the fixed location while using a single-ended testcard as the roaming testcard). The SDB
kept in the fixed location should be considered the “base unit”. This unit will act as the base unit. On the mobile
unit, the unit with the split TX and RX, press 'TX ON' and walk away from the base unit until the PER settles around
5-7%. When the PER has settled and all 1000 packets are sent press the CLEAR button and run the test again but
avoid being to close to the demo during the second test. If the test completes with 0-2% PER then the test should
be run again with a greater range, if 4–6% then run again but with a lower range. Once you reliably get 2-3% at the
end of the series of tests then, in that environment this can be considered the typical range in an application with
limited error handling - as is the purpose of this experiment.

Good protocols and handling of dropped packets enable users to get much greater ranges.

During early experimentation, users may notice that the LCD and LEDs show information that represents antenna
strength.

SDBC-DK3 UG

Rev. 0.4 21

Figure 24. Active Antenna and RSSI Indications

SDBC-DK3 UG

22 Rev. 0.4

7.2. Lab Mode
The lab mode is intended for users who want to evaluate the performance of the Silicon Labs RFICs, supported
through the shipping factory firmware on the SDB platform.

Lab mode is intended so users can perform simple evaluations, such as:

 Transmitter Evaluation
Output power
Spectrum analysis

 Receiver Evaluation
BER Sensitivity
PER Sensitivity
Receiver parameters:

Automatic Frequency Control
Blocking
Selectivity

Using lab mode, users can independently evaluate transmit and receive performance. Table 5 lists the test cards
available for ordering.

Table 5. Test Cards Available for Ordering

Type Matching Network
Configuration

Part Number

Transceivers High band 4432 – DKDB1

4431 – DKDB1

Low band 4432 – DKDB5

4431 – DKDB5

Receivers High band 4330 – DKDB1

Low band 4330 – DKDB5

Transmitters High band 4032 – DKDB1

4031 – DKDB1

Low band 4032 – DKDB5

4031 – DKDB5

SDBC-DK3 UG

Rev. 0.4 23

Figure 25. 4432-DKDB1 - Split TX/RX Antenna Card Using Coaxial Cable

RX Connection TX Connection

SDBC-DK3 UG

24 Rev. 0.4

Figure 26. Lab Equipment Connection Diagram

SDBC-DK3 UG

Rev. 0.4 25

Figure 27. Test Card Connection Diagram

Figure 28. SDB Connection Diagram

SDBC-DK3 UG

26 Rev. 0.4

7.2.1. Transmitter Evaluation Setup

The transmitter output of the 4432-DKDB1 test board can be connected to a spectrum analyzer in order to evaluate
output power and spectrum plots. Alternatively the transmitter output may be connected to a vector signal analyzer
to evaluate conditions such as freq vs time.

The 4432-DKDB1 testcard also provides access to the radio's GPIO which can be used as test-points for the radios
internal signals - see diagram above.

7.2.2. Receiver Evaluation Setup

Receiver evaluation can be performed by connecting the receiver port of the testcard to an RF signal generator.
The RF generator may use a data source from an external IQ generator or from its internal memory depending on
its feature set, often RF generators have a PN9 pattern option.

The 4432-DKDB1 testcard also provides access to the radio's GPIO which can be used as test-points for the radios
internal signals - see test card connection diagram.

Two modes are typically used during evaluations:

1. Direct Mode: In this mode, data is continuously sent via a source such as a PN9 generator.

2. Packet Mode: In this mode, the data source is customized in a defined packet structure.
Typically: Preamble + Sync_Word + Data payload + CRC.

Example of a 20 byte packet that can be received by the SDB firmware:

7.2.3. Transmitter Measurements

7.2.3.1. CW Lab Mode

Using the CW Lab Mode, users may evaluate the following:

1. Output Power

2. Frequency Offset in Transmitter Output

3. Phase Noise

Preamble:
 10
Sync: 0010110111010100
Date: 0001010000110100001100000000100101100110001011111001110101010101
 0101011101100001010011110010101111010100010000111101001101000010
 1111011110011010011100001001000111000011
CRC : 1101011110011000

SDBC-DK3 UG

Rev. 0.4 27

7.2.3.2. Test Method

Figure 29. Setup Screen (1 of 4)

1. Ensure “Lab Mode” is selected as the operating function.

2. Select CW.

3. Press <GO> to move on from this screen.

Figure 30. Setup Screen (2 of 4)

1. Select the appropriate frequency.
When evaluating with CW, data rate and modulation have no effect.

2. Press <GO> to move on from this screen.

SDBC-DK3 UG

28 Rev. 0.4

Figure 31. Setup Screen (3 of 4)

1. Select the appropriate output power required for the test.

2. Press <GO> to move on from this screen.

Note: If an alternate testcard is used, such as the antenna diversity test cards, users may see slightly different screen shots
than those shown. Users must turn off the diversity function by selecting “antenna 1” and connecting to the appropriate
antenna connector using 50  coaxial cable.

Figure 32. Setup Screen (4 of 4)

1. Parameters on setup screen 4 are not relevant to CW evaluations. Silicon Labs recommends leaving them at
their default values.

2. Press <GO> to move on from this screen.

In Figure 33, the runtime screen will summarize the current valid settings.

Figure 33. Runtime Screen

SDBC-DK3 UG

Rev. 0.4 29

7.2.4. Results (CW Tests)

7.2.4.1. Output Power

1. Set the center frequency of spectrum analyzer to the frequency under test.

2. Set span to 10 MHz.

3. Measure the TX output power on displayed plot.

Figure 34. Spectrum Plot Showing CW Output at 917 MHz

7.2.4.2. Frequency Offset at Transmitter Output

1. Set the center frequency of spectrum analyzer to the frequency under test.

2. Set span to 100 kHz.

3. Measure the frequency offset between the expected frequency as selected in the menu and the actual TX
output frequency.

Figure 35. Typical Spectrum Plot Using a Silicon Labs Branded Testcard

In Figure 35, it can be seen that the frequency error is less than 1 kHz.

Silicon Labs testcards are designed to have a maximum frequency error of < 5 kHz.

SDBC-DK3 UG

30 Rev. 0.4

7.2.4.3. Phase Noise

1. Set the Spectrum analyzer to “Phase Noise”.

2. Set the center frequency of spectrum analyzer to the frequency selected.

3. Set the spectrum analyzer to the desired span (typically from 100 Hz to 10 MHz span).

Figure 36. Typical Phase Noise Plot at 917 Mhz

7.2.5. PN9 Measurement

Using the PN9 Lab Mode, users may evaluate the following:

1. Tx output spectrum

2. Transmitter spectral mask

7.2.5.1. Test Method

Figure 37. Setup Screen (1 of 4)

1. Ensure “Lab Mode” is selected as the operating function.

2. Select PN9.

3. Press <GO> to move on from this screen.

SDBC-DK3 UG

Rev. 0.4 31

Figure 38. Setup Screen (2 of 4)

1. Select the appropriate frequency, data rate, and modulation.

2. Press <GO> to move on from this screen.

Figure 39. Setup Screen (3 of 4)

1. Select the desired output power.

2. Press <GO> to move on from this screen.

Figure 40. Setup Screen (4 of 4)

1. Parameters in Figure 40 are not relevant to PN9 evaluations. Silicon Labs recommends leaving them at their
default values.

2. Press <GO> to move on from this screen.

SDBC-DK3 UG

32 Rev. 0.4

Figure 41. Runtime Screen

In Figure 41, the runtime screen will summarize the current valid settings.

7.2.6. Results (PN9 Tests)

7.2.6.1. TX Output Spectrum

1. Set the center frequency of spectrum analyzer to the frequency under test.

2. Set span to 500 kHz and observe the TX spectrum.

7.2.6.2. Evaluation of TX Spectral Mask

Using the PN9 mode, users can observe the TX spectrum to evaluate FCC/ETSI compliance.

Figure 42. Spectrum Plot Demonstrating 40K Data Rate, 40K Deviation, GFSK Modulation

SDBC-DK3 UG

Rev. 0.4 33

7.2.7. Receiver Measurements

7.2.7.1. Bit Error Rate Test

Using the BER Lab Mode users may evaluate the following:

1. BER Sensitivity.

2. Direct mode operation using a continuous data streams

3. Receiver modem parameters:

i. Automatic Frequency Control

ii. Blocking

iii. Selectivity

7.2.7.2. Test Method

1. Set frequency, modulation type, data rate and deviation parameters on the RF signal generator.

2. Select the desired data source for the RF generator (e.g. PN9)

3. Connect the receiver's input to the signal generator's output.

Figure 43. Setup Screen (1 of 4)

1. Ensure Function is set to “Lab”

2. Set Lab Mode to “BER”

3. Press <GO> to move on from this screen.

Figure 44. Setup Screen (2 of 4)

1. Selections here should match those previously entered into the RF Signal Generator

2. Press <GO> to move on from this screen.

SDBC-DK3 UG

34 Rev. 0.4

Figure 45. Setup Screen (3 of 4)

1. Parameters on setup screen 3 are not relevant to BER evaluations. Silicon Labs recommends leaving them at
their default values.

2. Press <GO> to move on from this screen.

Figure 46. Setup Screen (4 of 4)

1. Parameters on setup screen 4 are not relevant to BER evaluations. Silicon Labs recommends leaving them at
their default values

2. Press <GO> to move on from this screen

Figure 47. Runtime Screen

In the Figure 47, the runtime screen will summarize the current valid settings.

SDBC-DK3 UG

Rev. 0.4 35

7.2.8. Results (BER Test)

7.2.8.1. BER Sensitivity Evaluation

BER results will be shown on the BER instrument or recorded by either RF generators or IQ modulators that have
a BER option installed.

The top trace in Figure 48 demonstrates TX_Data as sent by a transmitter and the bottom trace is the data
received on the GPIO pin. Please note that there is an expected shift caused by a delay between the data at the
transmitter and the data received by the receiver.

Figure 48. TX Data Sent and Received

7.2.8.2. Other Receiver Measurements

Using the test setup described above, users may also perform Automatic Frequency Control (AFC), Blocking and
Selectivity tests. All the required parameters are controlled by the external RF generator.

SDBC-DK3 UG

36 Rev. 0.4

7.2.9. Packet Error Test

Using the PER Lab Mode users may evaluate the following:

1. PER Sensitivity

2. FIFO mode using predefined packet structures (see data sheet for further details)

3. Receiver modem parameters:

i. Automatic Frequency Control

ii. Blocking

iii. Selectivity

4. Connect the receiver's input to the signal generator's output.

7.2.9.1. Test Method

1. Set frequency, modulation type, data rate and deviation parameters on the RF signal generator.

2. Program a predefined packet into the generator using the format:
(preamble + sync_word(2DD4H) + data + CRC).

3. Set the signal generator to external single trigger mode.

4. The software development board (SDB) generates a trigger on test point P1.4, this should be connected to the
RF signal generator's external trigger input. The P1.4 pin will enable the signal generator to send one packet for
each trigger.

Figure 49. Setup Screen (1 of 5)

1. Ensure Function is set to “Lab”

2. Set Lab Mode to “PER”

3. Press <GO> to move on from this screen.

Figure 50. Setup Screen (2 of 5)

1. Selections here should match those previously entered into the RF Signal Generator.

2. Press <GO> to move on from this screen.

SDBC-DK3 UG

Rev. 0.4 37

Figure 51. Setup Screen (3 of 5)

1. Parameters on setup screen 4 are not relevant to PER evaluations. Silicon Labs recommends leaving them at
their default values.

2. Press <GO> to move on from this screen.

Figure 52. Setup Screen (4 of 5)

1. Ensure the Packet length matches that programmed in the RF signal generator.

2. Select number of packets to be received by the receiver using the Max. Packets field. The appropriate number
of triggers will be sent by the SDB according to this setting.

3. Press <GO> to move on from this screen.

Figure 53. Setup Screen (5 of 5)

1. Press <Start> to commence packet error rate evaluation.
This will start generating pulses on P1.4 that are used to trigger the RF signal generator. The RF generator will
send one packet for every external trigger. As the radio is set to receive mode it is waiting for a specific pre-
programmed packet to be arrive at the pre-programmed frequency, modulation and data rate.

SDBC-DK3 UG

38 Rev. 0.4

Figure 54. Runtime Screen

In Figure 54, the runtime screen will summarize the current valid settings.

Notes:
1. TR = Trigger sent on P1.4.
2. MP = Missed packets
3. PER = Packet error rate

7.2.10. Results (PER Test)

7.2.10.1. PER Measurement

The result of PER measurement is shown on the LCD display. Connecting to the GPIO and the trigger the user can
see the following signals.

Figure 55.

In Figure 55, the top trace shows the trigger provided on P1.4 of the SDB, the middle trace shows the received
data and the bottom trace shows the transmitted data from the RF signal generator.

In the plot we can see the receiver is turned on before the packet arrived. Once the valid packet is received the
radio will return to tune mode. The radio will switch to receive mode prior to sending the next trigger. This is
repeated for the value set in “Max. Packets”.

7.2.10.2. Other Receiver Measurements:

Using the test setup described above, users may also perform Automatic Frequency Control (AFC), Blocking and
Selectivity tests. All the required parameters are controlled by the external RF generator.

SDBC-DK3 UG

Rev. 0.4 39

7.3. Additional Information
7.3.1. USB Communications

To enable greater analysis of the data information regarding the test is sent out over the USB and can be viewed
via a serial terminal emulator such as the WDS Terminal Emulator found on the WDS CDROM.

To configure the MSC-DBSB8 software development board to communicate with a PC via the USB port, a virtual
serial port driver needs to be installed on the PC.

When the MSC-DBSB8 is connected, you may be prompted to install the Virtual COM port driver.

This driver can be found on the WDS CDROM.

The Virtual COM port settings of the software development board are as follows:

 Data rate is 19.2 kbps

 1 stop bit

 No parity bit

 No handshake

If USB to virtual serial port driver is installed correctly, when the software development board is connected to PC by
USB port and the WDS Terminal Emulator is running, test results like following can be seen in Figure 56.

Figure 56. Figure 3:Test Result Displayed by USB Virtual COM Port

SDBC-DK3 UG

40 Rev. 0.4

7.3.2. Packet Structure

The packet structure used by this demonstration is very simple but is not much different than a typical packet found
in many RF applications today.

Figure 57. Packet Format Defined in the Packet Error Rate Test

SDBC-DK3 UG

Rev. 0.4 41

8. Custom Software Development

Initially the SDBC-DK3 Software Development Kit offers the ability to become acquainted with the basic capabilities
of the EZRadioPRO product family, however, the kit is also designed to be used for basic code development on any
of the RF products offered by Silicon Laboratories. By design, the kit offers two modes of operation; demonstration
mode or lab mode.

The source code to the factory firmware is available on the WDS CDROM but may be somewhat complex for use
as reference code. To aid in software development the following chapter maybe used to illustrate basic code
segment to create RF links using the EZRadioPRO platform.

The code set forth in the following chapter demonstrates a simple push button application and is based upon the
EZRadioPRO Si443x transceiver using the C8051F930 microcontroller.

8.1. Program Structure

Figure 58. Basic Program Structure Block Diagram (1 of 4)

Program Start
Main ()

MCU
Hardware

Initialization
I/O port definition

System Clock
Init

Hardware SPI
Initialization

RF Hardware
Initialization

Read and Clear all Interrupt
Status Registers

Registers: 0x03, 0x04

SW Reset
 Register: 0x07

Software
reset the chip

?

Wait for chip to be in ready mode ‘ichipready’
Registers: 0x05, 0x06, 0x03, 0x04

Is the chip in
ready ?

SDBC-DK3 UG

42 Rev. 0.4

Figure 59. Basic Program Structure Block Diagram (2 of 4)

Set VCOCurrentTrimming,
DividerCurrentTrimmingAGCOveride, and

DeltasigmaADCTuning value for optimization
specific to chip version

Registers: 0x5A, 0x59, 0x6A, 0x68

Set capacitance bank to
adjust the offset
Register: 0x09

Chip version
V2
?

TX/RX
offset?

Set center frequency of operation
Register: 0x75, 0x76, 0x77

Configuring GPIOs
Register: 0x0B, 0x0C, 0x0D

Specific Data Rate and
Modem Settings ?

Set up Sync Words
2 & 3

Register: 0x37, 0x36

Customize Sync
Words?

Using GIPOs
?

Please use EZRadioPRO Register Calculator
to configures the RF chip’s modem for

different (predefined) data rate, deviation, and
modulation index requirements.

Set TX/RX Header for header
check

Register: 0x32, 0x33

Use TX/RX
header ?

SDBC-DK3 UG

Rev. 0.4 43

Figure 60. Basic Program Structure Block Diagram (3 of 4)

RF chip in
Idle Mode

Set Register 0x07
(0x8701)

Set Register 0x07
(0x8705)

RF chip in
Receive
Mode

While (1)

Continuous
receive mode
RFReceive ()

Button pushed
?

PB1_PIN == 0

No

Build packet

1) strcpy(&packet[0],"PAYLOAD")

Yes

RFPacketReceived
(&packet[0],&length))

Return:
RF_NO_PACKET

nIRQ
interrupt

occurred?

Read out Interrupt Status
Registers

Read
Registers: 0x03, 0x04

packet
received
interrupt

?

CRC ERROR
interrupt occurred

(ItStatus1 & 0x01) ==
0x01

Packet Received
interrupt occurred

(ItStatus1 & 0x02) == 0x02

RFTransmit
(&packet[0],&length))

Read Packet Length
Information

Return:
RF_CRC_ERROR

Return:
RF_NO_PACKET

SDBC-DK3 UG

44 Rev. 0.4

Figure 61. Basic Program Structure Block Diagram (4 of 4)

DO a Burst Read from
FIFO

(<64 bytes)

Check packet for
validation

Blink LED to show
packet received

Yes

No

RF chip in
Transmit

Mode

Set Register 0x07
(0x8701)

Set Packet Length Information

DO a Burst Write to FIFO
(<64 bytes)

Enable packet sent interrupt

Read out Interrupt Status
Registers

Set Register 0x3E

Write Register 0x7F
(Write)

Register 0x7F
(Read)

Set Register 0x05
(0x8504)

Wait for packet sent interrupt
While (RF_NIRQ_PIN == 1)

No

Packet Sent Sucessful

Yes

Read
Registers: 0x03, 0x04

SDBC-DK3 UG

Rev. 0.4 45

8.1.1. Basic Code Overview

Main () (main.c)
 Hardware Initialization
 MCU hardware, system clock setup, and I/O init
 Hardware SPI pin definition (C8051.h)
 nSEL and nIRQ pin definition
 SPI read/write function protocol
 i.e.,
 #define SYSCLK (16000000L/2)

 #define SPI_CLOCK (SYSCLK/4)

 //RF chip
 SBIT(RF_NSEL_PIN, SFR_P1, 3);
 SBIT(RF_NIRQ_PIN, SFR_P0, 6);

 //SPI port
 SBIT(SPI_MISO_PIN, SFR_P1, 1);
 SBIT(SPI_MOSI_PIN, SFR_P1, 2);
 SBIT(SPI_SCK_PIN, SFR_P1, 0);

Hardware SPI setup (C8051.c)
nSEL and nIRQ pin setup

 SPI read/write functions
 i.e.,

 void SetHwMasterSpi(void)
 {

 SPI1CFG = 0x40; //Master SPI, CKPHA=0, CKPOL=0
 SPI1CN = 0x00; //3-wire Single Master, SPI enabled
 SPI1CKR = (SYSCLK/(2*SPI_CLOCK))-1;
 SPI1EN = 1; // Enable SPI1 module

 //set nSEL pins to high
 RF_NSEL_PIN = 1;
 }

RF chip hardware and I/O init
 RF Parameters definition (Si4432.h)

i.e.,
 //define the default radio frequency
 #define FREQ_BAND_SELECT 0x75 //frequency band select
 #define NOMINAL_CAR_FREQ1 0xBB //default carrier frequency: 915 MHz
 #define NOMINAL_CAR_FREQ2 0x80

RF hardware setup and parameters setting (Si4432.c)
 i.e.,
 // set frequency
 SpiRfWriteAddressData((REG_WRITE | FrequencyBandSelect), FREQ_BAND_SELECT);
 SpiRfWriteAddressData((REG_WRITE | NominalCarrierFrequency1), NOMINAL_CAR_FREQ1);

 SpiRfWriteAddressData((REG_WRITE | NominalCarrierFrequency0), NOMINAL_CAR_FREQ2);

 RF chip in continuous receive mode (main.c)
 Check incoming data for valet packet
 Blink LED for valid packet
 Response to Push button command
 Send Data Packet out

SDBC-DK3 UG

46 Rev. 0.4

8.2. Basic Hardware Connections

Figure 62. Basic Hardware Connections

C 8051F930 Si4432

HW
SPI

SCK

SDI

SDO

nSEL

nIRQ

LED 1

LED 2

30MHz

SDBC-DK3 UG

Rev. 0.4 47

9. Main

The main module main.c should include the main () function that is called upon startup. The main function should
first call several initialization routines and then the main program loop itself. Many of the initialization and internal
functions may be specific to the MCU hardware.

In this example the main loop sets the RF device into a continuous receive mode and wait for any incoming
packet(s). In addition, it also polls for a push button event by user. If a button is pressed, then it'll sends a payload
out using the internal FIFO and packet handler features of the EZRadioPRO device before returning to a
continuous receive mode.

9.1. Flow Chart Main ()

Figure 63. Flow Chart Main()

Continuous loop in
receive mode

Main

 1) MCU and RF
Hardware Init ()

2) Set RF chip in Idle
mode and start
continuous receive
mode

Button Pressed ?

Yes

Yes

No
1) blink the LED

2) send a packet with
<64 bytes of payload

3) disable transmission

4) start continuous
receive again

Valid Packet ?

No

Blink LED2 to show that
the packet received

SDBC-DK3 UG

48 Rev. 0.4

9.2. Main Source File

/**
*
* FILE --- MAIN.C
*
* DESCRIPTION
* This is the main file of the project.
*
* CREATED
* Silicon Laboratories Hungary Ltd
*
* COPYRIGHT
* Copyright 2008 Silicon Laboratories, Inc.
* http://www.silabs.com
*
***/

/*---
INCLUDE

---*/
#include "C8051.h"
#include "Si4432.h"

/*--
 FUNCTION PROTOTYPES
---*/
void Hw_Init(void);
void delay_ms(uint8 delay);

/* The real program starts here. */
/* After power-on, the first two tasks are the init of the MCU and the software development board. */
/* The main loop starts after that. While (1) means that it is a never ending loop. */

/*---
 MAIN PROGRAM
---*/

void main (void)
{
 idata uint8 packet[MAX_PAYLOAD_LENGTH];
 idata uint8 length;

 Hw_Init(); // initialize the MCU and the SW Development board
 RfInitHw(DR4800BPS_DEV45KHZ); // initialize the Si4432
 RFIdle(); // set the radio into IDLE state
 RFReceive(); // start continuous receive

SDBC-DK3 UG

Rev. 0.4 49

The foreground loop continuously polls the nIRQ pin of the receiver. If the
nIRQ is active (low), the microcontroller starts a status read. Then reads
out the data packets from the FIFO.

 while (1) // stay in receiving mode
 {
 switch (RFPacketReceived(&packet[0],&length)) // check the status packet reception
 {
 case RF_NO_PACKET: // CHIP is in RX mode, but no preamble detected
yet

If Button#1 is pressed, the LED1 will blink, and both the synthesizer and
the power amplifier (PA) will be turned on. Then the packet will be built, and
transmitted via the FIFO. Once complete, the power amplifier will be turned
off and the system will return to receive mode.

 if (PB1_PIN == 0) // On PB1, a packet send is initiated
 {
 while(PB1_PIN == 0); // wait for release of the button
 LED1_PIN = 1; // blink the LED
 length = 7; // send a packet (64 bytes payload)
 strcpy(&packet[0],"PAYLOAD"); // set packet content
 RFIdle(); // disable receiving
 RFTransmit(&packet[0],length); // start packet transmission
 LED1_PIN = 0; // release the LED
 RFIdle(); // disable transmission
 RFReceive(); // start continuous receive again
 }
 break;

At this point, the program is tests the packet length prior to a direct packet
validation, blinking LED2 if expected packet data is received.

 case RF_PACKET_RECEIVED: // a packet received
 RFIdle(); // disable the receiver
 if (length == 7) // check packet content is valid
 {
 if (memcmp(&packet[0], "PAYLOAD", 7) == 0)
 {
 LED2_PIN = 1; // blink LED2 if packet received
 delay_ms(100);
 LED2_PIN = 0;
 }
 }
 RFReceive(); // restart continuous receive
 break;

SDBC-DK3 UG

50 Rev. 0.4

Receiver will discard corrupted data packet and restart in continuous
receive mode.

 case RF_CRC_ERROR: // packet received with wrong CRC
 RFIdle(); // disable receiver
 RFReceive(); // start continuous receive
 break;

 default:
 break;
 }
 }
}

/*+++
 +
 + FUNCTION NAME: void Init(void)
 + DESCRIPTION: This function configures the HW
 + INPUT: None
 + RETURN: None
 + NOTES: None
 +
 ++*/

void Hw_Init(void)
{
 uint16 i;

 // Disable the Watchdog Timer
 PCA0MD &= ~0x40;
 PCA0MD = 0x00;

 DisableGlobalIt();
 //I/O PORT INIT
 // P0.0 - Skipped, Open-Drain, Digital
 // P0.1 - Skipped, Open-Drain, Digital
 // P0.2 - Skipped, Open-Drain, Analog
 // P0.3 - Skipped, Open-Drain, Analog
 // P0.4 - TX0 (UART0), Push-Pull, Digital
 // P0.5 - RX0 (UART0), Open-Drain, Digital
 // P0.6 - Skipped, Open-Drain, Digital
 // P0.7 - Skipped, Open-Drain, Digital
 // P1.0 - SCK (SPI1), Push-Pull, Digital
 // P1.1 - MISO (SPI1), Open-Drain, Digital
 // P1.2 - MOSI (SPI1), Push-Pull, Digital
 // P1.3 - Skipped, Push-Pull, Digital
 // P1.4 - Skipped, Push-Pull, Digital
 // P1.5 - Skipped, Push-Pull, Digital
 // P1.6 - Skipped, Push-Pull, Digital
 // P1.7 - Skipped, Push-Pull, Digital
 // P2.0 - Skipped, Open-Drain, Digital
 // P2.1 - Skipped, Open-Drain, Digital
 // P2.2 - Skipped, Push-Pull, Digital
 // P2.3 - Skipped, Push-Pull, Digital
 // P2.4 - Skipped, Push-Pull, Digital
 // P2.5 - Skipped, Push-Pull, Digital
 // P2.6 - Skipped, Push-Pull, Digital
 // P2.7 - Skipped, Push-Pull, Digital

SDBC-DK3 UG

Rev. 0.4 51

 P0MDIN = 0xF3;
 P0MDOUT = 0x10;
 P0SKIP = 0xCF;
 P1MDIN = 0xFF;
 P1MDOUT = 0xFD;
 P1SKIP = 0xF8;
 P2MDIN = 0xFF;
 P2MDOUT = 0xFC;
 P2SKIP = 0xFF;
 SFRPAGE = CONFIG_PAGE;
 P0DRV = 0x10;
 P1DRV = 0xFD;
 P2DRV = 0xFC;
 SFRPAGE = LEGACY_PAGE;
 XBR0 = 0x01;
 XBR1 = 0x40;
 XBR2 = 0x40;

// set inputs
 P0 |= 0xE3; //Set P0 inputs
 P1 |= 0x02; //Set P1 inputs
 P2 |= 0x03; //Set P2 inputs

//default I/O port
 LED1_PIN = 0;
 LED2_PIN = 0;
 LED3_PIN = 0;
 LED4_PIN = 0;
 BLED_PIN = 0;
 LCD_NSEL_PIN = 1;
 LCD_A0_PIN = 0;
 LCD_RESET_PIN = 0;

 // Oscillator init: external XTAL (16MHz), SYSCLK=XTAL/2
 OSCXCN = 0x77;

// 1ms delay for XTAL stabilization
 for(i=0;i<500;i++);
 while ((OSCXCN & 0x80) == 0);
 CLKSEL = 0x01;

 //Initialize SPI
 SetHwMasterSpi();

 LED1_PIN = 1;
 delay_ms(5);
 LED2_PIN = 1;
 delay_ms(5);
 LED1_PIN = 0;
 delay_ms(5);
 LED2_PIN = 0;
}

SDBC-DK3 UG

52 Rev. 0.4

/*+++
 +
 + FUNCTION NAME: void delay_ms(void)
 + DESCRIPTION: This function generates milliseconds delay
 + INPUT: Number of milliseconds
 + RETURN: None
 + NOTES: None
 +
 ++*/

void delay_ms(uint8 delay)
{
 xdata uint8 i;
 xdata uint16 j;

 for(i=0;i<delay;i++)
 for(j=0;j<8000;j++); //delay 1ms
}

SDBC-DK3 UG

Rev. 0.4 53

10. Si4432

The Si4432.c module contains code for all Si4432 related RF functions including RF setup parameters; Status
Read, Transmit, Receive, and Idle state. There is a global variable (a table) 'RfSettings', which contains the preset
modem parameters for each set of different data rates. These settings can be modified for other application
specific settings using values calculated based on the data sheet or through the EZRadioPRO Register Calculator
(available on WDS CDROM). It is suggested to change an entire line in the table if a new setting is desired

The RfInitHw () function initializes RF chip registers, I/O ports, timer, and IT routines needed by the RF stack. This
function has to be called in the power-on routine. Application specific parameters include: frequency band, carrier
frequency, TX/RX headers, sync words, modem setting, test bus and GPIO pin configurations.

Some of the core settings are listed below:

1. Read interrupt status to release the pending interrupts

2. SW reset -> wait for POR interrupt

3. Disable all ITs, except Chip Ready -- 'ichiprdy'

4. Set the non-default Si4432 registers

Set VCO
Set the AGC
Set ADC reference voltage to 0.9V
Set capacitance bank to adjust for adjust crystal PPM accuracy and TX/RX offsets
Reset digital testbus, disable scan test
Select nothing to the Analog Testbus
Set center frequency
Disable RX-TX headers
Set the sync word
Set GPIOs functionality
Set modem and RF parameters according to the selected DATA rate

The RFSetRfParameters() function configures the both the Tx and Rx RF parts of the radio for different
(predefined) data rates, deviations and modulation index requirements. This sets up all of the modem settings in
addition to the packet handler, CRC, preamble, and preamble detection threshold.

Note: The modem setting is a very important part of the RF parameters configuration. To simplify; there is a table in the code to
provide common parameter values for a number of data rate configurations, this can be seen below. The values shown
have been derived using the EZRadioPRO Register Calculator, available on the WDS CDROM or via the data sheet.

SDBC-DK3 UG

54 Rev. 0.4

The RFIdle() function sets the transceiver and the RF stack into an IDLE state independent of the actual state of
the RF stack. It disables the transmit/receive mode and all the interrupts. It then reads the interrupt status registers
from the radio and clears the IT flags.

The RFTransmit() function starts packet transmission and ensures packets are sent successfully.

The RFReceive() function enables packet reception by enabling the receiver and setting up the relevant interrupts
prior to and reading the interrupt status registers.

The RFPacketReceived() function checks whether the packet is received or not. It reads the data packet from the
FIFO if all packet handlers and the CRC are correct.

Table 6. Registers

Bits Register Name Register Address

IFBW: IF Filter Bandwidth 0x1C

COSR: Clock Recovery Oversampling Ratio 0x20

CRO2: Clock Recovery Offset 2 0x21

CRO1: Clock Recovery Offset 1 0x22

CRO0: Clock Recovery Offset 0 0x23

CTG1: Clock Recovery Timing Loop Gain 1 0x24

CTG0: Clock Recovery Timing Loop Gain 1 0x25

TDR1: TX Data Rate 1 0x6E

TDR0: TX Data Rate 0 0x6F

MMC1: Modulation Mode Control 1 0x70

FDEV: Frequency Deviation 0x72

AFC: AFC Loop Gear Shift Override 0x1D

ChargepumpCT: Charge Pump Current Trimming Override 0x58

==
// This table contains the modem parameters for different data rates. See the comments for more details

code uint8 RfSettings[NMBR_OF_SAMPLE_SETTING][NMBR_OF_PARAMETER] = // revV2
{
// IFBW, COSR, CRO2, CRO1, CRO0, CTG1, CTG0, TDR1, TDR0, MMC1, FDEV,AFC, ChargepumpCT
{0x01, 0x83, 0xc0, 0x13, 0xa9, 0x00, 0x05, 0x13, 0xa9, 0x20, 0x3a, 0x40, 0x80}, //DR: 2.4kbps, DEV:+-36kHz, BBBW: 75.2kHz
{0x04, 0x41, 0x60, 0x27, 0x52, 0x00, 0x0a, 0x27, 0x52, 0x20, 0x48, 0x40, 0x80}, //DR: 4.8kbps, DEV: +-45kHz, BBBW: 95.3kHz
{0x91, 0x71, 0x40, 0x34, 0x6e, 0x00, 0x18, 0x4e, 0xa5, 0x20, 0x48, 0x40, 0x80}, //DR: 9.6kbps, DEV: +-45kHz, BBBW:112.8kHz
{0x12, 0xc8, 0x00, 0xa3, 0xd7, 0x01, 0x13, 0x51, 0xec, 0x20, 0x13, 0x40, 0x80}, //DR: 10kbps, DEV: +-12kHz, BBBW: 41.7kHz
{0x13, 0x64, 0x01, 0x47, 0xAE, 0x04, 0x46, 0xa3, 0xd7, 0x20, 0x13, 0x40, 0x80}, //DR: 20kbps, DEV: +-12kHz, BBBW: 45.2kHz
{0x02, 0x64, 0x01, 0x47, 0xae, 0x05, 0x21, 0x0A, 0x3D, 0x00, 0x20, 0x40, 0x80}, //DR: 40kbps, DEV: +-20kHz, BBBW: 83.2kHz
{0x05, 0x50, 0x01, 0x99, 0x9A, 0x06, 0x68, 0x0C, 0xCD, 0x00, 0x28, 0x40, 0x80}, //DR: 50kbps, DEV: +-25kHz, BBBW:112.8kHz
{0x9A, 0x3C, 0x02, 0x22, 0x22, 0x07, 0xFF, 0x19, 0x9A, 0x00, 0x50, 0x00,0xC0}, //DR: 100kbps, DEV: +-50kHz, BBBW: 208 kHz
{0x89, 0x5e, 0x01, 0x5D, 0x86, 0x02, 0xAB, 0x20, 0xc5, 0x00, 0x66, 0x00, 0xC0}, //DR: 128kbps, DEV:+-64kHz, BBBW:269.3kHz
};
==

SDBC-DK3 UG

Rev. 0.4 55

10.1. Flow Chart
10.1.1. RF Packet Received()

Figure 64.

10.1.2. RFTransmit()

Figure 65.

RF Packet Received ()

CRC ERROR
interrupt occurred

?
Yes

1) Disable receiver

2) Return:
RF_CRC_ERROR

Valid Packet ?

1) Get Packet Length
from register 0x4B

2) Do a FIFO burst read
from register 0x7F

3) Disable receiver

Yes

If nIRQ goes low

1) Read out
Interrupt Status 1
Registers for valid
packet bit

No

RFTransmit ()

1) Set packet length with
register 0x3E

2) Do a Burst Write up to
a maximum of 64 bits of
data into the TX FIFO
using register 0x7F

3) Enable packet sent
interrupt with register
0x05 – Interrupt Enable 1

Read Interrupt Status
Registers 1 & 2 – 0x03
and 0x04

Wait for packet
sent interrupt ?

Packet Sent Correctly Yes

No

SDBC-DK3 UG

56 Rev. 0.4

10.2. Si4432 Header File

/***
**
** FILE --- Si4432.h
**
** DESCRIPTION
** Header files for Si4432 usage, contains RF specific definition and type declaration
**
** CREATED
** Silicon Laboratories Hungary Ltd
**
** COPYRIGHT
** Copyright 2008 Silicon Laboratories, Inc.
** http://www.silabs.com
**
***/

#ifndef Si4432_H
#define Si4432_H

#include "C8051.h"

 /* === *
 * APPLICATION SPECIFIC DEFINITIONS *
 * === */

// define the default radio frequency
#define FREQ_BAND_SELECT 0x75 // frequency band select
#define NOMINAL_CAR_FREQ1 0xBB // default carrier frequency: 915 MHz
#define NOMINAL_CAR_FREQ2 0x80
//packet settings
#define PREAMBLE_LENGTH (4) // 4 byte preamble
#define PD_LENGTH (2) // preamble detection threshold in nibbles

The max length of the received data packet is defined here (in data bytes).

#define MAX_PAYLOAD_LENGTH (64)

 /* === *
 * D E F I N I T I O N S *
 * === */

// definitions for register usage
#define REG_READ (0x00)
#define REG_WRITE (0x80)
#define NMBR_OF_SAMPLE_SETTING (9)
#define NMBR_OF_PARAMETER (13)

SDBC-DK3 UG

Rev. 0.4 57

 /* ==*
 * T Y P E D E C L A R A T I O N *
 * ==*/

// RF stack enumerations
typedef enum _RF_ENUM
{
 RF_OK = 0x00, // function response parameters
 RF_ERROR_TIMING = 0x01,
 RF_ERROR_PARAMETER = 0x02,
 RF_PACKET_RECEIVED = 0x03,
 RF_RX_FIFO_ALMOST_FULL = 0x04,
 RF_NO_PACKET = 0x05,
 RF_CRC_ERROR = 0x06,
} RF_ENUM;

typedef enum _RF_SAMPLE_SETTINGS
{ // Data Rate; Freq Deviation; Receiver Bandwidth
 DR2400BPS_DEV36KHZ = 0, // DR = 2.4kbps; Fdev = +-36kHz; BBBW = 75.2kHz;
 DR4800BPS_DEV45KHZ = 1, // DR = 4.8kbps; Fdev = +-45kHz; BBBW = 95.3kHz;
 DR9600BPS_DEV45KHZ = 2, // DR = 9.6kbps; Fdev = +-45kHz; BBBW = 112.8kHz;
 DR10000BPS_DEV12KHZ = 3, // DR = 10kbps; Fdev = +-12kHz; BBBW = 41.7kHz;
 DR20000BPS_DEV12KHZ = 4, // DR = 20kbps; Fdev = +-12kHz; BBBW = 45.2kHz;
 DR40000BPS_DEV20KHZ = 5, // DR = 40kbps; Fdev = +-20kHz; BBBW = 83.2kHz;
 DR50000BPS_DEV25KHZ = 6, // DR = 50kbps; Fdev = +-25kHz; BBBW = 112.8kHz;
 DR100000BPS_DEV50KHZ = 7, // DR = 100kbps; Fdev = +-50kHz; BBBW = 208kHz;
 DR128000BPS_DEV64KHZ = 8, // DR = 128kbps; Fdev = +-64kHz; BBBW = 269.3kHz;
} RF_SAMPLE_SETTINGS;

typedef enum _RF_REG_MAP // These settings are for silicon Rev-V2
{
 DeviceType = 0x00,
 DeviceVersion = 0x01,
 DeviceStatus = 0x02,
 InterruptStatus1 = 0x03,
 InterruptStatus2 = 0x04,
 InterruptEnable1 = 0x05,
 InterruptEnable2 = 0x06,
 OperatingFunctionControl1 = 0x07,
 OperatingFunctionControl2 = 0x08,
 CrystalOscillatorLoadCapacitance = 0x09,
 MicrocontrollerOutputClock = 0x0A,
 GPIO0Configuration = 0x0B,
 GPIO1Configuration = 0x0C,
 GPIO2Configuration = 0x0D,
 IOPortConfiguration = 0x0E,
 ADCConfiguration = 0x0F,
 ADCSensorAmplifierOffset = 0x10,
 ADCValue = 0x11,
 TemperatureSensorControl = 0x12,
 TemperatureValueOffset = 0x13,
 WakeUpTimerPeriod1 = 0x14,
 WakeUpTimerPeriod2 = 0x15,
 WakeUpTimerPeriod3 = 0x16,
 WakeUpTimerValue1 = 0x17,
 WakeUpTimerValue2 = 0x18,
 LowDutyCycleModeDuration = 0x19,
 LowBatteryDetectorThreshold = 0x1A,
 BatteryVoltageLevel = 0x1B,
 IFFilterBandwidth = 0x1C,

SDBC-DK3 UG

58 Rev. 0.4

AFCLoopGearshiftOverride = 0x1D,
 AFCTimingControl = 0x1E,
 ClockRecoveryGearshiftOverride = 0x1F,
 ClockRecoveryOversamplingRatio = 0x20,
 ClockRecoveryOffset2 = 0x21,
 ClockRecoveryOffset1 = 0x22,
 ClockRecoveryOffset0 = 0x23,
 ClockRecoveryTimingLoopGain1 = 0x24,
 ClockRecoveryTimingLoopGain0 = 0x25,
 ReceivedSignalStrengthIndicator = 0x26,
 RSSIThresholdForClearChannelIndicator = 0x27,
 AntennaDiversityRegister1 = 0x28,
 AntennaDiversityRegister2 = 0x29,
 DataAccessControl = 0x30,
 EZmacStatus = 0x31,
 HeaderControl1 = 0x32,
 HeaderControl2 = 0x33,
 PreambleLength = 0x34,
 PreambleDetectionControl = 0x35,
 SyncWord3 = 0x36,
 SyncWord2 = 0x37,
 SyncWord1 = 0x38,
 SyncWord0 = 0x39,
 TransmitHeader3 = 0x3A,
 TransmitHeader2 = 0x3B,
 TransmitHeader1 = 0x3C,
 TransmitHeader0 = 0x3D,
 TransmitPacketLength = 0x3E,
 CheckHeader3 = 0x3F,
 CheckHeader2 = 0x40,
 CheckHeader1 = 0x41,
 CheckHeader0 = 0x42,
 HeaderEnable3 = 0x43,
 HeaderEnable2 = 0x44,
 HeaderEnable1 = 0x45,
 HeaderEnable0 = 0x46,
 ReceivedHeader3 = 0x47,
 ReceivedHeader2 = 0x48,
 ReceivedHeader1 = 0x49,
 ReceivedHeader0 = 0x4A,
 ReceivedPacketLength = 0x4B,
 AnalogTestBus = 0x50,
 DigitalTestBus = 0x51,
 TXRampControl = 0x52,
 PLLTuneTime = 0x53,
 CalibrationControl = 0x55,
 ModemTest = 0x56,
 ChargepumpTest = 0x57,
 ChargepumpCurrentTrimming_Override = 0x58,
 DividerCurrentTrimming = 0x59,
 VCOCurrentTrimming = 0x5A,
 VCOCalibration_Override = 0x5B,
 SynthesizerTest = 0x5C,
 BlockEnableOverride1 = 0x5D,
 BlockEnableOverride2 = 0x5E,
 BlockEnableOverride3 = 0x5F,
 ChannelFilterCoefficientAddress = 0x60,
 ChannelFilterCoefficientValue = 0x61,
 CrystalOscillator_ControlTest = 0x62,
 RCOscillatorCoarseCalibration_Override = 0x63,
 RCOscillatorFineCalibration_Override = 0x64,
 LDOControlOverride = 0x65,

SDBC-DK3 UG

Rev. 0.4 59

 DeltasigmaADCTuning1 = 0x67,
 DeltasigmaADCTuning2 = 0x68,
 AGCOverride1 = 0x69,
 AGCOverride2 = 0x6A,
 GFSKFIRFilterCoefficientAddress = 0x6B,
 GFSKFIRFilterCoefficientValue = 0x6C,
 TXPower = 0x6D,
 TXDataRate1 = 0x6E,
 TXDataRate0 = 0x6F,
 ModulationModeControl1 = 0x70,
 ModulationModeControl2 = 0x71,
 FrequencyDeviation = 0x72,
 FrequencyOffset = 0x73,
 FrequencyChannelControl = 0x74,
 FrequencyBandSelect = 0x75,
 NominalCarrierFrequency1 = 0x76,
 NominalCarrierFrequency0 = 0x77,
 FrequencyHoppingChannelSelect = 0x79,
 FrequencyHoppingStepSize = 0x7A,
 TXFIFOControl1 = 0x7C,
 TXFIFOControl2 = 0x7D,
 RXFIFOControl = 0x7E,
 FIFOAccess = 0x7F,
} RF_REG_MAP;

 /* === *
 * F U N C T I O N P R O T O T Y P E S *
 * === */

RF_ENUM RfInitHw(U8 data_rate);
RF_ENUM RFSetRfParameters(RF_SAMPLE_SETTINGS setting);
RF_ENUM RFIdle(void);
RF_ENUM RFTransmit(uint8 * packet, uint8 length);
RF_ENUM RFReceive(void);
RF_ENUM RFPacketReceived(uint8 * packet, uint8 * length);

#endif

SDBC-DK3 UG

60 Rev. 0.4

10.3. Si4432 Source File

/***
**
** FILE --- Si4432.c
**
** DESCRIPTION
** Contains all Si4432 RF functions
**
** CREATED
** Silicon Laboratories Hungary Ltd
**
** COPYRIGHT
** Copyright 2008 Silicon Laboratories, Inc.
** http://www.silabs.com
**
***/

#include "C8051.h"
#include "Si4432.h"

/*---*/
/* GLOBAL variables */
/*--*/

// This table contains the modem parameters for different data rates. See the comments for more details

code uint8 RfSettings[NMBR_OF_SAMPLE_SETTING][NMBR_OF_PARAMETER] = // revV2
{
// IFBW, COSR, CRO2, CRO1, CRO0, CTG1, CTG0, TDR1, TDR0, MMC1, FDEV, AFC, ChargepumpCT
{0x01, 0x83, 0xc0, 0x13, 0xa9, 0x00, 0x05, 0x13, 0xa9, 0x20, 0x3a, 0x40, 0x80}, //DR: 2.4kbps, DEV:+-36kHz, BBBW: 75.2kHz
{0x04, 0x41, 0x60, 0x27, 0x52, 0x00, 0x0a, 0x27, 0x52, 0x20, 0x48, 0x40, 0x80}, //DR: 4.8kbps, DEV: +-45kHz, BBBW: 95.3kHz
{0x91, 0x71, 0x40, 0x34, 0x6e, 0x00, 0x18, 0x4e, 0xa5, 0x20, 0x48, 0x40, 0x80}, //DR: 9.6kbps, DEV: +-45kHz, BBBW:112.8kHz
{0x12, 0xc8, 0x00, 0xa3, 0xd7, 0x01, 0x13, 0x51, 0xec, 0x20, 0x13, 0x40, 0x80}, //DR: 10kbps, DEV: +-12kHz, BBBW: 41.7kHz
{0x13, 0x64, 0x01, 0x47, 0xAE, 0x04, 0x46, 0xa3, 0xd7, 0x20, 0x13, 0x40, 0x80}, //DR: 20kbps, DEV: +-12kHz, BBBW: 45.2kHz
{0x02, 0x64, 0x01, 0x47, 0xae, 0x05, 0x21, 0x0A, 0x3D, 0x00, 0x20, 0x40, 0x80}, //DR: 40kbps, DEV: +-20kHz, BBBW: 83.2kHz
{0x05, 0x50, 0x01, 0x99, 0x9A, 0x06, 0x68, 0x0C, 0xCD, 0x00, 0x28, 0x40, 0x80}, //DR: 50kbps, DEV: +-25kHz, BBBW:112.8kHz
{0x9A, 0x3C, 0x02, 0x22, 0x22, 0x07, 0xFF, 0x19, 0x9A, 0x00, 0x50, 0x00, 0xC0}, //DR: 100kbps, DEV: +-50kHz, BBBW: 208 kHz
{0x89, 0x5e, 0x01, 0x5D, 0x86, 0x02, 0xAB, 0x20, 0xc5, 0x00, 0x66,0x00, 0xC0}, //DR: 128kbps, DEV:+-64kHz, BBBW:269.3kHz
};

idata uint8 ItStatus1,ItStatus2;

/*+++
 +
 + FUNCTION NAME: void RfInitHw(void)
 + DESCRIPTION: Initializes the used I/O pins, SPI and timer peripherals,
 + IT routines needed for the RF stack
 + RETURN: None
 + NOTES: 1) Has to be called in the power-on routine
 + 2) It initializes the RF chip registers
 +
 ++*/

RF_ENUM RfInitHw(U8 data_rate)
{

SDBC-DK3 UG

Rev. 0.4 61

RF_NSEL_PIN = 1;

// initialize I/O port directions

 ItStatus1 = SpiRfReadRegister(InterruptStatus1); // read interrupt status
 ItStatus2 = SpiRfReadRegister(InterruptStatus2); // SW reset -> wait for POR interrupt
 SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x80);

// Enable the POR interrupt
 while (RF_NIRQ_PIN == 1); // Wait for the POR interrupt

 // disable all ITs, except 'ichiprdy'
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable1), 0x00);
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable2), 0x02);
 ItStatus1 = SpiRfReadRegister(InterruptStatus1);
 ItStatus2 = SpiRfReadRegister(InterruptStatus2);

 // set the non-default Si4432 registers
 // set VCO
 SpiRfWriteAddressData((REG_WRITE | VCOCurrentTrimming), 0x7F);
 SpiRfWriteAddressData((REG_WRITE | DividerCurrentTrimming), 0x40);

 // set the AGC
 SpiRfWriteAddressData((REG_WRITE | AGCOverride2), 0x0B);

 // set ADC reference voltage to 0.9V
 SpiRfWriteAddressData((REG_WRITE | DeltasigmaADCTuning2), 0x04);

The default value on power up should be able to oscillate the crystal.
Based on the crystal and PCB capacitance, these cap banks can be used to
tune the TX/RX offset.

 // set cap. bank
 SpiRfWriteAddressData((REG_WRITE | CrystalOscillatorLoadCapacitance), 0xD7);

 // reset digital testbus, disable scan test
 SpiRfWriteAddressData((REG_WRITE | DigitalTestBus), 41);//0x00);

 // select nothing to the Analog Testbus
 SpiRfWriteAddressData((REG_WRITE | AnalogTestBus), 0x0B);

Important: The band selector command (Configuration Command) should
be sent prior to the receiver command since once band selection has been
achieved, the synthesizer should be calibrated. Calibration can be done by
turning off and on the receiver chain using the receiver command. In the
current application the receiver chain is continuously turned on.

 // set frequency
 SpiRfWriteAddressData((REG_WRITE | FrequencyBandSelect), FREQ_BAND_SELECT);

SpiRfWriteAddressData((REG_WRITE | NominalCarrierFrequency1), NOMINAL_CAR_FREQ1);
SpiRfWriteAddressData((REG_WRITE | NominalCarrierFrequency0), NOMINAL_CAR_FREQ2);

 // disable RX-TX headers,
 SpiRfWriteAddressData((REG_WRITE | HeaderControl1), 0x00);
 SpiRfWriteAddressData((REG_WRITE | HeaderControl2), 0x02);

 // set the sync word

SDBC-DK3 UG

62 Rev. 0.4

Figure 66.

SpiRfWriteAddressData((REG_WRITE | SyncWord3), 0x2D);
 SpiRfWriteAddressData((REG_WRITE | SyncWord2), 0xD4);

GPIO definitions

 // set GPIO0 to RX DATA
 SpiRfWriteAddressData((REG_WRITE | GPIO0Configuration), 0x14);

 // set GPIO1 to TX State & GPIO2 to RX State
 SpiRfWriteAddressData((REG_WRITE | GPIO1Configuration), 0x12);
 SpiRfWriteAddressData((REG_WRITE | GPIO2Configuration), 0x15);

Next, define your RF parameters based on application specific data rate,
deviation, receive baseband bandwidth etc.,

 // set modem and RF parameters according to the selected DATA rate
 RFSetRfParameters(data_rate);
 return RF_OK;
}

SDBC-DK3 UG

Rev. 0.4 63

/*+++
 +
 + FUNCTION NAME: RF_ENUM RFSetRfParameters (RF_SAMPLE_SETTINGS setting)
 + DESCRIPTION: This function configures the RF part of the chip (both TX and RX)
 + for different (predefined) data rate, deviation and modulation index
 + requirements.
 + RETURN: RF_OK: The operation was successful
 + RF_ERROR_PARAMETER: Invalid parameter, operation is ignored.
 + NOTES:
 +
 +++*/

RF_ENUM RFSetRfParameters(RF_SAMPLE_SETTINGS setting)
{
 // setup the internal digital modem according the selected RF settings (data rate)
 SpiRfWriteAddressData((REG_WRITE | IFFilterBandwidth), RfSettings[setting][0]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryOversamplingRatio), RfSettings[setting][1]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryOffset2), RfSettings[setting][2]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryOffset1), RfSettings[setting][3]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryOffset0), RfSettings[setting][4]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryTimingLoopGain1), RfSettings[setting][5]);
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryTimingLoopGain0), RfSettings[setting][6]);
 SpiRfWriteAddressData((REG_WRITE | TXDataRate1), RfSettings[setting][7]);
 SpiRfWriteAddressData((REG_WRITE | TXDataRate0), RfSettings[setting][8]);
 SpiRfWriteAddressData((REG_WRITE | ModulationModeControl1), RfSettings[setting][9]);
 SpiRfWriteAddressData((REG_WRITE | FrequencyDeviation), RfSettings[setting][10]);
 SpiRfWriteAddressData((REG_WRITE | AFCLoopGearshiftOverride), RfSettings[setting][11]);
 SpiRfWriteAddressData((REG_WRITE | ChargepumpCurrentTrimming_Override), RfSettings[setting][12]);

 // enable packet handler & CRC16
 SpiRfWriteAddressData((REG_WRITE | DataAccessControl), 0x8D);
 SpiRfWriteAddressData((REG_WRITE | ModulationModeControl2), 0x63);

 // set preamble length & detection threshold
 SpiRfWriteAddressData((REG_WRITE | PreambleLength), (PREAMBLE_LENGTH << 1));
 SpiRfWriteAddressData((REG_WRITE | PreambleDetectionControl), (PD_LENGTH << 4));
 SpiRfWriteAddressData((REG_WRITE | ClockRecoveryGearshiftOverride), 0x03);

 return RF_OK;
}

SDBC-DK3 UG

64 Rev. 0.4

/*+++
 +
 + FUNCTION NAME: RF_ENUM RFIdle(void)
 + DESCRIPTION: Sets the transceiver and the RF stack into IDLE state,
 + independently of the actual state of the RF stack.
 + RETURN: RF_OK: The operation was successful
 + NOTES:
 +
 ++*/

RF_ENUM RFIdle(void)
{
 // disable transmitter and receiver

SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x01);

// disable all ITs
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable1), 0x00);
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable2), 0x00);

 // read the interrupt status registers from the radio to clear the IT flags
 ItStatus1 = SpiRfReadRegister(InterruptStatus1);
 ItStatus2 = SpiRfReadRegister(InterruptStatus2);

 return RF_OK;
}

/*+++
 +
 + FUNCTION NAME: RF_ENUM RFTransmit(uint8 * packet, uint8 length)
 + DESCRIPTION: Starts packet transmission
 + INPUT: MESSAGE structure
 + RETURN: RF_OK: The packet sent correctly
 +
 + NOTES:
 +
 ++*/

RF_ENUM RFTransmit(uint8 * packet, uint8 length)
{
 uint8 temp8;

 // set packet length
 SpiRfWriteAddressData((REG_WRITE | TransmitPacketLength), length);

 for(temp8=0;temp8<length;temp8++)
 {
 SpiRfWriteAddressData((REG_WRITE | FIFOAccess),packet[temp8]);
 }

// enable transmitter
 SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x09);

 // enable the packet sent interrupt only
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable1), 0x04);

 // read interrupt status registers
 ItStatus1 = SpiRfReadRegister(InterruptStatus1);

SDBC-DK3 UG

Rev. 0.4 65

ItStatus2 = SpiRfReadRegister(InterruptStatus2);

 // wait for the packet sent interrupt
 while(RF_NIRQ_PIN == 1);

 // packet is sent correctly
 return RF_OK;
}

/*+++
 +
 + FUNCTION NAME: RF_ENUM RFReceive(void)
 + DESCRIPTION: Starts packet reception
 + INPUT: None
 + RETURN: RF_OK: The operation was successful
 + NOTES:
 +
 ++*/

RF_ENUM RFReceive(void)
{
 // enable receiver chain
 SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x05);

 // enable the wanted ITs
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable1), 0x13);
 SpiRfWriteAddressData((REG_WRITE | InterruptEnable2), 0x00);

 // read interrupt status registers
 ItStatus1 = SpiRfReadRegister(InterruptStatus1);
 ItStatus2 = SpiRfReadRegister(InterruptStatus2);

 return RF_OK;
}

SDBC-DK3 UG

66 Rev. 0.4

/*+++
 +
 + FUNCTION NAME: RF_ENUM RFPacketReceived (uint8 * packet, uint8 * length)
 + DESCRIPTION: Check whether the packet received or not.
 + INPUT: Pointers for storing data and length
 + RETURN: RF_PACKET_RECEIVED: Packet received
 + RF_NO_PACKET: Packet is not yet received
 + RF_CRC_ERROR: Received a packet with CRC error
 + NOTES:
 +
 ++*/

RF_ENUM RFPacketReceived (uint8 * packet, uint8 * length)
{
 xdata uint8 i;

 // Check if IT occurred or not
 if(RF_NIRQ_PIN == 0)
 {
 /* check what caused the interrupt */
 // read out IT status register
 ItStatus1 = SpiRfReadRegister(InterruptStatus1);
 ItStatus2 = SpiRfReadRegister(InterruptStatus2);

 // packet received interrupt occurred
 if((ItStatus1 & 0x02) == 0x02)
 {
 // read buffer
 *length = SpiRfReadRegister(ReceivedPacketLength) ;
 for(i=0;i<*length;i++)
 {
 *packet++ = SpiRfReadRegister(FIFOAccess);
 }

 // disable receiver
 SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x01);
 return RF_PACKET_RECEIVED;
 }

 // CRC ERROR interrupt occurred
 if((ItStatus1 & 0x01) == 0x01)
 {
 // disable receiver
 SpiRfWriteAddressData((REG_WRITE | OperatingFunctionControl1), 0x01);
 return RF_CRC_ERROR;
 }
 }
 return RF_NO_PACKET;
}

SDBC-DK3 UG

Rev. 0.4 67

11. C8051

The C8051.c module contains all the low level, 8051 dependent functions. The code mostly comprises of hardware
SPI setup and SPI read/write function calls.

The SetHwMasterSpi() function initializes the 3-wire HW SPI port. This does not control the nSEL pin. The nSEL
pin is controlled separately by RF_NSEL_PIN.

The SpiWrite() function sends data through the SPI port (8 bits length). The nSEL pin is controlled separately by
RF_NSEL_PIN.

The SpiReadWrite() function sends and reads data via the SPI port (8 bits length). The nSEL pin is controlled
separately by RF_NSEL_PIN.

The SpiRfWriteAddressData() function sends data through the SPI port (16 length - 8 bits address, 8 bits data).
This function controls the nSEL pin.

The SpiRfWriteAddressData() function reads the current value of the register. This function controls the nSEL pin.

11.1. C8051 Header File

/***
*
**
** FILE --- C8051.h
**
** DESCRIPTION
** Contains the 8051 specific declarations, IO declarations, type declarations
**
** CREATED
** Silicon Laboratories Hungary Ltd
**
** COPYRIGHT
** Copyright 2008 Silicon Laboratories, Inc.
** http://www.silabs.com
**
**
/

#ifndef C8051_H
#define C8051_H

#include <compiler_defs.h> // compiler declarations
#include <C8051F930_defs.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

SDBC-DK3 UG

68 Rev. 0.4

 /* == *
 * T Y P E D E C L A R A T I O N *
 * == */

//Only these types of variables are used in this software
#undef uint8
#undef sint8
#undef uint16
#undef sint16
#undef uint32
#undef sint32

#define uint8 unsigned char
#define sint8 signed char
#define uint16 unsigned short
#define sint16 signed short
#define uint32 unsigned long
#define sint32 signed long

typedef struct
{
unsigned int bit0 : 1;
unsigned int bit1 : 1;
unsigned int bit2 : 1;
unsigned int bit3 : 1;
unsigned int bit4 : 1;
unsigned int bit5 : 1;
unsigned int bit6 : 1;
unsigned int bit7 : 1;
} reg;

typedef union
{
 reg testreg;
 uint8 adat;
}reg_union;

typedef union
{
 reg_union bytes[2];
 uint16 adat;
}reg16_union;

/* ===*
 * D E F I N I T I O N S *
 * ===*/

#undef TRUE
#undef FALSE
#undef INPUT
#undef OUTPUT

#define TRUE (1)
#define FALSE (0)
#define INPUT (1)
#define OUTPUT (0)

SDBC-DK3 UG

Rev. 0.4 69

I/O definitions. The RF_NSEL_PIN and RF_NIRQ_PIN port are created
separately as the Hardware SPI ports use only 3-wires.

//I/O pin definitions
SBIT(LED1_PIN, SFR_P1, 4);
SBIT(LED2_PIN, SFR_P1, 5);
SBIT(LED3_PIN, SFR_P1, 6);
SBIT(LED4_PIN, SFR_P1, 7);
SBIT(BLED_PIN, SFR_P2, 2);
SBIT(PB1_PIN, SFR_P0, 0);
SBIT(PB2_PIN, SFR_P0, 1);
SBIT(PB3_PIN, SFR_P2, 0);
SBIT(PB4_PIN, SFR_P2, 1);

//RF chip
SBIT(RF_NSEL_PIN, SFR_P1, 3);
SBIT(RF_NIRQ_PIN, SFR_P0, 6);

//SPI port
SBIT(SPI_MISO_PIN, SFR_P1, 1);
SBIT(SPI_MOSI_PIN, SFR_P1, 2);
SBIT(SPI_SCK_PIN, SFR_P1, 0);

//Test card EEPROM
SBIT(EE_NSEL_PIN, SFR_P2, 6);

//LCD
SBIT(LCD_NSEL_PIN, SFR_P2, 5);
SBIT(LCD_A0_PIN, SFR_P2, 3);
SBIT(LCD_RESET_PIN, SFR_P2, 4);
SBIT(LCD_BL_PIN, SFR_P2, 7);

#define SYSCLK (16000000L/2) // SYSCLK frequency in Hz
#define SPI_CLOCK (SYSCLK/4)
#define EnableGlobalIt() EA = 1
#define DisableGlobalIt() EA = 0

 /* == *
 * F U N C T I O N P R O T O T Y P E S *
 * == */

void SetHwMasterSpi(void);
void SpiWrite(uint8 spi_in);
uint8 SpiReadWrite(uint8 spi_in);
void SpiWriteByte(uint8 spi_in);
void SpiRfWriteAddressData(uint8 address, uint8 d);
uint8 SpiRfReadRegister(uint8 address);
uint8 SpiReadByteFromTestcardEEPROM(uint16 address);
void SpiWriteByteToTestcardEEPROM(uint16 address, uint8 d);
void SpiReadSegmentFromTestcardEEPROM(uint16 start_address, uint8 * d, uint8 length);

#endif

SDBC-DK3 UG

70 Rev. 0.4

11.2. C8051 Source File

/***
** FILE --- C8051.c
**
** DESCRIPTION
** Contains all the low level, 8051 dependent functions
**
** CREATED
** Silicon Laboratories Hungary Ltd
**
** COPYRIGHT
** Copyright 2008 Silicon Laboratories, Inc.
** http://www.silabs.com
**
***/

#include "C8051.h"

/*+++
 +
 + FUNCTION NAME: void SetHwMasterSpi(void)
 + DESCRIPTION: Initialize the HW SPI port
 + INPUT: Data
 + RETURN: None
 + NOTES: It doesn't control the nSEL pin
 +
 ++*/

void SetHwMasterSpi(void)
{
 SPI1CFG = 0x40; //Master SPI, CKPHA=0, CKPOL=0
 SPI1CN = 0x00; //3-wire Single Master, SPI enabled
 SPI1CKR = (SYSCLK/(2*SPI_CLOCK))-1;
 SPI1EN = 1; // Enable SPI1 module

 //set nSEL pins to high
 RF_NSEL_PIN = 1;
}

SDBC-DK3 UG

Rev. 0.4 71

/*+++
 +
 + FUNCTION NAME: void SpiWrite(uint8 spi_in)
 + DESCRIPTION: Sends 8 bits length data through the SPI port
 + INPUT: Data
 + RETURN: None
 + NOTES: It doesn't control the nSEL pin
 +
 ++*/

void SpiWrite(uint8 spi_in)
{
 SPI1DAT = spi_in; //write data into the SPI register
 while(SPIF1 == 0); //wait for sending the data
 SPIF1 = 0; //clear interrupt flag
}

/*+++
 +
 + FUNCTION NAME: uint8 SpiReadWrite(uint8 data)
 + DESCRIPTION: Sends and read 8 bits length data through the SPI port
 + INPUT: Data
 + RETURN: Received byte
 + NOTES: It doesn't control the nSEL pin
 +
 ++*/

uint8 SpiReadWrite(uint8 spi_in)
{
 SPI1DAT = spi_in; //write data into the SPI register
 while(SPIF1 == 0); //wait for sending the data
 SPIF1 = 0; //clear interrupt flag
 return SPI1DAT; //read received bytes
}

/*+++
 +
 + FUNCTION NAME: void SpiRfWriteAddressData(uint8 address, uint8 data1)
 + DESCRIPTION: Sends 16 length data through the SPI port (address and data)
 + INPUT: Address - register address
 + Data - 8bit data
 + RETURN: None
 + NOTES: It controls the nSEL pin
 +
 ++*/

void SpiRfWriteAddressData(uint8 address, uint8 d)
{
 RF_NSEL_PIN = 0;
 SpiWrite(address);
 SpiWrite(d);
 RF_NSEL_PIN = 1;
}

SDBC-DK3 UG

72 Rev. 0.4

/*+++
 +
 + FUNCTION NAME: uint8 SpiReadRegister(uint8 address)
 + DESCRIPTION: Read a register of the radio
 + INPUT: Address - register address
 + RETURN: Value of the register
 + NOTES: It controls the nSEL pin of the radio
 +
 ++*/

uint8 SpiRfReadRegister(uint8 address)
{
 uint8 temp8;

 RF_NSEL_PIN = 0;
 SpiReadWrite(address);
 temp8 = SpiReadWrite(0x00);
 RF_NSEL_PIN = 1;
 return temp8;
}

SDBC-DK3 UG

Rev. 0.4 73

12. Troubleshooting

Q1: My Software Development Board (SDB) displays an error message on startup.

A1: Factory firmware is designed to operate with officially approved testcards. The EBID (see Figure 20, “Test Card
Characteristics EEPROM (EBID),” on page 17) contain an authentication code to enable the use of the testcard
with the factory firmware.

Note: The EBID is only used in conjunction with factory firmware. EBID restrictions are not implemented by default
in customer firmware.

Figure 67. Error Message

The standard error message highlights

1. A missing testcard

2. A missing EEPROM

3. An invalid EEPROM authentication code

In addition, the firmware revision is highlighted in order for technical support to assist you.

Q2: After the Silicon Labs splash screen (which contains the firmware revision), there is an additional screen
shown before the setup menu's - What is this for?

A2: Authentication codes in the EBID enable the Silicon Labs to qualify a factory firmware build to a particular
testcard. If you received these message screens then a testcard is either an engineering testcard or is a specially
modified testcard for specific customers. Customers that have opened a technical support request and that have
special requirements may have received modified testcards—in this event, a notification will be displayed.

SDBC-DK3 UG

74 Rev. 0.4

DOCUMENT CHANGE LIST

Revision 0.2 to Revision 0.3
 Added Lab Mode instructions.

 Added software programmers guide.

 Updated "7.1.3. Screen 3: Setting up Further RF
Parameters" on page 14.

 Updated "7.1.8. Running the Demonstration" on
page 20.

 Updated "7.2. Lab Mode" on page 22.

 Added Table 5, “Test Cards Available for Ordering,”
on page 22.

Revision 0.3 to Revision 0.4
 Updated SDBC package kit to reflect new contents.

Antenna diversity and split card no longer supplied in
the kit.

SDBC-DK3 UG

Rev. 0.4 75

NOTES:

SDBC-DK3 UG

76 Rev. 0.4

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Email: wireless@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

