

LM158W, LM258W, LM358W

Low-power dual operational amplifier

D and S SO8 and MiniSO8 (plastic micropackage) **TSSOP8** (thin shrink small outline package) Pin connections (top view) 1 8 2 7 3 6 5 4 1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - V_{CC} 5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - V_{CC}⁺

Features

- ESD internal protection: 2 kV
- Internal frequency compensation implemented
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)

Datasheet - production data

- Very low supply current per operator essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset voltage: 2 mV
- Low input offset current: 2 nA
- Input common mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (VCC+) -1.5 V

Description

The LM158W, LM258W, and LM358W circuits consist of two independent, high-gain, operational amplifiers (op-amps), which employ an internal frequency compensation and are specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the power supply voltage magnitude. Application areas include transducer amplifiers, DC gain blocks, and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and easily provide the required interface electronics with no additional power supply. In linear mode, the input common mode voltage range includes ground. The output voltage can also swing to ground, even though operated from a single power supply voltage.

July 2019

1/20

Contents

1	Schematic diagram
2	Absolute maximum ratings and operating conditions
3	Electrical characteristics
4	Typical applications
5	Package information
	5.1 SO8 package information 14
	5.2 MiniSO8 package information
	5.3 TSSOP8 package information 16
6	Ordering information
7	Revision history

1 Schematic diagram

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings							
Symbol	Parameter	LM158W/AW	LM258W/AW	LM358W/AW	Unit		
V_{CC}^{+}	Supply voltage		+32				
V _{in}	Input voltage -0.3 to V _{CC} ⁺ +0.3			3	V		
V _{id}	Differential input voltage	-	0.3 to V _{CC} ⁺ +0.	3			
	Output short-circuit duration ⁽¹⁾		Infinite				
I _{in}	Input current ⁽²⁾		in DC or 50 mA y cycle=10%, T=		mA		
T _{oper}	Operating free-air temperature range	-55 to +125	-40 to +105	0 to +70			
T _{stg}	Storage temperature range		-65 to +150				
Тj	Maximum junction temperature		150				
R _{thja}	Thermal resistance junction-to-ambient ⁽³⁾ SO8 MiniSO8 TSSOP8	125 190 120					
R _{thjc}	Thermal resistance junction-to-case ⁽³⁾ SO8 MiniSO8 TSSOP8	40 39 37			°C/W		
	HBM: human body model ⁽⁴⁾		2		kV		
ESD	MM: machine model ⁽⁵⁾ 200				V		
	CDM: charged device model ⁽⁶⁾		1.5		kV		

Table 1. Absolute maximum ratings

1. Short-circuits from the output to V_{CC} can cause excessive heating if $V_{CC} > 15$ V. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC} . Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output will be restored for input voltage higher than -0.3 V.

3. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.

 Human body model: a 100 pF capacitor is discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

 Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

6. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Symbol	Parameter	Value	Unit			
V_{CC}^+	Supply voltage	3 to 30	V			
V _{icm}	Common mode input voltage range ⁽¹⁾	V_{DD} -0.3 to V_{CC} -1.5	V			
T _{oper}	Operating free air temperature range LM158W LM258W LM358W	-55 to +125 -40 to +105 0 to +70	°C			

Table 2. Operating conditions

1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range.

3 Electrical characteristics

(unless otherwise specified)					
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ LM158AW LM258AW, LM358AW LM158W, LM258W LM358W $T_{min} \leq T_{amb} \leq T_{max}$ LM158AW, LM258AW, LM358AW LM158W, LM258W		1 1 2 2	2 3 5 7 4 7 9	mV
ΔV _{io} /ΔT	Input offset voltage drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		7 7	15 30	µV/°C
l _{io}	Input offset current LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W $T_{min} \leq T_{amb} \leq T_{max}$ LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		2 2	10 30 30 40	nA
ΔΙ _{io} /ΔΤ	Input offset current drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		10 10	200 300	pA/°C
l _{ib}	Input bias current ⁽²⁾ LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W $T_{min} \leq T_{amb} \leq T_{max}$ LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		20 20	50 150 100 200	nA
A _{vd}	Large signal voltage gain V_{CC}^{+} = +15 V, R _L = 2 kΩ, V _o = 1.4 V to 11.4 V $T_{min} \le T_{amb} \le T_{max}$	50 25	100		V/mV
SVR	$ \begin{array}{l} \text{Supply voltage rejection ratio} \\ \text{R}_{\text{s}} \leq 10 \text{ k}\Omega, \text{V}_{\text{CC}}^{+} = 5 \text{ V to } 30 \text{ V} \\ \text{T}_{\text{min}} \leq \text{T}_{\text{amb}} \leq \text{T}_{\text{max}} \end{array} $	65 65	100		dB
I _{CC}	$ \begin{array}{l} \text{Supply current, all amp, no load} \\ \text{T}_{min} \leq \text{T}_{amb} \leq \text{T}_{max}, \text{V}_{CC}^{+} = +5 \text{ V} \\ \text{T}_{min} \leq \text{T}_{amb} \leq \text{T}_{max}, \text{V}_{CC}^{+} = +30 \text{ V} \end{array} $		0.7	1.2 2	mA

Table 3. V_{CC}^+ = +5 V, V_{CC}^- = ground, V_o = 1.4 V, T_{amb} = +25 °C
(unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{icm}	Input common mode voltage range $V_{CC}^{+} = +30 V^{(3)}$ $T_{amb} = +25^{\circ} C$ $T_{min} \leq T_{amb} \leq T_{max}$	0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V
CMR	$\begin{array}{l} \mbox{Common mode rejection ratio} \\ \mbox{R}_{s} \leq 10 \ \mbox{k}\Omega \\ \mbox{T}_{min} \leq \ \mbox{T}_{max} \end{array}$	70 60	85		dB
I _{source}	Output current source $V_{CC}^{+} = +15 \text{ V}, V_{o} = +2 \text{ V}, V_{id} = +1 \text{ V}$	20	40	60	mA
I _{sink}	Output sink current $V_{CC}^{+} = +15 V, V_o = +2 V, V_{id} = -1 V$ $V_{CC}^{+} = +15 V, V_o = +0.2 V, V_{id} = -1 V$	10 12	20 50		mΑ μΑ
V _{OH}		26 26 27 27	27 28		V
V _{OL}	Low level output voltage $R_L = 10 k\Omega$ $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV
SR	Slew rate V_{CC}^+ = 15 V, V _i = 0.5 to 3 V, R _L = 2 kΩ, C _L = 100 pF, unity gain	0.3	0.6		V/µs
GBP	Gain bandwidth product V_{CC}^+ = 30 V, f =100 kHz, V_{in} =10 mV, R _L =2 kΩ, C _L = 100 pF	0.7	1.1		MHz
THD	Total harmonic distortion f = 1 kHz, $A_v = 20 \text{ dB}$, $R_L = 2 \text{ k}\Omega$, $V_o = 2 \text{ V}_{pp}$, $C_L = 100 \text{ pF}$, $V_O = 2 \text{ V}_{pp}$		0.02		%
e _n	Equivalent input noise voltage f = 1 kHz, $R_s = 100 \Omega$, $V_{CC}^+ = 30 V$		55		<u>_nV</u> √Hz
V _{o1} /V _{o2}	Channel separation ⁽⁴⁾ 1 kHz \leq f \leq 20 kHz		120		dB

Table 3. V_{CC}^+ = +5 V, V_{CC}^- = ground, V_o = 1.4 V, T_{amb} = +25 °C (unless otherwise specified) (continued)

1. $V_0 = 1.4 \text{ V}, \text{ R}_s = 0 \Omega, 5 \text{ V} < V_{CC}^+ < 30 \text{ V}, 0 < V_{ic} < V_{CC}^+ - 1.5 \text{ V}.$

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines.

 The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}⁺ - 1.5 V, but either or both inputs can go to +32 V without damage.

4. Due to the proximity of external components ensure that there is no coupling originating via stray capacitance between these external parts. Typically, this can be detected at higher frequencies because then this type of capacitance increases.

DocID9159 Rev 14

4 Typical applications

Single supply voltage V_{CC} = +5 V_{DC}

57

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK is an ST trademark.

5.1 SO8 package information

Table 4. SO8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1 °		8 °	1 °		8 °
CCC			0.10			0.004

5.2 MiniSO8 package information

Figure 28. MiniSO8 package outline

Table 5. MiniSO8 package mechanical data

Dimensions						
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
Е	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0 °		8 °	0 °		8 °
ссс			0.10			0.004

5.3 TSSOP8 package information

Figure 29. TSSOP8 package outline

Table 6. TSSOP8 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0 °		8 °	0 °		8 °
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	
aaa		0.1			0.004	

6 Ordering information

Order code	Temperature range	Package	Packing	Marking
LM158WDT	-55 °C, +125 °C			158W
LM258AWDT		SO8		258AW
LM258WDT				258W
LM258WPT	40.00 405.00	TSSOP8		258W
LM258WYDT ⁽¹⁾	-40 °C, +105 °C	SO8 (automotive grade)	Tape and reel	258WY
LM258WYPT		TSSOP8		258WY
LM258AWYPT		(automotive grade)		K410
LM358WST		MiniSO8		K417
LM358AWDT		SO8		050 004
LM358AWPT	0 °C, +70 °C	TSSOP8		358AW
LM358AWST	1	MiniSO8		K418
LM358WDT		SO8		358W

Table 7. Order codes

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are qualified.

7 Revision history

Date	Revision	Changes
01-Nov-2002	1	First release.
01-Jul-2005	2	ESD protection inserted in <i>Table 1: Absolute maximum ratings on page 4</i> .
06-Oct-2006	3	ESD tolerance for model HBM improved to 2kV in <i>Table 1: Absolute maximum ratings on page 4.</i> R _{thja} and R _{thjc} typical values added in <i>Table 1: Absolute maximum ratings on page 4.</i> Added <i>Figure 17: Phase margin vs. capacitive load on page 10.</i>
02-Jan-2007	4	Order codes added (automotive grade level) to Section 6: Ordering information.
15-Mar-2007	5	Previously called revision 4. Footnote for automotive grade order codes added to Section 6: Ordering information.
25-Apr-2007	6	Added missing Revision 4 of January 2007 in revision history. Corrected revision number of March 2007 to Revision 5.
11-Feb-2008	7	Reformatted electrical characteristics table. Reformatted package information. Corrected MiniSO8 package information. Corrected operating temperature range for automotive grade parts.
26-Aug-2008	8	Corrected ESD values in <i>Table 1: Absolute maximum ratings</i> . Added limitations on input current in <i>Table 1: Absolute maximum ratings</i> . Corrected title for <i>Figure 11</i> . Added E and L1 parameters in <i>Table 4: SO8 package mechanical data</i> . Added automotive grade products for MSO8 package in <i>Table 7: Order codes</i> .
03-Jul-2012	9	Automotive grade level updated in <i>Table 7: Order codes</i> . Removed order codes: LM358WYD, LM358AWYD, LM258WYD, LM258AWYD.
09-Jan-2013	10	Small text changes in <i>Features</i> and <i>Description</i> . <i>Figure 1: Schematic diagram (1/2 LM158W/LM258W/LM358W)</i> : replaced. <i>Table 7: Order codes</i> : added order codes LM358WST and LM358AWST.
15-Jul-2013	11	Table 3: replaced DV $\Delta V_{io}/\Delta T$ and DI $\Delta I_{io}/\Delta T$ Table 7: Order codes: removed the following order codes:LM158WN, LM158WD, LM258AWYST, LM258WAN, LM258WAD,LM258WD, LM258WYST, LM358WN, LM358WD, LM358AWD,LM358WDT, LM358AWDT, LM358WPT, LM358AWPT,LM358WYDT, LM358AWYDT, LM358AWYPT; updated footnote 1.

Date	Revision	Changes	
		Removed DIP8 package	
18-Sep-2014	12	<i>Table 7: Order codes</i> : removed the order codes LM258WN, LM258AWYDT, LM258AWPT, LM358AWYST, LM358WYST, and LM358WYPT; added the order codes LM258WYDT, LM358AWDT, LM358AWPT, and LM358WDT.	
06-May-2015	13	Section 5: Package information: replaced "package mechanical drawing" with "package outline".	
		Table 7: Order codes: removed "tube" packaging from all products	
31-Jul-2019	14	Updated Table 7: Order codes.	

Table 8.	Document	revision	history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DocID9159 Rev 14

